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Preface 

This text is a reference manual for the C programming language. OUf aim is to provide a 
complete and precise discussion of the language, the run-time libraries. and a style of C 
programming that emphasizes correctness, portability, and maintainability. 

We expect our readers to already understand basic programming concepts, and 
many will be experienced C programmers. In keeping with a reference fannat, we present 
the language in a bottom-up order: lexical structure. preprocessor, deciarations, types, 
expressions, statements, functions, and run-time libraries. We have included many cross
references in the text so that readers can begin at any point. 

This Fifth Edition now includes a complete description of the latest international C 
standard, ISOIIEC 9899: 1999 (C99). I have been careful to indicate which features of the 
language and libraries are new in e99 and point out how e99 differs from the previous 
standard, e89. This is now the only book that serves as a reference for all the major 
versions of the C language: traditional C, the 1989 C Standard, the 1995 Amendment and 
Corrigenda to C89, and now the 1999 C Standard. It also covers the Clean C subset of 
Standard C and Standard C++. Although there is much new material in e99, I have not 
changed the chapter and section organization of the book significantly, so readers familiar 
with previous editions will not have problems finding the information they need. 

This book originally grew out of our work at Tartan, Inc. developing a family of C 
compilers for a range of computers-from micros to mainframes. We wanted the compil
ers to be well documented, provide precise and helpful error diagnostics, and generate 
exceptionally efficient object code. A C program that compiles correctly with one compil
er must compile correctly under all the others insofar as the hardware differences allow. 

In 1984. despite C's popularity. we found that there was no description of C precise 
enough to guide us in designing the new compilers. Similarly, no existing description was 
precise enough for our programmer/customers, who would be using compilers that 
analyzed C programs more thoroughly than was the custom at that time. In this text, we 
have been especially sensitive to language features that affect program clarity, object code 
efficiency. and the portability of programs among different environments. 

WEBSITE 

We encourage readers to visit the book's Web site: CAReferenceManual. com. We'll 
post example code, expanded discussions, clarifications, and links to more C resources. 

xvii 
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1 

Introduction 

Dennis Ritchie designed the C language at Bell Laboratories in the early 19705, and its an
cestry is traced from ALGOL 60 (1960), through Cambridge's CPL (1963), Martin Rich
ards's BCPL (1967), and Ken Thompson' s B language (1970) at Bell Labs. Although C is 
a general-purpose programming language, it has traditionally been used for systems pro
gramming. In particular, the popular UNIX operating system was originally written in C. 

C's popularity is due to many factors. It is a small, efficient, yet powerful program
ming language with a rich run-time library. It provides precise control over the computer 
without a lot of hidden mechanisms. Since it has been standardized for over 10 years, pro
grammers are comfortable with it. It is generally easy to write C programs that will be por
table across different computing systems in different countries with different languages. 
Finally, there is a lot of legacy C code out there that is being modified and extended. 

Starting in the late 1990s, C's popularity began to be eclipsed by its "big brother," 
C++. However. there is still a loyal following for the C language. and it continues to be 
popular where programmers do not need the features in C++ or where the overhead of C++ 
is not welcome. 

C has withstood the test of time. It remains a language in which the experienced 
programmer can write quickly and well. Millions of lines of code testify to its usefulness. 

1.1 THE EVOLUTION OF C 

At the time we wrote the First Edition of this book in 1984, the C language was in wide
spread use, but there was no official standard or precise description of the language. The 
de facto standards were the C compilers being used. C became an international standard in 
1989, was revised in 1994, and underwent a major revision in 1999. 

Simply changing the definition of a language does not automatically alter the hun
dreds of millions of lines of C program code in the world. We have strived to keep this 

3 



4 Introduction Chap. 1 

book up to date so that programmers can use it as a reference for all of the dialects of C 
they are likely to encounter. 

1.1.1 Traditional C 

The original C language description is the first edition of the book, The C Programming 
Language, by Brian Kernighan and Dennis Ritchie (Prentice-Hall, 1978), usually referred 
to as "K&R." After the book was published, the language continued to evolve in small 
ways; some features were added and some were dropped, We refer to the consensus 
definition of C in the early 19808 as traditional C, the dialect before the standardization 
process. Of course, individual C vendors had their own extensions to traditional C, too. 

1.1.2 Standard C (1989) 

Realizing that standardization of the language would help C become more widespread in 
commercial programming, the American National Standards Institute (ANSI) formed a 
committee in 1982 to propose a standard for C and its run-time libraries. That committee. 
X3J11 (now NCITS JlI ), was chaired by Jim Brodie and produced a standard formally 
adopted in 1989 as American National Standard X3. 159· 1989, or "ANSI C." 

Recognizing that programming is an international activity, an international stan
dardization group was created as ANSI C was being completed. ISO/IEC JTCl/SC221 
WG 14 under by P. 1. Plauger turned the ANSI standard into an international standard, 
lSOllEC 9899: 1990, making only minor editorial changes. The ISOIIEC standard was 
thereafter adopted by ANSI, and people referred to this common standard as simply "Stan
dard C." Since that standard would eventually be changed, we refer to it as Standard C 
(1989), or simply "C89." 

Some of the changes from traditional C to C89 included: 

• The addition of a truly standard library. 

• New preprocessor commands and features. 

• Function prototypes, which let you specify the argument types in a function declara-
tion. 

• Some new keywords, including const, volatile, and signed. 

• Wide characters, wide strings, and multibyte characters. 

• Many smaller changes and clarifications to conversion rules, declarations, and type 
checking. 

1.1.3 Standard C (1995) 

As a normal part of maintaining the C standard, WG 14 produced two Technical Corrigen
da (bug fixes) and an Amendment (extension) to C89. Taken together, these made a rela
tively modest change to the Standard mostly by adding new libraries. The result is what 
we call either "C89 with Amendment I" or "C95." The changes to C89 included: 

• three new standard library headers: iso646 _ h, wctype. h, and wchar. h, 
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• several new tokens and macros used as replacements for operators and punctuation 
characters not found in some countries' character sets, 

• some new formatting codes for the printf/scanf family of functions, and 

• a large number of new functions, plus some types and constants, for multibyte and 
wide characters. 

1.1.4 Standard C (1999) 

IsonEC standards must be reviewed and updated on a regular basis. In 1995. WGI4 be
gan work on a more extensive revision to the C standard, which was completed and ap
proved in 1999. The new standard, ISOIIEC 9899:1999, or "C99," replaces the previous 
standard (and all corrigenda and amendments) and has now become the official Standard 
C. Vendors are updating their C compilers and libraries to conform to the new standard. 

C99 adds many new features to the C89/C95 language and libraries, including: 

• complex arithmetic 

• extensions to the integer types, including a longer standard type 

• variable-length arrays 

• a Boolean type 

• better support for non-English character sets 

• better support for floating-point types, including math functions for all types 

• C++-style comments (/ /) 

C99 is a much larger change than C95 since it includes changes to the language as 
well as extensions to the libraries. The C99 Standard document is significantly larger than 
the C89 document. However, the changes are "in the spirit of C," and they do not change 
the fundamental nature of the language. 

1.1.5 Standard C++ 

C++, designed by Bjarne Stroustrup at AT&T Bell Labsin the early 1980s, has now large
ly supplanted C for mainstream programming. Most C implementations are actually CI 
C++ implementations, giving programmers a choice of which language to use. C++ has it
self been standardized, as ISOIlEC 14882:1998, or "Standard C++." C++ includes many 
improvements over C that programmers need for large applications. including improved 
type checking and support for object-oriented programming. However, C++ is also one of 
the most complex programming languages, with many pitfalls for the unwary. 

Standard C++ is nearly- but not exactly- a superset of Standard C. Since the C and 
C++ standards were developed on different schedules, they could not adapt to each other in 
a coordinated way. Furthermore, C has kept itself distinct from C++. For example, there 
has been no attempt to adopt "simplified" versions of C++'s class types. 

It is possible to write C code in the common subset of the Standard C and C++ lan
guages-called Clean C by some-so that the code can be compiled either as a C program 
or a C++ program. Since C++ generally has stricter rules than Standard C, Clean C tends to 
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be a good, portable subset in which to write. The major changes you must consider when 
writing Clean Care: 

• Clean C programs must use function prototypes. Old-style declarations are not per
mitted in c++. 

• Clean C programs must avoid using names that are reserved words in C++, like 
class and virtual. 

There are several other rules and differences, but they are less likely to cause problems. In 
this book, we explain how to write Standard C code so that it is acceptable to C++ compil
ers. We do not discuss features of Ct+ that are not available in Standard C. (Which, of 
course, includes almost everything interesting in C++.) 

1.1.6 What's in This Book 

This book describes the three major variations of C: traditional C, C89, and C99. It calls 
out those features that were added in Amendment 1 to e89, and it describes the Clean C 
subset of C and C++. We also suggest how to write "good" C programs-programs that 
are readable, portable, and maintainable. 

Officially, "Standard C" is C99. However, we use the term Standard C to refer to 
features and concepts of C89 that continue through C99. Features that exist only in C99 
will be identified as such so that programmers using e89 implementations can avoid them. 

1.2 WHICH DIALECT OF C SHOULD YOU USE? 

Which dialect of e you use depends on what implementation(s) of e you have available 
and on how portable you want your code to be. Your choices are: 

I. C99, the current version of Standard C. It has all the latest features, but some imple
mentations may not yet support it. (That will change rapidly.) 

2. C89, the previous version of Standard C. Most recent C programs and most C imple
mentations are based on this version of e, usually with the Amendment I additions. 

3. Traditional e, now encountered mostly when maintaining older e programs. 

4. Clean C, compatible with C++. 

C99 is generally upward compatible with C89, which is generally upward 
compatible with traditional C. Unfortunately, it is hard to write e code that is backward 
compatible. Consider function prototypes, for example. They are optional in Standard C, 
forbidden in traditional C, and required in C++. Fortunately, you can usc the C preproces
sor to alter your code depending on which implementation is being used-and even on 
whether your Standard C includes the Amendment 1 extensions. Therefore, your C pro
grams can remain compatible with all dialects. We explain how to use the preprocessor to 
do this in Chapter 3. An example appears in Section 3.9.1. 

If you are not limited by your compiler or an existing body of C code, you should 
definitely use Standard C as your base language. Standard C compilers are now almost 



Sec. 1.3 An Overview of C Programming 7 

universally available. The Free Software Foundation·s GNU C (gec) is a free. Standard C 
implementation (with many extensions). 

1.3 AN OVERVIEW OF C PROGRAMMING 

We expect most of our readers to be familiar with programming in a high-level language 
such as C, but a quick overview of C programming may be helpful to some. 

A C program is composed of one or more source jiles, or translation units, each of 
which contains some part of the entire C program-typically some number of external 
functions. Common declarations are often collected into header files and are included into 
the source files with a special #include command (Section 3.4). One external function 
must be named main (Section 9.9); this function is where your program starts. 

A C compiler independently processes each source file and translates the C program 
text into instructions understood by the computer. The compiler "understands" the C pro
gram and analyzes it for correctness. If the programmer has made an error the compiler 
can detect, then the compiler issues an error message. Otherwise, the output of the compil
er is usually called object code or an object module. 

When all source files are compiled, the object modules are given to a program called 
the linker. The linker resolves references beN/een the modules, adds functions from the 
standard run-time library, and detects some programming errors such as the failure to de
fine a needed function. The linker is typically not specific to C; each computer system has 
a standard linker that is used for programs written in many different languages. The linker 
produces a single executable program. which can then be invoked or run. Although most 
computer systems go through these steps, they may appear different to the programmer. In 
integrated environments such as Microsoft 's Visual Studio, they may be completely hid
den. In this book, we are not concerned with the details of building C programs; readers 
should consult their own computer system and programming documentation. 

Example 

Suppose we have a program to be named aprogram consisting of the two C source files 
hello. c and startup. c. The file hello. c might contain these lines: 

"include <stdio.h> /* defines printf */ 
void hello (void) 
{ 

printf("Hellol\n"}; 
} 

Since hello. c contains facilities (the function hello) that will be used by other parts of 
our program, we create a header ftle hello. h to declare those facilities. It contains the line 

extern void hello{void}; 

File startup. c contains the main program, which simply calls function hello: 
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#include ~hel1o.h" 
int main (void) 
{ 

} 

hello () ; 
return 0; 

Introduction Chap. 1 

On a UNIX system, compiling, linking, and executing the program takes only two steps: 

% co -0 aprogram hello.c startup.c 
% aprogram 

The ftrst line compiles and links the two source files, adds any standard library functions 
needed, and writes the executable program to file aprogram. The second line then executes 
the program, which prints: 

Hello! 

Other non-UNIX implementations may use different commands. Increasingly, modem pro
gramming environments present an integrated, graphical interface to the programmer. Build

ing a C application in such an environment requires only selecting commands from a menu or 
clicking a graphical button. 

1.4 CONFORMANCE 

Both C programs and C implementations can con/ann to Standard C. A C program is said 
to be strictly conforming to Standard C if that program uses only the features of the lan
guage and library described in the Standard. The program's operation must not depend on 
any aspect of the C language that the Standard characterizes as unspecified, undefined, or 
implementation-defined. There are Standard C test suites available from Perennial, Inc. 
and Plum Hall, Inc. that help establish confonnance of implementations to the standard. 

There are two kinds of conforming implementations-hosted and freestanding. A C 
implementation is said to be a conforming hosted implementation if it accepts any strictly 
conforming program. A conforming freestanding implementation is one that accepts any 
strictly conforming program that uses no library facilities other than those provided in the 
header files float.h, iso646.h (C95), limits.h, stdarg,h, stdbool.h 
(C99), stddef , h , and stdint. h (C99). Chapter 10 lists the contents of these header 
files. Freestanding conformance is meant to accommodate C implementations for embed
ded systems or other target environments with minimal run-time support. For example, 
such systems may have no file system. 

A conforming program is one that is accepted by a conforming implementation. 
Thus, a conforming program can depend on some non portable, implementation-defined 
features of a confonning implementation, whereas a strictly confonning program cannot 
depend on those features (and so is maximally portable). 

Conforming implementations may provide extensions that do not change the mean
ing of any strictly conforming program. This allows implementations to add library rou
tines and define their own #pragma directives, but not to introduce new reserved 
identifiers or change the operation of standard library functions. 
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Compiler vendors continue to provide nonconforming extensions to which their 
customers have grown accustomed. Compilers enable (or disable) these extensions with 
special switches. 

1.5 SYNTAX NOTATION 

This book makes use of a stylized notation for expressing the form of a C program. When 
specifying the C language grammar, tenninal symbols are printed in fixed type and are to 
appear in the program exactly as written. Nontenninal symbols are printed in italic type; 
they are spelled beginning with a letter and can be followed by zero or more letters, digits, 
or hyphens: 

expression argument-list declarator 

Syntactic definitions are introduced by the name of the non terminal being defined fol
lowed by a colon. One or more alternatives then follow on succeeding lines: 

character: 
printing-character 
escape-character 

When the words one of follow the colon, this signifies that each of the terminal symbols 
following on one or more lines is an alternative definition: 

digit: one of 
01234 567 8 9 

Optional components of a definition are signified by appending the suffix opt to a termi
nal or nontenninal symbol: 

enumeration-constant-definition : 
enumeration-constant enumeration-initializer opt 

initializer: 
expression 
{ initializer-list , opt } 
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Lexical Elements 

This chapter descrihes the lexical structure of the C language-that is, the characters that 
may appear in a C source file and how they are collected into lexical units, or tokens. 

2.1 CHARACTER SET 

A C source file is a sequence of characters selected from a character set. C programs are 
written using the following characters defined in the Basic Latin block of (SOllEe 10646: 

( . the 52 Latin capital and small letters: 

A B C D E F G H I J K L M N 0 p Q R S T 

U V W X Y Z a b c d e f g h i j k 1 m 

n 0 p q r s t u v w x y z 

2. the 10 digits: 

01 2 3 4 5 6 7 8 9 

3. the SPACE, 

4. the horizontal tab (HT), vertical tab (VT), and form feed (FF) control characters, and 

5. the 29 graphic characters and their official names (shown in Table 2-1). 

There must also be some way of dividing the source program into lines; this can be done 
with a character or character sequence or with some mechanism outside the source 
character set (e.g., an end-of-record indication). 

11 
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Table 2-1 Graphic characters 

Ch" Name Ch" Name Char Name 

EXCLAMATION MARK + PLUS SIGN • QUOTATION MARK 

# NUMBER SIGN • EQUALS SIGN ( LEFT CURLY BRACKET 

• PERCEI\'T SIGN T ILDE ) RIGHT CURLY BRACKET 

CIRCUMFLEX ACCENT [ LEFT SQUARE BRACKET COMMA 

• AMPERSAND RIGHT SQUARE BRACKET FULL STOP 

• ASTERISK APOSTROPHE < LESS-THAN SIGN 

LEFT PARENTHESIS VERTICAL U !\'E > GREATER-THAN SIGN 

LOWLINE \ REVERSE SOLIDUS / SOLIDUS 

(underscore) (backsJash) (slash, divide sign) 

RIGHT PARENTHESIS SEMICOLON ? QUESTION MARK 

HYPHEN-MINUS COLON 

Some countries have national character sets that do not include all the graphic char
acters in Table 2-1. C89 (Amendment 1) defined trigraphs and token respellings to allow 
C programs to be written in the ISO 646-1083 Invariant Code Set. 

Additional characters are sometimes used in C source programs, including: 

1. formatting characters such as the backspace (BS) and carriage return (CR) characters, 
and 

2. additional Basic Latin characters, including the characters $ (DOLLAR SIGN), @ 

(COMMERClAL AT), and - (ORA VE ACCENT). 

The formatting characters are treated as spaces and do not otherwise affect the source pro
gram. The additional graphic characters may appear only in comments. character con
stants. string constants, and file names. 

References Basic Latin 2.9; character constants 2.7.3 ; comments 2.2; character encoding 
2.1.3; character escape codes 2.7.6; execution character set 2.1.1; string constants 2.7.4; token re
spellings 2.4; trigraphs 2.1.4 

2.1.1 Execution Character Set 

The character set interpreted during the execution of a C program is not necessarily the 
same as the one in which the C program is written. Characters in the execution character 
set are represented by their equivalents in the source character set or by special character 
escape sequences that begin with the backslash (\) character. 

In addition to the standard characters mentioned before, the execution character set 
must also include: 

1. a null character that must be encoded as the value 0 

2. a newline character that is used as the end-of-line marker 
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3. the alert, backspace, and carriage return characters 

The null character is used to mark the end of strings; the newline character is used to 
divide character streams into lines during input/output. (It must appear to the programmer 
as if this newline character were actually present in text streams in the execution environ
ment. However, the run-time library implementation is free to simulate them. For 
instance, new lines could be converted to end-of-record indications on output, and end-of
record indications could be turned into newlines on input.) 

As with the source character set, it is common for the execution character set to in
clude the formatting characters backspace, horizontal tab , vertical tab, form feed, and car
riage return. Special escape sequences are provided to represent these characters in the 
source program. 

These source and execution character sets are the same when a C program is com
piled and executed on the same computer. However, occasionally programs are cross
compiled; that is, compiled on one computer (the host) and executed on another computer 
(the target). When a compiler calculates the compile-time value of a constant expression 
involving characters, it must use the target computer's encoding, not the more natural (to 
the compiler writer) source encoding. 

References character constants 2.7.3; character encoding 2.1.3; character set 2.1; constant 
expressions 7.11; escape characters 2.7.5; text streams Ch.15 

2.1.2 Whitespace and Line Termination 

In C source programs the blank (space), end-of-line, vertical tab, form feed, and horizontal 
tab (if present) are known collectively as whitespace characters. (Comments, discussed 
next, are also whitespace.) These characters are ignored except insofar as they are used to 
separate adjacent tokens or when they appear in character constants, string constants, or 
#include file names. Whitespace characters may be used to layout the C program in a 
way that is pleasing to a human reader. 

The end-of-line character or character sequence marks the end of source program 
lines. In some implementations, the formatting characters carriage return, form feed, and 
(or) vertical tab additionally terminate source lines and are called line break characters. 
Line termination is important for the recognition of preprocessor control lines. The char
acter following a line break character is considered to be the first character of the next line. 
If the first character is a line break character, then another (empty) line is terminated. and 
so forth. 

A source line can be continued onto the next line by ending the first line with a re
verse solidus or backslash (\) character or with the Standard C trigraph ?? /. The back
slash and end-of-line marker are removed to create a longer, logical source line. This 
convention has always been valid in preprocessor command lines and within string con
stants, where it is most useful and portable. Standard C, and many non-Standard imple
mentations. generalize it to apply to any source program line. This splicing of source lines 
conceptually occurs before preprocessing and before the lexical analysis of the C program. 
but after trigraph processing and the conversion of any multibyte character sequences to 
the source character set. 
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Example 

Even tokens may be split across lines in Standard C. The two lines: 

if (a=_b) X=li e1\ 
se X-2i 

are equivalent to the single line 

if (a __ b) X.1i else X-2i 

Chap. 2 

If an implementation treats any nonstandard source characters as whitespace or line 
breaks, it should handle them exactly as it does blanks and end-of-line markers. respec
tively. Standard C suggests that an implementation do this by translating all such charac
ters to some canonical representation as the first action when reading the source program. 
However, programmers should probably beware of relying on this by, for example, ex
pecting a backs lash followed by a fonn feed to be eliminated. 

Most C implementations impose a limit on the maximum length of source lines both 
before and after splicing continuation lines. C89 requires implementations to pennit logi
cal source lines of at least 509 characters; C99 allows 4,095 characters. 

References character constants 2.7.3; preprocessor lexical conventions 3.2; source charac
ter set 2.1. 1; string constants 2.7.4; tokens 2.3; trigraphs 2.1.4 

2.1.3 Character Encoding 

Each character in a computer's (execution) character set will have some conventional en
coding-that is. some numerical representation on the computer. This encoding is impor
tant because C converts characters to integers, and the values of the integers are the 
conventional encoding of the characters. All of the standard characters listed earlier must 
have distinct, non-negative integer encodings. 

A common C programming error is to assume a particular encoding is in use when, 
in fact, another one holds. 

Example 

The C expression I Z I - I A I +1 computes one more than the difference between the encoding 
of Z and A and might be expected to yield the number of characters in the alphabet. Indeed, 
under the ASCII character set encoding the result is 26, but under the EBCDIC encoding, in 
which the alphabet is not encoded consecutively, the result is 41. 

References source and execution character sets 2.1.1 

2.1.4 Trigraphs 

A set of trigraphs is included in Standard C so that C programs may be written using only 
the ISO 646-1083 Invariant Code Set. a subset of the seven-bit ASCII code set and a code 
set that is common to many non-English national character sets. The trigraphs, introduced 
by two consecutive question mark characters, are listed in Table 2-2. Standard C also pro
vides for respelling of some tokens (Section 2.4) and header <iso646. h> defines macro 
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alternatives for some operators, but unlike trigraphs those alternatives will not be recog
nized in string and character constants. 

Table 2-2 ISO trigraphs 

Trigraph Replaces Trigraph Replaces 

??( ??) 

??< { ??> } 

??/ \ ?? 1 

??' ??-

1?= # 

The translation of trigraphs in the source program occurs before lexical analysis (to
kenization) and before the recognition of escape characters in string and character con
stants. Only these exact nine trigraphs are recognized; all other character sequences (e.g., 
?? &) are left untranslated. A new character escape, \?, is available to prevent the inter
pretation of trigraph-likc character sequences. 

Example 

If you want a string to contain a three-character sequence that would ordinarily be interpreted 
as a trigraph, you must use the backlash escape chruacter to quote at least onc of the trigraph 
characters. Therefore, the string constant "Wha t ? \? ! • actually represents a string contain
ing the characters Wha t? ? ! . 

To write a string constant containing a single backs lash character, you must writc two consec
utive backslashes. (The flfSt quotes the second.) Then each of the backslashes can be translat
ed to the trigraph equivalent. Therefore, the string constant"?? /?? /" represents a string 
containing the single character \. 

References character set 2. 1; escape characters 2.7.5; i80646.h 11.9; string concatena
tion 2.7.4; token respellings 2.4 

2.1.5 Multibyte and Wide Characters 

To accommodate non-English alphabets that may contain a large number of characters, 
Standard C introduces wide characters and wide strings. To represent wide characters and 
strings in the external, byte-oriented world, the concept of multibyte characters is 
introduced. Amendment I to C89 expands the facilities for dealing with wide and multi
bytc characters. 

Wide characters and strings A wide character is a binary representation of an 
element of an extended character set. It has the integer type wchar_ t , which is declared 
in header file B tdde f . h . Amendment I to C89 added the integer type win t t, which 
must be able to represent all values of type wchar _ t plus an additional, distinguished, 
nonwide character value denoted WEOF. Standard C does not specify any encoding for 
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wide characters, but the value zero is reserved as a "null wide character." Wide-character 
constants can be specified with a special constant syntax (Section 2.7.3). 

Example 

It is typical for a wide character to occupy 16 bits, so wchar_ t could be represented as 
short or unsigned short on a 32-bit computer. Ifwchar _ t were short and the value 
~l were not a valid wide character, then wint_ t could be short and WEOF could be-I. 
However, it is more typical for wint _ t to be int or unsigned int . 

If an implementor chooses not to support an extended character set-which is common 
among the U.S. C vendors- then wchar_ t can be defined as char, and the "extended char
acter set" is the same as the normal character set. 

A wide string is a contiguous sequence of wide characters ending with a null wide 
character. The null wide character is the wide character whose representation is O. Other 
than this null wide character and the existence of WEOF, Standard C does not specify the 
encoding of the extended character set. Wide-string constants can be specified with spe
cial string constants (Section 2.7.4). 

Multibyte characters Wide characters may be manipulated as units within a C 
program, but most external media (e.g., files) and the C source program are based on byte
sized characters. Programmers experienced with extended character sets have devised 
multibyte encoding, which are locale-specific ways to map between a sequence of byte
sized characters and a sequence of wide characters. 

A multibyte character is the representation of a wide character in either the source 
or execution character set. (There may be different encoding for each.) A multibyte string 
is therefore a normal C string, but whose characters can be interpreted as a series of multi
byte characters. The fonn of multibyte characters and the mapping between multibyte and 
wide characters is implementation-defined. This mapping is perfonned for wide-character 
and wide-string constants at compile time, and the standard library provides functions that 
perform this mapping at run time. 

Multibyte characters might use a state-dependent encoding, in which the interpreta
tion of a multibyte character may depend on the occurrence of previous multibyte charac
ters. Typically such an encoding makes use of shift characters---control characters that are 
part of a multi byte character and that alter the interpretation of the current and subsequent 
characters. The current interpretation within a sequence of multi byte characters is called 
the conversion state (or shift state) of the encoding. There is always a distinguished, initial 
conversion (shift) state that is used when starting a conversion of a sequence of multibyte 
characters and that frequently is returned to at the end of the conversion. 

Example 

Encoding A- a hypothetical encoding that we use in examples- is state-dependent, with two 
shift states, "up" and "down." The character i changes the shift state to "up" and the character 
J, changes it to "down." In the down state, which is the initial state, all nonshift characters 
have their normal interpretation. In the up state, each multibyte character consislS of a pair of 
alphanumeric characters that define a wide character in a manner that we do not specify. 
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The following sequences of characters each contain three multi byte characters under Encod~ 

iog A, beginning in the initial shift state. 

abe ab i e3 

The last string includes shift characters that are not strictly necessary. If redundant shift se
quences are permitted, multibyte characters may become arbitrarily long (e.g., J...t.. .•• J..x). Un
less you know what the shift state is at the start of a sequence of multibyte characters, you 
cannot parse a sequence like abcde £, which could represent either three or six wide charac
ters. 

The sequence ab i ?x is invalid under Encoding A because a nonalphanumeric character ap
pears while in the up shift state. The sequence a ibis invalid because the last multibyte char
acter ends prematurely. 

Multibyte characters might also use a state-independent encoding, in which the in
terpretation of a multibyte character does not depend on previous multi byte characters. 
(Although you may have to look at a multibyte sequence from the beginning to locate the 
beginning of a multi byte character in the middle of a string.) For example, the syntax of 
C's escape characters (Section 2.7.5) represents a state-independent encoding for type 
char since the backslash character (\) changes the interpretation of one or more follow
ing characters to form a single value of type char. 

Example 

Encoding B-another hypothetical encoding-is state-independent and uses a single special 
character, which we denote V, to change the meaning of the following non-nuli character. The 
following sequences each contain three multibyte characters under Encoding B: 

abe 'Va'Vb'Ve 'V'V'V'V'V'V a 'Vbe 

The sequence VVV is not valid under Encoding B because a non-null character is missing at 
the end. 

Standard C places some restrictions on multi byte characters: 

1. All characters from the standard character set must be present in the encoding. 

2. In the initial shift state, all single-byte characters from the standard character set re
tain their normal interpretation and do not affect the shift state. 

3. A byte containing all zeroes is taken to be the null character regardless of shift state. 
No multibyte character can use a byte containing all zeroes as its second or subse
quent character. 

Together, these rules ensure that multi byte sequences can be processed as nonnal C 
strings (e.g., they will not contain embedded null characters) and a C string without spe
cial multibyte codes will have the expected interpretation as a multi byte sequence. 

Source and execution uses of multibyte characters Multibyte characters may 
appear in comments, identifiers, preprocessor header names, string constants, and charac
ter constants. Each comment, identifier, header name, string constant, or character con
stant must begin and end in the initial shift state and must consist of a valid sequence of 
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multi byte characters. Multibyte characters in the physical representation of the source are 
recognized and translated to the source character set before any lexical analysis, prepro
cessing, or even splicing of continuation lines. 

Example 

A Japanese text editing program might allow Japanese characters to be written in string con
stants and comments. If the text were written to a byte-stream file. then the Japanese charac
ters would be translated to multibyte sequences, which would be acceptable to-and, in the 
case of string constants, understood by-Standard C implementations. 

During processing. characters appearing in string and character constants are trans
lated to the execution character set before they are interpreted as multibyte sequences. 
Therefore, escape sequences (Section 2.7.5) can be used in fonning multibyte characters. 
Comments are removed from a program before this stage, so escape sequences in multi
byte comments may not be meaningful. 

Example 

If the source and execution character sets are the same, and if I a I has the value 141 8 in the 
execution character set, then the string constant" 'V aa" contains the same two multibyte 
characters as "'V\141 \141." (Encoding B). 

References character constant 2.7.3; comments 2.2; multibyte conversion facilities 11.7, 
11.8; string constants 2.7.4; wchar _ tiLl ; WEOF 11.1 ; wide character 2.7.3; wide string 2.7.4; 
wint tl1.1 

2.2 COMMENTS 

There are two ways to write a comment in Standard C. Traditionally, a comment begins 
with an occurrence of the two characters / * and ends with the first subsequent occurrence 
of the two characters * /. Comments may contain any number of characters and are al
ways treated as whitespace. 

Beginning with C99, a comment also begins with the characters / / and extends up 
to (but does not include) the next line break. It is possible, but unlikely, that this change 
could break an older C program; it is left as an exercise to detennine how this might hap
pen. 

Comments are not recognized inside string or character constants or within other 
comments. The contents of comments are not examined by the C implementation except 
to recognize (and pass over) multibyte characters and line breaks. 

Example 

The following program contains four valid C comments: 
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1/ Program to compute the squares of 
II the first 10 integers 
#include <stdio.h> 
void Squares ( /* no arguments */ ) 
{ 

} 

int i; 
/* 

* / 

Loop from 1 to 10, 
printing out the squares 

for (i=l; i<=10; i++) 
printf("%d //squared// is %d\nn,i,i*i); 

19 

Comments are removed by the compiler before preprocessing, so preprocessor com
mands inside comments will not be recognized, and line breaks inside comments do not 
terminate preprocessor commands. 

Example 

The following two #define commands have the same effect: 

#define ten (2*5) 

#define ten /* ten: 
one greater than nine 

*1 (2*5) 

Standard C specifies that all comments are to be replaced by a single space character for 
the purposes of further translation of the C program, but some older implementations do 
not insert any whitespace. This affects the behavior of the preprocessor and is discussed in 
Section 3.3.9. 

A few non-Standard C implementations implement "nestable comments," in which 
each occurrence of / * inside a comment must be balanced by a subsequent * /. This im
plementation is not standard, and programmers should not depend on it. For a program to 
be acceptable to both implementations of comments, no comment should contain the char
acter sequence / * inside it. 

Example 

To cause the compiler to ignore large parts of a C program, it is best to enclose the parts to be 
removed with the preprocessor commands 

#if 0 

#endif 

rather than insert I " before and "I after the text. This avoids having to worry about I"-style 
comments in the enclosed source text. 

References #i f preprocessor command 3.5. 1; preprocessor lexical conventions 3.2; 
whites pace 2.1 
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2.3 TOKENS 

Lexical Elements Chap. 2 

The characters making up a C program are collected in to lexical tokens according to the 
rules presented in the rest of this chapter. There are five c lasses of tokens: operators, sepa
rators, identifiers, keywords, and constants. 

The compiler always fonns the longest tokens possible as it collects characters in 
left-la-right order, even if the result does not make a valid C program. Adjacent tokens 
may be separated by whitespace characters or comments. To prevent confusion. an identi
fier, keyword, integer constant, or floating-point constant must always be separated from a 
following identifier, keyword, integer constant, or floating-point constant. 

The preprocessor has slightly different token conventions . In particular. the Stan
dard C preprocessor treats # and ## as tokens~ they would be invalid in traditional C. 

Example 

Characters CTokens 

forwhile forwhile 

b >x b , >,X 

b->x b , ->, x 

b- -x b , -- , x 

b---x b , -- ,-, x 

In the fourth example, the sequence of characters b--x is invalid C syntax. The tokenization 
b , - , - , x would be valid syntax, but that tokenization is not permitted. 

References comments 2.2; constants 2.7; identifiers 2.5; preprocessor tokens 3.2; key
words 2.6; token merging 3.3.9; whitespace characters 2.1 

2.4 OPERATORS AND SEPARATORS 

The operator and separator (punctuator) tokens in C are listed in Table 2-3. To assist pro
grammers using 110 devices without certain U.S.-English characters, the alternate spell
ings<%. %>, < : , : >, %:,and%:% : are equivalent to the punctuators {, }, [, 1, #, ##, 
respectively. In addition to these respellings, the header file iso646 . h defines macros 
that expand to certain operators. 

In traditional C, the compound assignment operators were considered to be two sep
arate tokens-an operator and the equals sign-that can be separated by whitespace. In 
Standard C, the operators are single tokens. 

References compound assignment operators 7.9.2; iso646 . h 11.9; preprocessor tokens 
3.2; !rigraphs 2.1.4 
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2.5 IDENTIFIERS 

Identifiers 

Table 2-3 Operators and separators 

Token class 

Simple operators 

Compound assignment operators 

Other compound operators 

Separator characters 

Alternate token spellings 

Tokens 

!\ A &*_+= 

- I <>/? 

+= -= *= /= lIs= 
«= »= &= A= t= 
-;> ++ - - « » 

<= >= == 1 = &" I I 
() (l{ ) .; 

<% %> <: :> lis: %:%: 

21 

An identifier. or name, is a sequence of Latin capital and small letters, digits, and the un
derscore or LOW LINE character. An identifier must not begin with a digit, and it must not 
have the same spelling as a keyword. 

Beginning with C99, identifiers may also contain universal character names (Sec
tion 2.9) and other implementation-defined multi byte characters. Universal characters 
must not be used to place a digit at the beginning of an identifier and are further restricted 
to be "letter-like" characters and not punctuators. An exact list is provided in the C99 stan
dard (ISOIlEC 9899: 1999, Annex D) and in ISOIIEC TR 10176-1998. 

identifier: 
identifier-nondigit 
identifier identifier-nondigit 
identifier digit 

identifier-nondigit : 
nondigit 
universal-character-name 
other implementation-defined characters 

nondigit : one of 
A B C D E F G H I J K 

N 0 p Q R S T U V W X 

a b c d e f g h i j k 

n 0 p q r • t u v w x 

digit: one of 
o 1 2 3 4 567 8 9 

L M 

Y Z 

1 m 

y z 

Two identifiers are the same when they are spelled identically, including the case of all 
letters. That is, the identifiers abc and aBc are distinct. 
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In addition to avoiding the spelling of the keywords, a C programmer must guard 
against inadvertently duplicating a name used in the standard libraries, either in the current 
Standard or in the "future library directions" portion of the standard. Standard C further 
reserves all identifiers beginning with an underscore and followed by either an uppercase 
letter or another underscore; programmers should avoid using such identifiers. C imple
mentations sometimes use these identifiers for extensions to Standard C or other internal 
purposes. 

e89 requires implementations to permit a minimum of 31 significant characters in 
identifiers, and e99 raises this minimum to 63 characters. Each universal character name 
or muItibyte sequence is considered to be a single character for this requirement. 

Example 

In a pre-Standard implementation that limited the length of identifiers to eight characters, the 
identifiers countless and countlessone would be considered the same identifier. 
Longer names tend to improve program clarity and thus reduce errors. The use of underscores 
and mixed letter case make long identifiers more readable: 

averylongidentifier 
AVeryLongldentifier 
a_very_long identifier 

External identifiers-those declared with storage class extern- may have addi
tional spelling restrictions. These identifiers have to be processed by other software, such 
as debuggers and linkers, which may be more limited. C89 requires a minimum capacity 
of only six characters, not counting letter case. C99 raises this to 31 characters, including 
letter case, but allowing universal character names to be treated as 6 characters (up to 
\ UOOOOFFFF) or 10 characters (\U00010000 or above). Even before C99, most 
implementations allowed external names of at least 31 characters. 

Example 

When a C compiler pennits long internal identifiers, but the target computer requires short ex
ternal names, the preprocessor may be used to hide these short names. In the following code, 
an external error-handling function has the short and somewhat obscure name eh73, but the 
function is referred to by the more readable nameerror _handler. This is done by making 
error_handler a preprocessor macro that expands to the name eh73 . 

#define error_handler eh73 
extern void error handler ()1 

error_handler("nil pointer error"); 

Some compilers permit characters other than those specified earlier to be used in 
identifiers. The dollar sign ($) is often allowed in identifiers so that programs can access 
special non-C library functions provided by some computing systems. 

References #def ine command 3.3; external names 4.2.9; keywords 2.6; multi byte se
quence 2.1.5; reserved library identifiers to.l.1; universal character name 2.9 
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2.6 KEYWORDS 

The identifiers listed in Table 2-4 are keywords in Standard C and must not be used as or
dinary identifiers. They can be used as macro names since all preprocessing occurs before 
the recognition of these keywords. The keywords _Bool, _Complex, _Imaginary, 
inline, and restrict are new to e99. 

Table 2--4 Keywords in C99 

auto Boola break case 

char _ Complexa const continue 

default restrict3 do double 

else enum extern float 

for gete if Imaginary3 

inline int long register 

return short signed sizeof 

static struct switch typedef 

union unsigned void volatile 

while 

a These keywords are new in C99 and are not reserved in C++. 

In addition to those listed, the identifiers asm and fortran are common language 
extensions. Programmers might wish to treat as reserved the macros defined in header 
iso646.h (and, and_eq, bitand, biter, compl, not, not_eq, or, or_eq, 
xor, and xer _ eq). Those identifiers are reserved in C++. 

Example 

The following code is one of the few cases in which using a macro with the same spelling as a 
keyword is useful. The definition allows the use of void in a program built with a non· 
Standard compiler. 

#ifndef STDC 
#define void int 
#endif 

References _Bool 5.1.5; C++ keywords 2.8; _ complex 5.2.1; #define command 3.3; 
identifiers 2.5; #ifndef command 3.5; inline 9.10; <is0646 .h> header 11.5; restrict 
4.4.6; __ STDC_ 11.3; void type specifier 5.9 

2.6.1 Predefined Identifiers 

Although not a keyword, C99 introduces the concept of a predefined identifier and defines 
one such: __ func_ . Unlike a predefined maCfO, a predefined identifier can follow nOf
mal block scoping rules. Like keywords, predefined identifiers must not be defined by 
programmers. 
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The identifier _ func __ is implicitly declared by C99 implementations as if the 
following declaration appeared after the opening brace of each function definition: 

static canst char func [] = nfunction-name n i - -

This identifier could be used by debugging tools to print out the name of the enclosing 
function, as in: 

if (failed) printf(nFunction %s failed\n", func ); 

When translating C programs for targets with tight memory constraints, C implementa
tions will have to be careful about getting rid of these strings if they are not needed at run 
time. 

References function definiti on 9.1; predefined macro 3.3.4; scope 4. 2.1 

2.7 CONSTANTS 

The lexical class of constants includes four different kinds of constants: integers, floating
point numbers, characters, and strings: 

constant : 
integer-constant 
floating-constant 
character-constant 
string-constant 

Such tokens are called literals in other languages to distinguish them from objects whose 
values are constant (Le., not changing) but that do not belong to lexically di stinct classes. 
An example of these latter objects in C is enumeration constants, which belong to the lex
ical class of identifiers. In this book, we use the traditional C terminology of constant for 
both cases. 

Every constant is characterized by a value and type. The fonnats of the various 
kinds of constants are described in the following sections. 

References character constant 2.7.3; enumeration constants 5.5; floating-point constant 
2.7.2; integer constant 2.7.1; string constant 2.7.4; tokens 2.3; value 7.3 

2.7.1 Integer Constants 

Integer constants may be specified in decimal, octal, or hexadecimal notation: 

integer-constant: 
decimal-constant integer-su!ftxopt 
octal-constant integer-sujJixopt 
hexadecimal-constant integer-sujJixopt 
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decimal-constant: 
nonzero-digit 
decimal-constant digit 

octal-constant : 
o 
ocral-constant octaL-digit 

hexadecimal-constant : 
Ox hex-digit 
ox hex-digit 
hexadecimal-constant hex-digit 

digit : one of 
0123456 7 B 9 

nonzero-digit: one of 
123456789 

octal-digit: one of 
0 1 2 3 4 5 6 7 

hex-digit: one of 
0 1 2 3 4 5 6 7 
A B C D E F a b 

integer-suffix: 
long-suffix unsigned-sufjixopt 
long-Long-suffix unsigned-suffUopt 
unsigned-suffIX Long-sujfixopt 
unsigned-suffix Long-long-suffuopt 

long-suffix : one of 
1 L 

long-long-suffix: one of 
11 LL 

unsigned-suffix: one of 
u U 

8 
c 

9 
d e f 

(e99) 

(e99) 

(e99) 

These are the rules for determining the radix of an integer constant: 
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I . If the integer constant begins wi th the letters Ox or ox, then it is in hexadecimal no
tation, with the characters a through f (or A through F) representing 10 through 15. 

2. Otherwise, if it begins with the digit 0 , then it is in octal notation. 

3. Otherwise, it is in decimal notation. 
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An integer constant may be immediately followed by suffix letters to designate a mini
mum size for its type: 

• letters 1 or L indicate a constant of type long 

• letters 11 or LL indicate a constant of type long long (C99) 

• letters u or U indicate an unsigned type (int, long, or long long) 

The unsigned suffix may be combined with the long or long long suffix in any or
der. The lowercase letter 1 can be easi ly confused with the digit 1 and should be avoided 
in suffixes. 

The value of an integer constant is always non-negative in the absence of overflow. 
If there is a preceding minus sign. it is taken to be a unary operator applied to the constant, 
not part of the constant. 

The actual type of an integer constant depends on its size, radix, suffix letters, and 
type representation decisions made by the C implementation. The rules for determining 
the type are complicated, and they are different in pre-Standard C, C89, and C99. All the 
rules are shown in Table 2-5. 

If the value of an integer constant exceeds the largest integer representable in the 
last type within its group in Table 2- 5, then the result is undefined. In C99, an implemen
tation may instead assign an extended integer type to these large constants, following the 
signedness conventions in the table. (If all the standard choices are signed, then the ex
tended type must be signed; if all are unsigned, then the extended type must be unsigned; 
otherwise, both signed and unsigned are acceptable.) In C89, infonnation about the repre
sentation of integer types is provided in the header file limits. h . In C99, the files 
stdint. hand inttypes. h contain additional information. 

To illustrate some of the subtleties of integer constants, assume that type int uses a 
16-bit twos-complement representation, type long uses a 32-bit twos-complement repre
sentation, and type long long uses a 64-bit twos-complement representation. We list in 
Table 2-6 some interesting integer constants, their true mathematical values, their types
conventional and under the Standard C rules-and the actual C representation used to 
store the constant. 

An interesting point to note from this table is that integers in the range 2 15 through 
216_1 will have positive values when written as decimal constants but negative values 
when written as octal or hexadecimal constants (and cast to type int). Despite these 
anomalies, the programmer is rarely surprised by the values of integer constants because 
the representation of the constants is the same even though the type is in question. 

egg provides some portable control over the size and type of integer constants with 
the macros INTN_c, UINTN_c, INTMAX_C, and UINTMAX_ C defined in stdint.h. 

Example 

If type long has a 32-bit, twos-complement representation, the following program deter
mines the rules in effect: 
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Table 2-5 Types of integer constants 

Constant Original Ca C89a C99K,b 

dd ... d int int int 

long long long 

unsigned long long l ong .. ... . ...... ., . .-....... . ........ 
odd ... d unsigned int int 
OXdd .. . d long unsigned unsigned 

long long 

unsigned long unsigned long 

long long 
unsigned long l ong 

dd ... d u nor applicable unsigned unsigned int 
Odd ... d u unsigned long unsigned long 
OXdd ... d U unsigned long long 

dd ... d L long long long 
unsigned long l ong long .. .... . .... _ . .. .. 

odd ... d L long long long 
OXdd ... d L unsigned l ong unsigned long 

long long 

unsigned long long 

dd ... d UL nor applicable unsigned long unsigned long 
odd .. . d uL unsigned long long 
oxdd ... d UL 

dd ... dLL nor applicable not applicable long long . .. . ...... ......... . .... 
Odd ... d LL not applicable nor applicable long long 
OXdd ... d LL unsigned long long 

dd .. . d ULL not applicable not applicable unsigned long long 
Odd ... duLL 
OXdd ... d ULL 

a The chosen type is the first one from the appropriate group that can represent the value of the 
constant without overflow. 
b If none of the listed types is large enough, an extended type may be used if it is available. 

#define K OxFFFFFFFF /* -1 in 32-bit, 2's compl. */ 
#include <stdio.h> 
int main () 
{ 

} 

if (O<K) printf("K is unsigned (Standard C)\n R ); 

else printf("K is signed (traditional C)\n"); 
return 0; 
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References conversions of integer types 6.2.3; extended integer types 5.1.4; integer types 
5.1; INTMAX_ c 21.5; INTN _ c 2 1.3; limi ts.h 5.1.1; overflow 7.2.2; stdint. h Ch. 21; unary 
minus operator 7.5.3; unsigned integers 5.1.2 
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Table 2-6 Assignment of types to integer constants 

C constant True Traditional Standard C Actual 
notation value type type representation 

0 0 int int 0 

32767 2 15 - 1 int int Ox?FFF 

077777 2 15 -1 unsigned int Ox7FFF 

32768 2 15 long long OxOOOO8000 

0100000 2 15 unsigned unsigned Ox8000 

65535 2 16 - I long long OxOOODFFFF 

OxFFFF 2 16 _ 1 unsigned unsigned OxFFFF 

65536 2 16 long long OxOOOlOOOO 

Oxl OQOO 2 16 long long OxOOOlOOOO 

2147 483647 2 31 - 1 long long Ox? FFFFFFF 

Ox7FFFFFFF 2 31 - 1 long long Ox? FFFFFFF 

2147483648 2 31 long'" unsigned long Ox80000000 

C99; long long 

Ox80000000 2 31 long'" unsigned long Ox80000000 

429496729 5 2 32 - 1 long'" unsigned long OxFFFFFFFF 

e99: long l ong QxOOOOOOOOFFFFFFFF 

OxFFFFFFFF 2 32 - I longll unsigned long OxFFFFFFFF 

42949 672 96 2 32 undefined undefined OxO 
C99: long long OxOOOOOOO1OOOOOOOO 

OxlOOOOOOOO 2 32 undefined undefined OxO 
C99: long l ong OxOOOOOOO1OOOOOOOO 

a The type cannot represent the value exactly. 

2.7.2 Floating-Point Constants 

Floating-point constants may be written with a decimal point, a signed exponent, or both. 
Standard C allows a suffix letter (floating-suffix) to designate constants of types float 
and long double. Without a suffix, the type of the constant is double: 

floating-constant: 
decimaL-floating-constant 
hexadecimaljloating-constant 

decimal-floating-constant : 
digit-sequence exponent floating-suffixopl 
dotted-digits exponentop1 jloating-suffixoPI 

digit-sequence: 
digit 
digit-sequence digit 

(e99) 



Sec. 2.7 Constants 

dotted-digits : 
digit-sequence . 
digit-sequence. digit-sequence 
. digit-sequence 

digit: one of 
012345678 9 

exponent: 
e sign-partopt digit-sequence 
E sign-partopt digit-sequence 

sign-part: one of 
+ 

floating-suffix: one of 
f F 1 L 
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The value of a floatin g-point constant is always non-negative in the ahsence of 
overflow. If there is a preceding minu s sign, it is taken to be a unary operator applied to 
the constant, not part of the constant. If the floating-point constant cannot be represented 
exactly, the implementation may choose the nearest representable value Vor the larger or 
smaller representative value around V. If the magnitude of the floating-point constant is 
too great or too small to be represented, then the result is unpredictable. Some compilers 
will warn the programmer of the problem, but most will silently substitute some other val
ue that can be represented. In Standard C, the floating-point limits are recorded in the 
header file floa t. h. Special floating-point constants such as infinity and NaN (not a 
number) are defined in ma th. h . 

In C99, a complex floating-point constant is written as a floating-point constant ex
pression involving the imaginary constant _ Complex_ I (or I ) defined in complex. h . 

Example 

These are valid decimal floating-point constants: 0. , 3 e 1 , 3 • 14159 , • 0, 1. OE - 3, 1e - 3, 
1. 0, .00034 , 2e+9 . These additional floating-point constants are valid in Standard C: 
1. Of , 1. Oe67L, OElL. 

An example of a e99 complex constant is 1. 0+1. O*I (if comp1ex.h has been included). 

C99 permits floating-point constants to be expressed in hexadecimal notation; previ
ous versions of C had only decimal floating-point constants. The hexadecimal format uses 
the letter p to separate the fraction from the exponent because the customary letter e could 
be confused with a hexadecimal digit. The binary-exponent is a signed decimal number 
that represents a power of 2 (not a power of 10 as in the case of decimal floating-point 
constants, nor a power of 16 as one might guess). 

hexadecimaL-floating-constant: (C99) 
hex-prejIX dotted-hex-digits binary-exponent jIoating-suf!ixopl 
hex-prefIX hex-digit-sequence binary-exponent floating-su!fixopt 
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hex-prefu: 
Ox 
OX 

dotted-hex-digits : 
hex-dig it-sequence • 
hex-digit-sequence • hex-digit-sequence 
• hex-digit-sequence 

hex-digit-sequence : 
hex-digit 
hex-dig it-sequence hex-digit 

binary-exponent : 
p sign-partopt digit-sequence 
P sign-partopt digit-sequence 

Lexical Elements Chap. 2 

It may not be possible to represent a hexadecimal floating-point constant exactly if 
FLT _ RADIX (f loa t . h) is not equal to 2. If it is not representable exactly, the designat
ed value must be correctly rounded to the nearest representable value. 

References complex. h 23.2; double type 5.2; float. h 5.2; overflow and underflow 
7.2.2; sizes of floating-point types 5.2; unary minus operator 7.5.3 

2.7.3 Character Constants 

A character constant is written by enclosing one or more characters in apostrophes. A spe· 
cial escape mechanism is provided to write characters or numeric values that would be in
convenient or impossible to enter directly in the source program. Standard C allows the 
character constant to be preceded by the letter L to specify a wide character constant. 

character·constam : 
c·char·sequence 

L 1 c·char·sequence 

c·char·sequence : 
c·char 
c-char-sequence c-char 

c·char: 

(C89) 

any source character except the apostrophe ( ' ), backslash (\), or newline 
escape-character 
universal-character-name (C99) 

The apostrophe, backslash, and newline characters may be included in character constants 
by using escape characters, as described in Section 2.7.5. It is a good idea to use escapes 
for any character that might not be easily readable in the source program, such as the 
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formatting characters. e99 allows the use of universal character names in character con
stants (Section 2.9). 

Character constants not preceded by the letter L have type into It is typical for such 
a character constant to be a single character or escape code (Section 2.7.7), and the value 
of the constant is the integer encoding of the corresponding character in the execution 
character set. The resulting integer value is computed as if it had been converted from an 
object of type char. For example, if type char were an eight-bit signed type, the charac
ter constant '\377 I would undergo sign extension and thus have the value -1. The value 
of a character constant is implementation-defined if: 

1. there is no corresponding character in the execution character set, 

2. more than a single execution character appears in the constant, or 

3 . a numeric escape has a value not represented in the execution character set. 

Example 

Here are some examples of single-character constants along with their (decimal) values under 
the ASCII encoding. 

Character Value Character Value 

'.' .7 'A' 65 
, , 32 '? ' 63 

'\r' 13 '\0 ' 0 

, " , 3. ' \377 ' 255 

'.' 37 '\23 ' ,. '. ' 56 '\ \ ' 92 

Standard C wide character constants, designated by the prefix letter L, have type 
wchar t , an integral type defined in the header file s tddef . h . Their purpose is to al
low C programmers to express characters in alphabets (e.g., Japanese) that are too large to 
be represented by type char. Wide character constants typically consist of a sequence of 
characters and escape codes that together form a single multibyte character. The mapping 
from the multibyte character to the corresponding wide character is implementation
defined, corresponding to the mbtowc function, which performs that conversion at run 
time. If multibyte characters use a shift-state enCoding, then the wide character constant 
must begin and end in the initial shift state. The value of a wide character constant is 
implementation-defined if it contains more than a single wide character. 

Multicharacter constants Integer and wide character constants can contain a se
quence of characters; after mapping that sequence to the execution character set, there 
may still be more than one execution character. The meaning of such a constant is 
imp Ierne ntation -defined . 

One convention with older implementations was to express a four-byte integer con
stant as a four-character constant, such as I gR8 t I. This usage is nonportable because 
some implementations may not pennit it and implementations differ in the sizes of 
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integers and in their "byte ordering" (i.e., the order in which characters are packed into 
words). 

Example 

In an ASCII implementation with four-byte integers and left-lo-right packing, the value of 
• ABeD I would be 4 142434416, (The value of I A I is Ox41, I B I is Ox42 , etc.) However, if 
right-lo-Ieft packing were used, the value of 'ABeD I would be 4443424116, 

References ASCII characters App. A; byte order 6.1.2; character encoding 2.1 ; char type 
5.1.3; escape characters 2.7.5; fonnatting characters 2.l;mbtowc facility 11.7; multi byte characters 
2. 1.5; wchar t Il.l 

2.7.4 String Constants 

A string constant is a (possibly empty) sequence of characters enclosed in double quotes. 
The same escape mechanism provided for character constants can be used to express the 
characters in the string. Standard C allows the string constant to be preceded by the letter 
L to specify a wide string constant. 

string-constant : 
" s-char-sequenceopt " 

L" s-char-sequenceopt " 

s-char-sequence : 
s-char 
s-char-sequence s-char 

s-char : 
any source character except the double quote" , 

backslash \, or newline character 
escape-character 
universaL-character-name 

(C89) 

(C99) 

The double quote, backs lash, and newline characters may be included in character con
stants by using escape characters as described in Section 2.7.5 . It is a good idea to use es
capes for any character that might not be easily readable in the source program, such as the 
formatting characters. C99 allows the use of universal character names in string constants 
(Section 2.9). 

Example 

Five string constants are listed next. 

"" 
• \ 1111 

"Total expenditures : " 
"Copyright 2000 \ 
Texas Instruments •• 
"Comments begin with ' / *' . \ n· 
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The fourth string is the same as "Copyright 2000 Texas Instruments. n ; it does 
not contain a newline character between the 0 and the T. 

For each nonwide string constant of n characters, at run time there will be a 
statically allocated block of n+ 1 characters whose first n characters are the characters from 
the string and whose last character is the null character, 1\0 I. This block is the value of 
the string constant and its type is char [n+l]. Wide string constants similarly become n 
wide characters followed by a null wide character and have type wchar t [n+1]. 

Example 

The sizeof operator returns the size of its operand, whereas the strlen function (Section 
13.4) returns the number of characters in a string. Therefore, sizeof ( "abcdef n) is 7, not 
6,andsizeo£("") is l,notO. strlen("abcdef") is6and strlen("") isO. 

If a string constant appears anywhere except as an argument to the address operator 
&, an argument to the sizeof operator, or as an initializer of a character array, then the 
usual array conversions come into play, changing the string from an array of characters to 
a pointer to the first character in the string. 

Example 

The declaration char *P = "abcdef"; results in the pointer p being initialized with the 
address a block of memory in which seven characters are stored- , a " 'b', 'c' , 'd', 
'e' , 'f' , and' \0', respectively. 

The value of a single-character string constant and the value of a character constant are quite 
different. The declaration int X = (in t) II A II ; results in X being initialized with (the inte
ger value of) a pointer to a two-character block of memory containing' A' and' \ 0' (if such 
a pointer can be represented as type in t ); but the declaration int y = (int) • A' ; results 
in Y being initialized with the character code for 'A' (Ox41 in the ISO 646 encoding). 

Storage for string constants You should never attempt to modify the memory 
that holds the characters of a string constant since that memory may be read-only-that is, 
physically protected against modification. Some functions (e.g., mktemp) expect to be 
passed pointers to strings that will be modified in place; do not pass string constants to 
those functions. Instead, initialize a (non-const) array of characters to the contents of the 
string constant and pass the address of the first element of the array. 

Example 

Consider these three declarations: 

char pl[]~ "Always writable"; 
char *p2 = ·Possibly not writable"; 
const char p3[] = "Never writable·; /* Standard Conly */ 

The values ofpl, p2 , and p3 are all pointers to character arrays, but they differ in their writ
ability. The assignment pl (0] ='x' will always work; p2 [0] ='x' may work or may 
cause a run-time error; and p3 [0] '" 'x' will always cause a compile-time error because of 
the meaning of cons t. 
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Do not depend on all string constants being stored at different addresses. Standard C 
allows implementations to use the same storage for two string constants that contain the 
same characters. 

Example 

Here is a simple program that discriminates the various implementations of strings. The as· 
signment to stringl [0] could cause a run-time error if string constants are allocated in 
read-ani y memory. 

char *stringl; *string2; 
int main () { 

} 

stringl = "abed"; string2 = "abed"; 
if (stringl==string2) print£{nStrings are shared.\n"); 
else printf("Strings are not shared.\n R ); 

atringl[O] = 111; /* RUN-TIME ERROR POSSIBLE */ 
if (*stringl=='l') printf("Strings writable\n·); 
else printfC"Strings are not writable\nn); 
return 0; 

Continuation of strings A string constant is typically written on one source pro
gram line. If a string is too long to fit conveniently on one line, all but the final source 
lines containing the string can be ended with a backslash character, \, in which case the 
backslash and end-of-line character(s) are ignored. This allows string constants to be writ
ten on more than one line. Some older implementations may remove leading whitespace 
characters from the continuation line, although it is incorrect to do so. 

Standard C automatically concatenates adjacent string constants and adjacent wide 
string constants, placing a single null character at the end of the last string. Therefore, an 
alternative to using the \ continuation mechanism in Standard C programs is to break a 
long string into separate strings. In C99, a wide string and a nonnal string constant can 
also be concatenated in this way, resulting in a wide string constant; in C89, this was not 
allowed. 

Example 

The string initializing sl. is acceptable to Standard and pre-Standard C compilers, but the 
string initializing s2 is allowed only in Standard C: 

char slf] : RThis long string is acc\ 
eptable to all C compilers. R; 
char s2[] : "This long string is permissible" 

Rin Standard C.R; 

A newline character (i.e., the end of line in the execution character set) may be in
serted into a string by putting the escape sequence \n in the string constant; this should 
not be confused with line continuation within a string constant. 

Wide strings A string constant prefixed by the letter L is a Standard C wide string 
constant and is of type "array of wchar t." It represents a sequence of wide characters 
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from an extended execution character set, such as might be used for a language like Japa· 
nese. The characters in the wide string constant are a multi byte character string, which is 
mapped to a sequence of wide characters in an implementation-defined manner. (The 
mba towcs function perfonns a similar function at run time.) If multibyte characters use a 
shift-state encoding, the wide string constant must start and end in the initial shift state. 

References array types 5.4; const type specifier 4.4.4; versions from array types 6.2.7; 
escape characters 2.7.5; initializers 4.6; mbstowcs facility 11.8; mktemp facility 15.16; multibyte 
characters 2.1.5; pointer types 5.3; preprocessor lexical conventions 3.2; sizeof operator 7.5.2; 
strlen facility 13.4; whitespace characters 2.1; usual unary conversions 6.3.3; wchar _ tiLl ; 
universal character names 2.9 

2.7.5 Escape Characters 

Escape characters can be used in character and string constants to represent characters that 
would be awkward or impossible to enter in the source program directly. The escape char
acters come in two varieties: "character escapes," which can be used to represent some 
particular fonnatting and special characters; and "numeric escapes," which allow a char
acter to be specified by its numeric encoding. C99 also includes universal character names 
as escapes. 

escape-character: 
\ escape-code 
universal-character-name 

escape-code: 
character-escape-code 
octal-escape-code 
hex-escape-code 

character-escape-code : one of 
n t b r f 

v \ " 
a ? 

octal-escape-code: 
octal-digit 
octal-digit octal-digit 
octal-digit octal-digit octal-digit 

hex-escape-code : 
x hex-digit 
hex-escape-code hex-digit 

(C99) 

(C89) 

(C89) 

(C89) 

The meanings of these escapes are discussed in the following sections. 
If the character following the backslash is neither an octal digit, the letter x , nor one 

of the character escape codes listed earlier, the result is undefined. (In traditional C, the 
backslash was ignored.) In Standard C. all lowercase letters following the backslash are re-
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served for future language extensions. Uppercase letters may be used for implementation
specific extensions. 

References urn versa! character name 2.9 

2.7.6 Character Escape Codes 

Character escape codes are used to represent some common special characters in a fashion 
independent of the target computer character set. The characters that may follow the back
slash, and their meanings, are listed in Table 2-7. 

Table 1,-7 Character escape codes 

Escape code Translation Escape code Translation 

a ' alert (e.g., bell) v vertical tab 

b backspace \ backslash 

f form feed single quote 

n newline , double quote 

r carriage return " question mark 

t horizontal tab 

a Standard C addition. 

The code \a is typically mapped to a "bell" or other audible signal on the output de· 
vice (e.g., ASCII control-G. whose value is 7). The \? escape is needed to obtain a ques
tion mark character in the rare circumstances in which it might be mistaken as part of a 
trigraph. 

The quotation mark (n) may appear without a preceding backslash in character con· 
stants, and the apostrophe ( I ) may appear without a backslash in string constants. 

Example 

To show how the character escapes can be used, here is a small program that counts the num
ber of lines (actually the number of newline characters) in the input. The function get char 
returns the next input character until the end of the input is reached, at which point get char 
returns the value of the macro EOF defined in stdio. h : 
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#include <stdio . h > 
int main(void) / * Count the number of lines in the input . */ 
{ 

int next_ char; 
int num_ lines '" 0; 
while «next_ char = getchar ()) ! = EOF) 

if (next_ char == ' \ nl) 

++num_ lines; 
printf(· %d lines read. \ n R , num_ lines); 
return 0 ; 

} 

References character constants 2.7.3; EOF 15.1; get char fac ili ty 15.6; s tdio. h 15.1; 
string constants 2.7.4; trigraphs 2.1A 

2.7.7 Numeric Escape Codes 

Numeric escape codes allow a character from the execution character set to be expressed 
by writing its coded value directly in octal or-in Standard C- hexadecimal notation. Up 
to three octal or any number of hexadecimal digits may appear, but Standard C prohibits 
values outside the range of unsigned char for normal character constants and values 
outside the range of wchar t for wide character constants. For instance, under the 
ASCII encoding the charac ter' a' may be written as ' \ 141' or ' \ x61' and the charac
ter '? I as 1 \ 77' or ' \ x3F' . The null character, used to terminate strings, is always 
written as \ O. The value of a numeric escape that does not correspond to a character in the 
execution character set is implementation-defined. 

Example 

The following short code segment illustrates the use of numeric escape codes. The variable 
inchar has type into 

for (;;) { 

inchar = receive( ); 
if (inchar == ' \ 0') continuei 
if (inchar == ' \ 004') break; 
if (inchar == '\006') reply(' \ 006'); 
else reply(' \ 025')i 
} 

1* Ignore *1 
1* Quit *1 
1* ACK *1 
1* NAK *1 

There are two reasons for the programmer to be cautious when using numeric es
capes. First, of course, the use of numeric escapes may depend on character encoding and 
therefore be nonportable. It is always better to hide escape codes in macro definitions so 
they are easy to change: 

#define NUL I \ 0 I 
#define EOT ' \ 004' 

#define ACK ' \ 006' 
#define NAK ' \025' 
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Second, the syntax for numeric escapes is delicate; an octal escape code tenninates 
when three octal digits have been used or when the first character that is not an octal digit 
is encountered. Therefore, the string "\0111" consists of two characters, \011 and 1, 
and the string "\090 II consists of three characters, \ 0 , 9 . and O. Hexadecimal escape se
quences also suffer from the tennination problem especially since they can be of any 
length; to stop an Standard C hexadecimal escape in a string, break the string into pieces: 

"\xabc" /* This string contains one character. */ 
"\xab ll "e" /* This string contains two characters. */ 

Some non-Standard C implementations provide hexadecimal escape sequences that, like 
the octal escapes, permit only up to a fixed number of hexadecimal digits. 

References character constant 2.7.3; #define 3.3; macro definitions 3.3; null character 
2.1; string constant 2.7.4; execution character set 2.1 

2.8 Ct+ COMPA TlBILITY 

This sec tion lists the lexical differences between C and C++. 

2.8.1 Character Sets 

The token respellings and trigraphs in Standard C are part of the C++ standard, but they are 
not common in pre-Standard e-t+ implementations. Both C and C++ allow universal char
acter names with the same syntax, but only C explicitly allows other implementation
defined characters in identifiers. (One expects that C++ implementations will provide 
them as an extension.) 

2.8.2 Comments 

C99 comments are acceptable as C++ and vice versa. Before C99, the characters / / did 
not introduce a comment in Standard C, and so the sequence of characters / /* in C could 
be interpreted differently in C++. (The details are left as an exercise.) 

2.8.3 Operators 

There are three new compound operators in C++: 

* ->* 

Since these combinations of tokens would be invalid in Standard C programs, there is no 
impact on portability from C to C++. 
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2.8.4 Identi fiers and Keywords 

The identifiers listed in Table 2-8 are keywords in C++, but not in C. However, the key
word wchar _ t is reserved in Standard C, and the keywords bool, true, f a ls e are re
served in e99 as part of the standard libraries. 

Thble 2-8 Additional C++ keywords 

asm export private throw 

bool false protected true 

catch friend public try 

class mutable reinterpret_cast typeid 

const cast namespace static cast type name 

delete new template using 

dynamic_cast operator this virtual 

explicit wchar t 

2.8.5 Character Constants 

Single-character constants have type int in C, but have type c har in C++. Multicharac
ter constants-which are implementation-defined-have type int in both languages. In 
practice. this makes little difference since in Ct+ character constants used in integral con
texts are promoted to int under the usual conversions. However, s i zeo f ( I c I ) is 
si zeo f (char ) in C++, whereas it is sizeo f ( i n t ) in C. 

2.9 ON CHARACTER SETS, REPERTOIRES, AND ENCODINGS 

The C language was originally designed at a time when the needs of an international, mul
tilingual programming community were not well understood. Standard C extends the C 
language to accommodate that community. This section is an informal overview of the 
history and problems to be addressed in Standard C to make the language more friendly to 
non-English users . 

Repertoires and ASCII Every culture bases its written communication on a char
acter repertoire of printable letters or symbols. For U.S.-English. the repertoire consists 
of the usual 52 upper- and lowercase letters. the decimal digits, and some punctuation 
characters . There are about 100 of these characters, and they were assigned particular bi
nary values (by U.S.- English programmers and computer manufacturers) using a seven
bit encoding known as ASCII. These encoded characters appeared on standard keyboards 
and found their way into places such as the C language definition. 

Unfortunately, other cultures have di fferent repertoires. For example, English 
speakers in the United Kingdom would rather have £ than $, but seven-bit ASCII does not 
contain it. Languages such as Russian and Hebrew have entirely different alphabets, and 
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Chinese/Japanese/Korean (elK) cultures have repertoires with thousands of symbols. Pro
grammers today want to build C programs that read and write text in many languages, in
cluding their native ones. They also want native language comments and variable names 
in their programs. Programs so written should be portable to other cultures, at least to the 
extent of not being invalid. (You will not be able to read a Sanskrit comment unless you 
understand Sanskrit and your computer can display Sanskrit characters.) 

The full scope of this problem was only gradually realized, by which time several 
partial solutions had been devised and are still supported. For example, the [SO 646- 1083 
Invariant Code Set was defined as a subset of ASCII that is common across many 000-

English character sets, and ways were invented to replace C characters not in the smaller 
set, including {, } , [, I , and # . 

ISOIIEC 10646 The general solution for character sets is defined by the [SOIlEC 
standard 10646 (plus amendments), Universal Multiple-Octet Coded Character Set 
(UeS). This defines a four-byte (or four-oc/e/) encoding, UCS-4, that is capable ofrepre
senting all the characters in all Earthly cultural repertoires with plenty of space left over. 
There is a useful 16-bit subset of UCS-4 called the Basic Multilingual Plane (UCS-2), 
which consists of those UCS-4 encodings whose upper two bytes are zero. UCS-2 can rep
resent all the major cultural repertoires, including about 20,000 ClK ideograms. However, 
16 bits are not quite enough in general, and no larger size less than 32 bits is convenient to 
manipulate on computers, which is why there is UCS-4. 

The Unicode character set standard was originally a 16-bit encoding produced by 
the Unicode Consortium (www.unicode.org). Unicode 3.0 is now fully compatible with 
ISOIlEC 10646. Previous versions were compatible only with UCS-2. The Unicode Web 
site has a good technical introduction to character encoding. 

The character set standards UCS-4, UCS-2, and Unicode are compatible with 
ASCII. The l6-bit characters whose high-order 8 bits are all zero are just the 8-bit extend
ed ASCII characters, now called La/in-I. The original seven-bit ASCII characters, now 
called Basic Latin, are UCS-2 characters whose upper nine bits are zero. 

Wide and multibyte characters Character representations larger than the tradi
tional eight bits are called wide characters. Unfortunately, the eight-bit (or seven-bit) 
character is not so easily eradicated. Many computers and legacy applications are based on 
eight-bit characters, and various schemes have been devised to represent larger character 
repertoires and wide characters using sequences of eight- or seven-bit characters. These 
are called multibyte encodings or multibyte characters . Whereas wide characters all use a 
fixed-size representation, multibyte characters typically use one byte for some characters, 
two bytes for others, three bytes for others, and so forth . One or more eight-bit characters 
arc trcatcd as "cscapc" or "shift" charactcrs, which start multibytc sequences. 

What we see today in Standard C is a combination of techniques: ways to deal with 
the obvious ASCII variations (trigraphs and digraphs), ways to deal with a fully modem 
wide character environment, ways to deal with multibyte character sequences during 110, 
and, most recently, a way to represent any culturally adapted C program in a portable fash
ion (universal characters and locale-specific characters in identifiers). 
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Universal Character Names e99 introduces a notation that allows any UCS-2 or 
UCS-4 character to be specified in character constants, string constants, and identifiers. 
The syntax is: 

universal-character-name: 
\u hex-quad 
\U hex-quad hex-quad 

hex-quad: 
hex-digit hex-digit hex-digit hex-digit 

Each hex-quad is four hexadecimal digits, which can specify a 16-bit value. The values of 
the hex-quads are specified in ISOIIEC 10646 as the four-digit and eight-digit "short iden
tifiers" for universal characters. The character designated by \ unnnn is the same as the 
one designated by \ uo 0 0 Onnnn. 

C does not permit universal character names whose short identifier are less than 
OOAO except for 0024 ($). 0040 (@), and 0060 ( , ), nor those whose short identifier lies 
in the range 0800 through DFFF. These are control characters, including DELETE, and 
characters reserved for UTF-16. The result of using token merging to create a universal 
character name is undefined. 

References identifiers and universal character names 2.5; token merging 3.3.9 

2.10 EXERCISES 

l. Which of the following are lexjcal tokens? 
(a) keywords 
(b) comments 
(c) whitespace 
(d) hexadecimal constants 

(e) trigraphs 
(f) wide string constants 
(g) parentheses 

2. Assume the following strings of source characters were processed by a Standard C compiler. 
Which strings would be recognized as a sequence of C tokens? How many tokens would be 
found in each case? (Do not worry if some of the token sequences could not appear in a valid C 
program.) 
(a) x++y (f) x**2 
(b) -12uL (g) ·X?? /" 
(c) 1- 37E+6L (b) B$C 
(d) "String n nFOO"· · (i) A*=B 
(e) "String+ \ "FOO\ n" G) while##DO 

3. Eliminate all the comments from the following C program fragment. 

/ ** / */*"*/* / *" // *// **/*/ 

4. A Standard C compiler must perform each of the fo llowing actions on an input program. In 
what order are the actions performed? 

collecting charac ters into tokens 
removing comments 
converting trigraphs 
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processing line continuation 

5. Some poor choices for program identifiers are shown here. What makes them poor choices? 
(a) pipesendintake (d) 077U 
(b) Const (e) SYS$input 
(c) 10 

6. Write some simple code fragments in Standard C that would be invalid or interpreted different· 
Iy in C++ for the reason listed: 
(a) No I I-style comments in e89 (c) keyword conflicts 
(b) type of constants 
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The C Preprocessor 

The C preprocessor is a simple macro processor that conceptually processes the source 
text of a C program before the compiler proper reads the source program. In some imple
mentations of C, the preprocessor is actually a separate program that reads the original 
source file and writes out a new "preprocessed" source file that can then be used as input 
to the C compiler. In other implementations, a single program performs the preprocessing 
and compilation in a single pass over the source file. 

3.1 PREPROCESSOR COMMANDS 

The preprocessor is controlled by special preprocessor command lines, which are lines of 
the source file beginning with the character #. Lines that do not contain preprocessor com
mands are called lines of source program text. The preprocessor commands are shown in 
Table 3-1. 

The preprocessor typically removes all preprocessor command lines from the source 
file and makes additional transformations on the source file as directed by the commands, 
such as expanding macro calls that occur within the source program text. The resulting 
preprocessed source text must then be a valid C program. 

The syntax of preprocessor commands is completely independent of (although in 
some ways similar to) the syntax of the rest of the C language. For example, it is possible 
for a macro definition to expand into a syntactically incomplete fragment as long as the 
fragment makes sense (i.e., is properly completed) in all contexts in which the macro is 
called. 

43 
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Table 3--1 Preprocessor commands 

Command 

#define 

#undef 

#include 

#1< 

#ifdef 

#ifndef 

#else 

Meaning 

Define a preprocessor macro. 

Remove a preprocessor macro definicion. 

Insert text from another source file. 

Conditionally include some text based on the value of a con
stant expression . 

Soc. 

3.3 

3.3.5 

3.4 

3.5.1 

Conditionally include some text based on whether a macro 3.5.3 
name is defined. 

Conditionally include some text with the sense of the test oppo- 3.5.3 
site to that of #ifdef. 

Altematively include some lC.'( t if the previous #1£ , #ifdef , 3.5.1 
#ifndef, or #el1f test failed. 

#endi f Terminate conditional text. 3.5.1 

#line Supply a line number for compiler messages. 3.6 

#elle Alternatively include some tell based on the value of anomer 3.5.2 
constant expression if the previous #1f , #1fdef, 
#ifndef, or #elif test failed. 

def1neda Preprocessor function that yields 1 if a name is defined as a pre- 3.5.5 
processor macro and 0 othel'\\,ise; used in #1f and #e11f. 

# operatorb Replace a macro parameter with a string constant containing the 3.3.8 
parameter's value. 

## operatorb Create a single token out of two adjacent tokens. 3.3.9 

#pragmab Specify implementation-dependent infonnation to the compiler. 3.7 

#errorb Produce a compile-time error with a designated message. 3.8 

a Not originally part of C, but now common in ISO and non-ISO implementations. 
b New in Standard C. 

3.2 PREPROCESSOR LEXICAL CONVENTIONS 

Chap. 3 

The preprocessor does not parse the source text, but it does break it up into tokens for the 
purpose of locating macro calls. The lexical conventions of the preprocessor are somewhat 
different from the compiler proper; the preprocessor recognizes the normal C tokens, and 
additionally recognizes as "tokens" other characters that would not be recognized as valid 
in C proper. This enables the preprocessor to recognize file names, the presence and ab
sence of whitespace, and the location of end-of-line markers. 

A line beginning with # is treated as a preprocessor command; the name of the com
mand must follow the # character. Standard C permits whitespace to precede and follow 
the # character on the same source line, but some older compilers do not. A line whose 
only non-whitespace character is a# is termed a null directive in Standard C and is treated 
the same as a blank line. Older implementations may behave differently. 

The remainder of the line following the command name may contain arguments for 
the command if appropriate. If a preprocessor command takes no arguments, then the 
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remainder of the command line should be empty except perhaps for whites pace characters 
or comments. Many pre-ISO compilers silently ignore all characters following the expect
ed arguments (if any); this can lead to portability problems. The arguments to preprocessor 
commands are generally subject to macro replacement. 

Preprocessor lines are recognized before macro expansion. Therefore, if a macro ex
pands into something that looks like a preprocessor command, that command will not be 
recognized by the preprocessors in Standard C or in most other C compilers. (Some older 
UNIX implementations violate this rule.) 

Example 

The result of the following code is norto include the file math. h in the program being com
piled: 

/* This example doesn't work as one might thinkl */ 
#define GETMATH #include <math.h> 
GETMATH 

Instead, the expanded token sequence 

# include < math . h > 

is merely passed through and compiled as (erroneous) C code. 

As noted in Section 2.1.2, all source lines (including preprocessor command lines) 
can be continued by preceding the end-of-line marker by a backslash character, \. This 
happens before scanning for preprocessor commands. 

Example 

The preprocessor command 

#define err(flag,msg) if (flag) \ 
printf(msg) 

is the same as 

#define err(flag,msg) if (flag) printf(msg) 

If the backs lash character below immediately precedes the end-of-line marker, these two lines 

#define BACKS LASH \ 
#define ASTERISK * 

will be treated as the single preprocessor command 

#define BACKS LASH #define ASTERISK * 

As explained in Section 2.2. the preprocessor treats comments as whitespace, and 
line breaks within comments do not terminate preprocessor commands. 

References comments 2.2: line termination and continuation 2.1: tokens 2.3 
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3.3 DEFINITION AND REPLACEMENT 

The #de fine preprocessor command causes a name (identifier) to become defined as a 
macro to the preprocessor. A sequence of tokens, called the body of the macro, is associat
ed with the name. When the name of the macro is recognized in the program source text or 
in the arguments of certain other preprocessor commands, it is treated as a call to that mac
ro; the name is effect ively replaced by a copy of the body. If the macro is defined to accept 
arguments, then the actual arguments following the macro name are substituted for formal 
parameters in the macro body. 

Example 

If a macro sum with two arguments is defined by 

#define sum(x,y) x+y 

then the preprocessor replaces the source program line 

result: sum(S,a-b)i 

with lhe simple (and perhaps unintended) text substitution 

result _ S+&*b; 

Since the preprocessor does not distinguish reserved words from other identifiers, it 
is possible, in principle, to use a C reserved word as the name of a preprocessor macro, but 
to do so is usually bad programming practice. Macro names are never recognized within 
comments, string or character constants, or #include file names. 

3.3.1 Objectlike Macro Definitions 

The #define command has two fonus depending on whether a left parenthesis immedi
ately follows the name to be defined. The simpler, objectlike form has no left parenthesis; 

#de fine name sequence-o!-tokensopt 

An objectlike macro takes no arguments. It is invoked merely by mentioning its name. 
When the name is encountered in the source program text , the name is replaced by the body 
(the associated sequence-oj-tokens, which may be empty). The syntax of the #define 
command does not require an equal sign or any other special delimiter token after the name 
being defined. The body starts right after the name. 

The objectlike macro is particularly useful for introducing named constants into a 
program, so that a "magic number" such as the length of a table may be written in exactly 
one place and then referred to elsewhere by name. This makes it easier to change the num
ber later. 

Another important use of objectlike macros is to isolate implementation-dependent 
restrictions on the names of externally defined functions and variables. An example of this 
appears in Section 2.S. 
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Example 

Here are some typical macro definitions: 

#define BLOCK SIZE OxlOO 
#define TRACK SIZE (16-BLOCK_ SIZE) 
#define EOT 1\ 004' 
#define ERRMSG n*** Error %d: %s.\nn 

A conunon programming error is to include an extraneous equal sign: 

#define NUMBER OF TAPE DRIVES _ 5 /* Probably wrong . */ 

47 

This is a valid definition, but it causes the name NUMBER_ OF _ TAPE_ DRIVES to be defined 
as " = 5" rather than as "5", If one were then to write the code fragment 

it would be expanded to 

if (count 1= = S) ... 

which is syntactically invalid. For similar reasons, also be careful to avoid an extraneous 
semicolon: 

#define NUMBER_ OF_ TAPE_DRIVES 5 i /* Probably wrong. */ 

References compound assignment operators 7.9.2; operators and separators 2.4 

3.3.2 Defining Macros with Parameters 

The more complex, functionlike macro definition declares the names of formal parameters 
within parentheses separated by commas: 

#define name ( identijier-listopt ) sequence-oj-tokensopt 

where identifier-list is a comma-separated list of formal parameter names. In C99, an el
lipsis ( ... ; three periods) may also appear after identifier-list to indicate a variable argu
ment list. This is discussed in Section 3.3.10; until then, we consider only fixed argument 
lists. 

The left parenthesis must immediately follow the name of the macro with no inter
vening whitespace. If whitespace separates the left parenthesis from the macro name, the 
definition is considered to define a macro that takes no arguments and has a body begin
ning with a left parenthesis. 

The names of the formal parameters must be identi fiers, no two the same. There is 
no requirement that any of the parameter names be mentioned in the body (although nor
mally they are all mentioned). A functionlike macro can have an empty fonnal parameter 
list (Le., zero formal parameters) . This kind of macro is useful to simulate a function that 
takes no arguments. 

A functionlike macro takes as many actual arguments as there are fonnal parame
ters. The macro is invoked by writing its name, a left parenthesis, then one actual argu
ment token sequence for each formal parameter, then a right parenthesis. The actual 
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argument token sequences are separated by commas. (When a function like macro with no 
formal parameters is invoked, an empty actual argument list must he provided.) When a 
macro is invoked, whitespace may appear between the macro name and the left parenthe
sis or in the actual arguments. (Some older and deficient preprocessor implementations do 
not permit the actual argument token list to extend across multiple lines unless the lines to 
be continued end with a \.) 

An actual argument token sequence may contain parentheses if they are properly 
nested and balanced, and it may contain commas if each comma appears within a set of 
parentheses. (This restriction prevents confusion with the commas that separate the actual 
arguments.) Braces and subscripting brackets likewise may appear within macro argu
ments, but they cannot contain commas and do not have to balance. Parentheses and com
mas appearing within character-constant and string-constant tokens are not counted in the 
balancing of parentheses and the delimiting of actual arguments. 

In C99, arguments to a macro can be empty; that is, consist of no tokens. 

Example 

Here is the definition of a macro that multiplies its two arguments: 

#define product (x,y) ((x)· (y» 

It is invoked twice in the following statement: 

x _ product(a+3,b) + product (c, d); 

The arguments to the product macro could be function (or macro) calls. The commas with
in the function argument lists do not affect the parsing ofthe macro arguments: 

return product( f(a,b}, g {a,b} )i /* OK */ 

Example 

The getchar macro has an empty parameter list: 

#define getchar(} getc(stdin} 

When it is invoked, an empty argument list is provided: 

while «c=getchar (» 1 = EOF) ... 

(getchar, stdin, and EOF are defined in the standard header stdio. h .) 

Example 

We can also define a macro that takes as its argument an arbitrary statement: 

#define insert(stmt) stmt 

The invocation 

insert ( {a=l; b:l;} ) 

works properly, but if we change the two assignment statements to a single statement contain
ing two assignment expressions: 

insert ( {a=l, b=l;} } 
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then the preprocessor will complain that we have too many macro arguments for insert . To fix 
the problem, we would have to write: 

insert( {(a=l, b:l);} } 

Example 

Defining functionlike macros to be used in statement contexts can be tricky. The following 
macro swaps the values in its two arguments, x and y, which are assumed to be of a type 
whose values can be converted to una igned long and back without change. and to not in
volve the identifier temp. 

#define swap(x, y) { unsigned long _ temp=xi X=¥i y= _ temp; } 

The problem is that it is natural to want to place a semicolon after swap, as you would if 
swap were really a function: 

if (x > y) swap (x, y); /* Whoops! */ 
else x = y; 

This will result in an error since the expansion includes an extra semicolon (Section 8. 1). We 
put the expanded statements on separate lines next to illustrate the problems more clearly: 

if (x > y) { unsigned long temp=xi X=Yi y=_ tempi } 
; 

else x = y; 

A clever way to avoid the problem is to define the macro body as a do-while statement, 
which consumes the semicolon (Section 8.6.2): 

#define swap(x, y) \ 
do { unsigned long temp_x; x=y; y _ temp; } while (0) - -

When a functionlike macro call is encountered, the entire macro call is replaced, after 
parameter processing, by a processed copy of the body. Parameter processing proceeds as 
follows. Actual argument token strings are associated with the corresponding formal pa
rameter names. A copy of the body is then made in which every occurrence of a formal 
parameter name is replaced by a copy of the actual argument token sequence associated 
with it. This copy of the body then replaces the macro calL The entire process of replacing 
a macro call with the processed copy of its body is called macro expansion; the processed 
copy of the body is called the expansion of the macro calL 

Example 

Consider this macro definition, which provides a convenient way to make a loop that counts 
from a given value up to (and including) some limit: 

#define incr(v,low,high) \ 
for «v) = (low); (v) < = (high); (v) ++) 

To print a table of the cubes of the integers from I to 20, we could write 
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#include <stdio.h> 
tnt main (void) 
{ 

} 

int j; 
incr (j, 1, 20) 

printf(" %2d %6d\n", j, j*j*j); 
return 0; 

The call to the macro incr is expanded to produce this loop: 

for ((j) = (1), (j) <_ (20), (j)++) 

Chap. 3 

The liberal use of parentheses ensures that complicated ac tual arguments are not be 
misinterpreted by the compiler. (See Section 3.3.6.) 

References do statement 8.6.2; statement syntax 8.1; unsigned long 5. 1.2; 
whites pace 2.1.2 

3.3.3 Rescanning of Macro Expressions 

Once a macro call has been expanded, the scan for macro calls resumes at the beginning of 
the expansion so that names of macros may be recognized within the expansion for the 
purpose of further macro replacement. Macro replacement is not perfonned on any part of 
a #define command, not even the body, at the time the command is processed and the 
macro name defined. Macro names are recognized within the body only after the body has 
been expanded for some particular macro call. 

Macro replacement is also not performed within the actual argument token strings of 
a functionlike macro call at the time the macro call is being scanned. Macro names are rec
ognized within actual argument token strings only during the rescanning of the expansion, 
assuming that the corresponding formal parameter in fact occurred one or more times 
within the body (thereby causing the actual argument token string to appear one or more 
times in the expansion). 

Example 

Given the following definitions: 

#define plus(x,y) add(y,x) 
#define add(x,y) «x)+(y» 

The invocation 

plus(plus(a,b),c) 
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is expanded as shown next. 

SICP 

1. (original) 

2. 

3. 

4. 

5. (final ) 

Result 

plus(plus(a,b),c ) 

add(c,plus(a,b» 

«c)+(plus(a,bl)l 

«c)+(add(b,a») 

«c)+ « (b)+ (al») 

Macros appearing in their own expansion-either immediately or through some in
termediate sequence of nested macro expansions-are not reexpanded in Standard C. This 
permits a programmer to redefine a function in terms of its old definition. Older C prepro
cessors traditionally do not detect this recursion, and will attempt to continue the expan
sion until they are stopped by some system error. 

Example 

calls. 

The following macro changes the definition of the square root function to handle negative ar
guments in a different fashion than is Donnal: 

#define sqrt (x) «x) <0 ? sqrt (- (x» : sqrt (x» 

Except that it evaluates its argument more than once, this macro would work as intended in 
Standard C, but might cause an error in older compilers. Similarly: 

#define cha unsigned char 

See Section 7.4.3 for an interesting example of using a macro to trace function 

3.3.4 Predefined Macros 

Preprocessors for Standard C are required to define certain objectlike macros (Table 3-2). 
The name of each begins and ends with two underscore characters. None of these pre
defined macros may be undefined (#undef) or redefined by the programmer. 

The _LINE_ and _FILE_ macros are useful when printing certain kinds of 
error messages. The _DATE_ and _TlME_ macros can be used to record when a 
compilation occurred. The values of _TlME_ and _DATE_ remain constant 
throughout the compilation. The values of the _LINE_ and _ FILE_ macros are es
tablished by the implementation, but are subject to alteration by the#line directive (Sec
tion 3.6). The C99 predefined identifier _func_ (Section 2.6.1) is similar in purpose 
to _LINE_, but is actually a block-scope variable, not a macro. It supplies the name of 
the enclosing function. 

The _ STDC_ and _STDC_ VERSION_ macros are useful for writing code 
compatible with Standard and non-Standard C implementations. The 
_ STDC_HOSTED_ macro was introduced in C99 to distinguish hosted from 
freestanding implementations. The remaining C99 macros indicate whether the implemen-
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Table 3-2 Predefined macros 

Macro 

LINE 

FILE 

DATE 

TIME 

STDC 

• 

• 

STDC VERSION 

STDC HOSTED 

STDC IEC 559 

Value 

The line number ofllie current source program line expressed as a decimal 
integer constant. 

The name of the current source file expressed as a string constant. 

The calendar date of the translation expressed as a string constant of the 
fonn " Mmm dd yyyy". Mmm is as produced by asctime. 

The time of the translation expressed as a string constant of the fonn 
"hh:mm: ss ", as returned by asctime. 

The decimal constant 1 if and only if !.he compiler is an ISO-confonning 
implementation. 

If the implementation confonns to Amendment I of e89, then this macro 
has the value 199409L. If the implementation conforms to e99, then the 
macro has the value 199901L. Otherwise, its value is not defined . 

(C99) Defi ned as I if the implementation is a hosted implementation, 0 if it 

is a freestanding implementation. 

(C99) Defined as I if the floating-point implementation conforms 10 lEe 
60559; otherwise undefined. 

STDC IEC 559 COMPLEX 

STDC ISO 10646 

(C99) Defined as I if the complex arithmetic implementation conforms to 
lEe 60559; othetwise undefined. 

(C99) Defi ned as a long integer constant, yyyymmL to signify that 
wchar t values adhere to the ISO 10646 standard with corrections and 
amendments as of the given year and mont" othetwise undefined. 

a These macros are common in no n-ISO implementations also. 

tation 's floating-point and wide character facilities adhere to other relevant international 
standards. (Adherence is recommended, but not required.) 

Implementations routinely define additional macros to communicate infonnation 
about the environment, such as the type of computer for which the program is being com
piled. Exactly which macros are defined is implementation-dependent, although UNIX 
implementations customarily predefine unix. Unlike the built-in macros, these macros 
may be undefined. Standard C requires implementation-specific macro names to begin 
with a leading underscore followed by either an uppercase letter or another underscore. 
(The macro unix does not meet that criterion.) 

Example 

The predefined macros are useful in certain kinds of error messages: 

if (n 1", m) 
fprintf(stderr,"Internal error: line \d, file %s\n", 

LINE I FILE ) ; 

Other implementation-defined macros can be used to isolate host or target-specific code. For 
example, Microsoft Visual C++ defines _ WIN3 2 to be 1: 
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#ifdef WIN32 
/ * Code for Win32 environment */ 

#endif 
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The _ STDC_ and _ STDC_ VERSION_ macros are useful when writing programs that 
must adapt to both Standard and non-Standard implementations; 

#ifdef STDC 
/ * Some version of Standard C */ 

#i£ defined ( STDC VERSION } && STDC VERSION >=199901L 
/ * e99 */ 

#elif defined( STDC VERSION && STDC VERSION >=199409L 
/ * e89 and Amendment 1 */ 

#else 
/ * e89 but no t Amendment 1 */ 

#endif 
#else / * STDC 

/ * Not Standard 
#endif 

not defined 11 / 
C */ 

References asctime faci lity 20.3; complex arithmetic Ch. 23; £pr!ntf 15. 11 ; free
standing and hosted implementations 1.4; #!fde£ preprocessor command 3.5.3; #i f preprocessor 
command 3.5.1 ; undefining macros 3.3.5; wchar _ t 24. 1 

3.3.5 Undefining and Redefining Macros 

The #undef command can be used to make a name be no longer defined: 

#undef name 

This command causes the preprocessor to forget any macro definition of name. It is not an 
error to undefine a name currently not defined. Once a name has been undefined. it may 
then be given a completely new definition (using #define) without error. Macro re
placement is not performed within #undef commands. 

The benign redefinition of macros is allowed in Standard C and many other imple
mentations. That is, a macro may be redefined if the new definition is the same, token for 
token, as the existing defin ition. The redefinition must include whitespace in the same lo
cations as in the original defini tion, although the particular whitespace characters can be 
different. We think programmers should avoid depending on benign redefinitions. It is 
generally better style to have a single point of definition for all program entities , including 
macros. (Some older implementations of C may not allow any kind of redefinition.) 

Example 

In the fo llowing definitions, the redefinition of NULL is allowed, but neither redefini tion of 
FUNC is valid. (The flrst includes whites pace not in the original definition, and the second 
changes two tokens.) 
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# 
# 
# 
# 
# 

define NULL 0 
define FUNC{x) x+4 
define NULL /* null pointer */ 0 
define FUNC(x) x + 4 
define FUNC(y) y+4 

The C Preprocessor Chap. 3 

Example 

When the programmer for legitimate reasons cannot tell if a previous definition exists, the 
#ifnde£ command can be used to test for an existing definition so that a redefinition can be 
avoided: 

#ifndef MAXTABLESIZE 
#define MAXTABLESIZE 1000 
Hend!f 

This idiom is particularly useful with implementations that allow macro definitions in the 
command that invokes the C compiler. For example, the following UNIX invocation of C pro
vides an initial definition of the macroMAXTABLESIZE as 5000 . The C programmer would 
then check for the definition as shown before: 

cc -c -DMAXTABLESIZE=5000 prog.c 

Although disallowed in Standard C, a few older preprocessor implementations han
dle #define and #undef so as to maintain a stack of definitions. When a name is rede
fined with #define, its old definition is pushed onto a stack and then the new definition 
replaces the old one. When a name is undefined with #undef , the current definition is 
discarded and the most recent previous definition (if any) is restored. 

References #define command 3.3; #ifdef and #ifndef command 3.5.3 

3.3.6 Precedence Errors in Macro Expansions 

Macros operate purely by textual substitution of tokens. Parsing of the body into declara
tions, expressions, or sta tements occurs only after the macro expansion process. This can 
lead to surprising results if care is not taken. As a rule, it is safest to always parenthesize 
each parameter appearing in the macro body. The entire body, if it is syntactically an ex
pression, should also be parenthesized. 

Example 

Consider this macro definition: 

#define SQUARE(x) x*x 

The idea is that SQUARE takes an argument expression and produces a new express ion to 
compute the square of that argument. For example, SQUARE (5) expands to 5* 5. However, 
the expression SQUARE (z+ 1) expands to z+l* z+l , which is parsed as z+ (1 * z) +1 rather 
than the expected (z+l) * (z+ 1) . A definition of SQUARE that avoids thi s problem is: 

#define SQUARE (x) «x) * (x» 
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The outer parentheses are needed to prevent misinterpretation of an expression such as 
(short) SQUARE{z+l). 

References cast expressions 7.5.1; precedence of expressions 7.2.1 

3.3.7 Side Effects in Macro Arguments 

Macros can also produce problems due to side effects. Because the macro' s actual argu
ments may be textually replicated, they may be executed more than once, and side effects 
in the actual arguments may occur more than once. In contrast, a true function call
which the macro invocation resembles-evaluates argument expressions exactly once, so 
any side effects of the expression occur exactly once. Macros must be used with care to 
avoid such problems. 

Example 

Consider the macro SQUARE from the prior example and also a function square that does 
(almost) the same thing: 

int square(int x) { return x*x; } 

The macro can square integers or floating-point numbers; the function can square only inte
gers. Also, calling the function is likely to be somewhat slower at run time than using the 
macro. But these differences are less important than the problem of side effects. In the pro
gram fragment 

a = 3; 
b = square (a++) ; 

the variable b gets the value 9 and the variable a ends up with the value 4. However, in the 
superficially similar program fragment 

a = 3; 
b = SQUARE (a++) ; 

the variable b may get the value 12 and the variable a may end up with the value 5 because 
the expansion of the last fragment is 

a = 31 

b = «a++}*(a++»; 

(We say that 12 and 5 may be the resulting values of b and a because Standard C implemen
tations may evaluate the expression ( (a++) * (a++) } in different ways. See Section 7.12.) 

References increment operator ++ 7.4.4 

3.3.8 Converting Tokens to Strings 

There is a mechanism in Standard C to convert macro parameters (after expansion) to 
string constants. Before this, programmers had to depend on a loophole in many C prepro
cessors that achieved the same result in a different way. 

In Standard C, the # token appearing within a macro definition is recognized as a 
unary "stringization" operator that must be followed by the name of a macro formal 



56 The C Preprocessor Chap. 3 

parameter. During macro expansion, the # and the formal parameter name are replaced by 
the corresponding actual argument enclosed in string quotes. When creating the string, 
each sequence of whitespace jn the argument's token list is replaced by a single space char
acter, and any embedded quotation or backslash characters are preceded by a backslash 
character to preserve their meaning in the string. Whites pace at the beginning and end of 
the argument is ignored, so an empty argument (even with whitespace between the com
mas) expands to the empty string nil. 

Example 

Consider the Standard C definition of macro TEST: 

#define TEST(a,b) printf( #a "<" #b "=%d\n", {a)«b} 

The s tatements TEST (0, OxFFFF) ; TEST ( , \n' , 10) ; would expand into 

printf(non .<" nOxFFFF n n:%d\nn, 

printf(n'\\n'" "<" "10" ":%d\n", 
(0)< (OxFFFF) ); 
('\n')«10) ); 

After concatenation of adjacent strings, these become 

printf("O<OxFFFF",%d\n", (0) < (OxFFFF) ); 

printf("'\\n'<10",%d\n", ('\n')«10) ); 

A number of non-Standard C compilers will substitute for macro formal parameters 
inside string and character constants. Standard C prohibits this. 

Example 

In these nonconforming C implementations, the TEST macro could be written this way: 

#define TEST (a, b) printf ( "a<b:%d\n", (al < (b) ) 

The result of expanding TEST (0, OxFFFF) would resemble the result of stringization: 

printf ("O<OxFFFF.%d\n", (0) < (OxFFFF) ) i 

However, the expansion of TEST ( , \n' , 10) would almost certainly be missing the extra 
backslash and the output of the printf function would be garbled with unexpected line 
breaks in the output: 

printf("'\n'<10",%d\n", ('\n')«10) ); 

The handling of whitespace in non-ISO implementations is also likely to vary from com
piler to compiler-another reason to avoid depending on this feature except in Standard C 
implementations. 

3.3.9 Token Merging In Macro Expansions 

Merging of tokens to form new tokens in Standard C is controlled by the presence of a 
merging operator, ##, in macro definitions. In a macro replacement list-before rescan
ning for more macros- the two tokens surrounding any ## operator are combined into a 
single token. There must be such tokens: ## must not appear at the beginning or end of a 
replacement list. If the combination does not form a valid token, the result is undefined. 
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#define TEMP (i) 

TEMP (1) = TEMP(2 
temp ## i 
+ k) + Xi 

After preprocessing, this becomes 

tempI : temp2 + k + Xi 
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In the previous example, a curious situation can arise when expanding TEMP () +x. 
The macro definition is valid, but ## is left with no right-hand token to combine (unless it 
grabs +, which we do not want). This problem is resolved by treating the formal parameter 
i as if it expanded to a special "empty" token just for the benefit of ##. Thus, the 
expansion of TEMP () + x would be temp + x as expected. 

Token concatenation must not be used to produce a universal character name. 

As with the conversion of macro arguments to strings (Section 3.3.8), programmers 
can obtain something like this merging capability through a loophole in many non
Standard C implementations. Although the original definition of C explicitly described 
macro bodies as being sequences of tokens, not sequences of characters, nevertheless 
many C compilers expand and rescan macro bodies as if they were character sequences. 
This becomes apparent primarily in the case where the compiler also handles comments 
by eliminating them entirely (rather than replacing them with a space)-a situation ex
ploited by some cleverly written programs. 

Example 

Consider the following example: 

#define INC ++ 
#define TAB internal table 
#define INCTAB table of increments 
#define CONC(x,y) x/**/y 
CONC (INC, TAB) 

Standard C interprets the body of CONC as two tokens, x and y, separated by a space. (Com
ments are converted to a space.) The call CONC (INC, TAB) expands to the two tokens 
INC TAB. However, some non-Standard implementations simply eliminate comments and 
then rescan macro bodies for tokens; these expand CONC (INC, TAB) to the single token 
INCTAB: 

Step 

2 

3 

4 

Standard C expansion 

CONC(INC,TAB) 

INC/**/TAB 

INC TAB 

++ internal table 

Possible non-Standard expansion 

CONC(INC,TAB) 

INC/**/TAB 

INCTAB 

table of increments 

References increment operator ++ 7.5.8; universal character name 2.9 
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3.3.10 Variable Argument Lists in Macros 

In C99, a function like macro can have as its last or only formal parameter an ellipsis, sig
nifying that the macro may accept a variable number of arguments: 

#define name Udentifer-list, ... ) sequence-o!-tokensopr 
#define name ( .•• ) sequence-oj-tokensopt 

When such a macro is invoked, there must be at least as many actual arguments as 
there are identifiers in identifier-list. The trailing argument(s), including any separating 
commas, are merged into a single sequence of preprocessing tokens called the variable 
arguments. The identifier _ VA _ ARGS_ appearing in the replacement list of the macro 
definition is treated as if it had been a macro parameter whose argument was the merged 
variable arguments. That is, _ VA _ ARGS_ is replaced by the list of extra arguments, in· 
cluding their comma separators. _ VA_ ARGS_ can only appear in a macro definition 
that includes ••• in its parameter list. 

Macros with a variahle number of arguments are often used to interface to functions 
that take a variable number of arguments, such as printf . By using the # stringization 
operator, they can also be used to convert a list of arguments to a single string without 
hav ing to enclose the arguments in parentheses. 

Example 

These directives create a macro my yrintf that can write its arguments either to the error 
or standard output. 

#ifdef DEBUG 
#define myyrintf( ... ) fprintf(stderr, 
#else 
#define myyrintf( ... ) printf( VA ARGS 
#endif 

It can be used this way: 

Example 

Given the definition 

#define make_ em_ a _ string( ... ) # VA ARGS 

the invocation 

expands to the string 

"a, b, c, d-

VA ARGS 
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3.3.11 Other Problems 

Some non-Standard implementations do not perform stringent error checking on macro 
definitions and calls, including permitting an incomplete token in the macro body to be 

completed by text appearing after the macro call. The lack of efror checking by certain im
plementations does not make clever exploitation of that lack legitimate. Standard C reaf
firms that macro bodies must be sequences of well-formed tokens. 

Example 

For example, the following fragment in one of these non-ISO implementations: 

#define FIRSTPART "This is a split 

printf(FIRSTPART string.-); j* YukI */ 

will, after preprocessing, result in the source text 

printf(nThis is a split string."); 

3.4 FILE INCLUSION 

The #include preprocessor command causes the entire contents of a specified source 
text file to be processed as if those contents had appeared in place of the #include com
mand. The #include command has the following three forms in Standard C: 

# include 
# include 
# include 

< h-char-sequence > 
n q-char-sequence n 

preprocessor-tokens 

h-char-sequence : 

(Standard C) 

any sequence of characters except> and end-of-line 

q-char-sequence : 
any sequence of characters except nand end-of-Iine 

preprocessor-tokens: 
any sequence of C tokens---or non-whitespace characters 

that cannot be interpreted as tokens- that does not begin with < or n 

In the first two fonns of #include, the characters between the delimiters should 
be a file name in some implementation-defined format. There should be only whitespace 
after the closing> or ". These two forms of #include are supported by all C compilers. 
The file name is subject to trigraph replacement in Standard C and source-line continua
tion, but no other processing of the characters occurs. 

In the third form of #incl.ude, the preprocessor-tokens undergo normal macro ex
pansion, and the result must match one of the first two forms (including the quotes or an-
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gle brackets). This form of #include is seen less often and may not be implemented or 
may be implemented in a different fashion in non-Standard compilers. 

Example 

Here is one way to use this third form of#include: 

#i£ some_ thing==this_ thing 
1# define IncludeFile "thiename .h" 
HeIse 
1# define Includefile <thatname .h> 
#endif 

#inc!ude Inc!udefile 

This style can be used to localize customizations, but programmers interested in compatibility 
with older compilers should instead place #!nclude commands at the site of the #define 
commands earlier: 

#if some thing==this thing 
1# include nthisname.h" 
HeIse 
# include <thatname.h> 
#endif 

File name syntax is notoriously implementation-dependent, but Standard C requires 
that all implementations permit file names in #include consisting of letters and digits 
(beginning with a letter), followed by a period and a single letter. C99 allows up to eight 
letters and digits before the period, but C89 only guaranteed up to five letters before the 
period. By permit we mean that file names in this form must be mapped to an 
implementation-defined file. 

Files delimited by quotes and files delimited by angle brackets differ in how they are 
located by the C implementation. Both fonns search for the file in a set of (possibly differ
ent) implementation-defined places. Typically, the form 

#include <filename> 

searches for the file in certain standard places according to implementation-defined search 
rules. These standard places usually contain the implementation's own header files, such 
as stdio.h. The form 

#include II filename n 

will also search in the standard places, but usually after searching some local places, such 
as the programmer's current directory. Often implementations have some standard way 
outside of the C language for specifying the set of places to search for these files. The gen
eral intent is that the n ... 11 form is used to refer to header files written by the programmer, 
whereas the < ... > form is used to refer to standard implementation files. 
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In fact, standard header files like s tdio . h are treated as special cases in Standard 
C. Standard C requires that implementations recognize the standard library header names 
when they appear in <>-delimited #include commands, but there is no requirement that 
those names specify true file names. They can be handled as special cases, their contents 
simply "known" to the C implementation. For this reason, the Standard calls them stan
dard headers and not standard header files. We refer to them both ways in this book. 

An included fi le may contain #include commands. The permitted depth of such 
#include nesting is implementation dependent, but Standard C requires support for at 
least 8 levels (15 levels in e99). The location of included files can affect the search rules 
for nested files . 

Example 

Suppose that we are compiling a C program, first. c , in the file system directory I near. 
The file first. c contains the lines 

/1 In / near / first . c 
#include ft / far l second.h ft 

whi ch specifi es that second. h is to he found in directory / far . The header fi le 
second. h contains the lines 

/1 In / far lsecond.h 
#include ftthird . hft 

which specifies no directory. Will the implementation choose the file / near / third . h in 
the original working directory, or will it choose / far / third. h in the directory of the file 
that included it? Some UNIX C compilers would find I far / third . h . The original de
scription of C seems to suggest that / near / third. h should be found. Most implementa
tions let the programmer specify a list of directories to search, in order, for included files 
whose directories are not specified. 

References string constants 2.7.4; trigraphs 2.1.4 

3.5 CONDITIONAL COMPILA TION 

The preprocessor conditional commands allow lines of source text to be passed through or 
eliminated by the preprocessor on the basis of a computed condition. 

3.5.1 The #if, #else, and #endi' Commands 

The following preprocessor commands are used together to allow lines of source text to be 
conditionally included in or excluded from the compilation: #if, #else, and #endif . 

They are used in the following way: 

#if constant~expression 

group~oflines-l 

#eIse 
group~oflines-2 

#endif 
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The constanl~expression is subject to macro replacement and must evaluate to a constant 
arithmetic value. Restrictions on the expression are discussed in Section 7.11.1. A "group 
of lines" may contain any number of lines of text of any kind, even other preprocessor 
command lines or no lines at all. The #else command may be omitted, along with the 
group of lines following it; this is equivalent to including the #else command with an 
empty group of lines following it. Either group of lines may also contain one or more sets 
of #i f-#else-#endi f commands. 

A set of commands such as shown before is processed in such a way that one group 
of lines will be passed on for compilation and the other group of lines will be discarded. 
First, the constant-expression in the #if command is evaluated. If its value is not 0, then 
group-of-lines- l is passed through for compilation and group-of-lines- 2 (if present) is 
discarded. Otherwise, group-of-lines- l is discarded; and if there is an #else command, 
then group-of-lines- 2 is passed through; but if there is no #else command, then no 
group oflines is passed through. The constant expressions that may be used in a #if com
mand are described in detail in Sections 3.5.4 and 7.11. 

A group of lines that is discarded is not processed by the preprocessor. Macro re
placement is not performed, and preprocessor commands are ignored. The one exception 
is that, within a group of discarded lines, the commands #if , #ifdef, #ifndef , 
#elif, #else, and #endif are recognized for the sole purpose of counting them; this 
is necessary to maintain the proper nesting of the conditional compilation commands. This 
recognition in turn implies that discarded lines are scanned and broken into tokens and 
string constants and comments are recognized and must be properly delimited. 

If an undefined macro name appears in the constant-expression of #i for #elif, it 
is replaced by the integer constant O. This means that the commands "#ifdef name" and 
"# i f name" will have the same effect ali long as the macro name, when defined, has a 
constant, arithmetic, nonzero value. We think it is much clearer to use #ifdef or the: de
fined operator in these cases, but Standard C also supports this use of #i f. 

References defined 3.5.5; #elif 3.5.2; #ifdef 3.5.3 

3.5.2 The #elif Command 

The #elif command is present in Standard C and in the more modern pre-ISO compilers 
as well. It is convenient because it simplifies some preprocessor conditionals. It is used in 
the following way: 

#if constant-expression- l 
group-oflines-l 

#eli f constant-expression- 2 
group-oJ-lines-2 

#elif constant-expression- n 
group-of-lines-n 

#else 
last-g roup-of lines 

#endif 

(or #ifdef or #ifndef) 
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This sequence of commands is processed in such a way that at most one group of lines is 
passed on for compilation and all other groups of lines are discarded. First, the constant
expression-l in the #if command is evaluated. If its value is not 0, then group-of-lines-l 
is passed through for compilation and all other groups of lines up to the matching #endi f 
are discarded. If the value of the constant-expression-l in the #if command is 0, then the 
constant-expression-2 in the first #elif command is evaluated; if that value is not 0, then 
group-oJ-lines-2 is passed through for compilation. In the general case, each constanl

expression-i is evaluated in order until one produces a nonzero value; the preprocessor 
then passes through the group of lines following the command containing the nonzero con
stant expression, ignoring any other constant expressions in the command set, and discards 
all other groups of lines. If no constant-expression-i produces a nonzero value and there is 
an #else command, then the group of lines following the #else command is passed 
through; but if there is no #else command, then no group of lines is passed through. The 
constant expressions that may be used in a #elif command are the same as those used in 
a #if command (see Sections 3.5.4 and 7.11). 

Within a group of discarded lines, #eli f commands are recognized in the same 
way as #if, #ifdef, #ifndef, #e1se, and #endif commands for the sole purpose 
of counting them; this is necessary to maintain the proper nesting of the conditional com
pilation commands. 

Macro replacement is performed within the part of a command line that follows an 
#e1if command, so macro calls may be used in the constant-expression. 

Example 

Although the #e1 i f command is convenient when it is appropriate, its functionality can be 
duplicated using only #if, #e1se. and #endif. An example is shown below. 

Using #elif 

#1f constant-expression-l 
group·of-lines- l 

#e11f constant-expression-2 

group·of-lines-2 

#else 

last·group-of-lines 

#endif 

3.5.3 The #ifdef and #ifndef Commands 

Without #elif 

#1 f constant-expression-l 
group-of-lines-l 

#e1se 

#1f constant-expression- 2 

group-oj-lines- 2 

#e1se 

last-8 roup-oj-line s 
#endif 

#endif 

The #ifdef and #ifndef commands can be used to test whether a name is defined as a 
preprocessor macro. A command line of the form 

#ifdef name 

is equivalent in meaning to 
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#if 1 

when name has been defined (even with an empty body) and is equivalent to 

#if 0 

when name has not been defined or has been undefined with the #undef command. The 
#ifndef command has the opposite sense; it is true when the name is not defined and 
false when it is. 

Note that #ifdef and #ifndef test names only with respect to whether they have 
been defined by #define (or undefined by #unde£); they take no notice of names ap
pearing in declarations in the C program text to be compiled. (Some C implementations al
low names to be defined with special compiler command-line arguments.) 

Example 

The #ifndef and #ifdef commands have come to be used in several stylized ways in C 
programs. First, it is a common practice 10 implement a preprocessor-time enumeration type 
by having a set of symbols of which only one is defined. For example, suppose that we wish 
to use the set of namesV AX, PDP)), and CRA Y2 to indicate the computer for which the pro
gram is being compiled. One might insist that all these names be defined, with one being de
fined to be ) and the rest 0: 

#define VAX 0 
#define PDP11 0 
#define CRAY2 1 

One could then select machine-dependent source code to be compiled in this way: 

#1£ VAX 

VAX-dependent code 
#endif 
#if PDP11 

PDP ll-dependent code 
#endif 
#1£ CRAY2 

CRAY2 -dependen t code 
#endif 

However, the customary method defines only one symbol: 

#define CRAY2 1 
/* None of the other symbols is defined. */ 

Then the conditional commands test whether each symbol is defined: 

#ifdef VAX 
VAX-dependent code 

#endif 
#ifdef PDP11 

PDPl1 -dependenl code 
#endif 
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Example 

Conditional Compilation 

#ifde£ CRAY2 
CRAY2-dependenl code 

#endif 
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Another use for the #ifde£ and #i fnde£ commands is to provide default definitions for 
macros. For example, a li brary fi le might provide a definition for a name only if no other def
inition has been provided: 

#ifnde£ TABLE SIZE 
#define TABLE SIZE 100 
#endif 

static int internal table[TABLE_ SIZE); 

A program might simply include this fi le: 

#include <table.h> 

in which case the definition of TABLE_ SIZE would be 100 , both within the library file and 
after the #include; or the program might provide an explicit defi nition first: 

#define TABLE SIZE 500 
#include <table.h > 

in which case the definition afTABLE_ SIZE would be 500 throughout. 

It is a common C programming error to test whether a name is defined by writing 
"#if name" instead of "#ifdef name" or "#if defined (name) ". The incorrect form 
often works because the preprocessor replaces any name in the #if expression that is not 
defined as a macro with the constant O. Therefore, if name is not defined, all three forms 
are equivalent. However, if name is defined to have the value 0, then " # if name" will be 
false even though the name is defined. Similarly, if name is defined with a value that is not 
a valid expression, then "#i f name" will cause an error. 

References #define 3.3; defined operator 3.5.5; #include 3.4; preprocessor lexical 
conventions 3.2; #undef 3.3 

3.5.4 Constant Expressions in Conditional Commands 

The expressions that may be used in #if and #elif commands are described in Section 
7. 11.1. They include integer constants and all the integer arithmetic, relational, bitwise, 
and logical operators. 

C99 mandates that all preprocessor arithmetic be performed using the largest integer 
type found on the target computer, which is intmax_t or uintmax_T defined in 
s tdin t . h . Previously, Standard C did not require that the translator have the arithmetic 
properties of the target computer. 

References intmax_ t 21.5; uintmax_ t 21.5 
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3.5.5 The defined Operator 

The defined operator can be used in #i£ and #e1if expressions but nowhere else. An 
expression in one of the two forms 

de fined name 
defined ( name) 

evaluates to 1 if name is defined in the preprocessor and to 0 if it is not. 

Example 

The defined command allows the programmer to write 

#i£ defined (VAX) 

instead of 

Hifde£ VAX 

Th~ defined operator may be more cOIlvenient to use because it is possible to build up 
complex expressions such as this: 

#i£ defined (VAX) && !defined(UNIX} && debugging 

3.6 EXPLICIT LINE NUMBERING 

The #line preprocessor command advises the C compiler that the source program was 
generated by another tool and indicates the correspondence of places in the source program 
to lines of the original user-written file from which the C source program was produced. 
The #line command may have one of two forms. The form 

# line n II filename n 

indicates that the next source line was derived from line n of the original user-written file 
named by filename. n must be a sequence of decimal digits. The form 

# line n 

indicates that the next source line was derived from line n of the user-written file last men
tioned in a #line command. Finally, if the #line command does not match either of 

the prior forms, it is interpreted as 

# 1 ine preprocessor-tokens 

Macro replacement is performed on the argument token sequence, and the result must 
match one of the two previous forms of #line. 
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The information provided by the #line command is used in setting the values of 
the predefined macros _ LINE_ and _ FILE_, Otherwise, its behavior is unspecified 
and compilers may ignore it. Typically, the infonnation is also used in diagnostic messag
es. Some tools that generate C source text as output will use #line so that error messages 
can be related to the tool 's input file instead of the actual C source file. 

Some implementations of C allow the preprocessor to be used independently of the 
rest of the compiler. Indeed, sometimes the preprocessor is a separate program that is exe
cuted to produce an intermediate file that is then processed by the real compiler. In such 
cases, the preprocessor may generate new #line commands in the intermediate file ; the 
compiler proper is then expected to recognize these even though it does not recognize any 
other preprocessor commands. Whether the preprocessor generates #line commands is 
implementation dependent. Similarly, whether the preprocessor passes through, modifies, 
or eliminates #line commands in the input is also implementation dependent. 

Older versions of C allow simply " #" as a synonym for the #line command, al
lowing this form: 

# n filename 

This syntax is considered obsolete and is not permitted in Standard C, but many imple
mentations continue to support it for the sake of compatibility. 

References FILE 3.3.4; LINE 3.3.4 

3.7 PRAGMA DIRECTIVE 

The #pragma command is new in Standard C. Any sequence of tokens can follow the 
command name: 

# pragma preprocessor-tokens 

The #pragma directive can be used by C implementations to add new preprocessor func
tionality or provide implementation-defined information to the compiler. No restrictions 
are placed on the information that follows the #pragma command, and implementations 
should ignore information they do not understand. The argument to #pragma is subject 
to macro expansion. 

There is obviously the possibility that two implementations will place inconsistent 
interpretations on the same information, so it is wise to use #pragma conditionally based 
on which compiler is being used. 

Example 

The fo llowing code checks that the proper compiler (tee), computer, and standard
conforming implementation are in use before issuing the #pragma command: 
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#1£ defined (_ TCC ) && defined( STDC 
#pragma builtin(abs ),inline(myfunc) 
#endif 

The C Preprocessor 

&& defined(vax ) 

References defined 3.5.3; memory models 6.1.5; #i£ 3.5.1 

3.7.1 Standard Pragmas 

Chap. 3 

In C99, certain pragmas were introduced with specific meanings. To differentiate them, all 
standard pragmas must be preceded by the token STDC. That is, the directive 

#pragma FENV_ACCESS ON 

is an implementation-defined pragma, but the directive 

#pragma STDC FENV_ ACCESS ON 

specifies the C99 FENV _ACCESS pragma. Implementations would be kind to issue a 
warning if a standard pragma name were used not preceded by STDC since this is likely to 
be a common error. 

The only standard pragmas defined by C99 are FP _ CONTRACT. FENV _ACCESS , 
and eX_ LIMITED _ RANGE. They all take as an argument an on-off-switch: 

on-off-switch: 
ON 
OFF 
DEFAULT 

The argument DEFAULT sets the pragma to its initial default value (on or off). The default 
is specified for each standard pragma. (Sometimes it is specified as implementation
defined.) 

References CX LIMITED_ RANGE 23.2; FENV_ ACCESS 22.2 

3.7.2 Placement of Standard Pragmas 

The standard pragmas must fo llow certain placement rules, which make it somewhat easi
er to process the pragmas and allow the pragmas to nest. Standard pragmas may appear in 
two places: at the top level of a translation unit before any external declarations, or before 
all explicit declarations and statements at the beginning of a compound statement. 

When placed at the top level, the pragma remains in effect until the end of the trans
lation unit or until another instance of the same pragma is encountered. This second prag
rna might be another one at the top level, in which case it supersedes the first, or it might 
be a pragma in a compound statement. 

When placed at the beginning of a compound statement, the pragma remains in ef
fect until the (lexical) end of the compound statement or until another instance of the same 
pragma is encountered within the compound statement. T his second pragma might be at 
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the beginning of the same compound statement, in which case it supersedes the first one, 
or it might be in an inner compound statement. At the end of a compound statement con
taining a standard pragma, the pragma is restored to its state before the compound was en
countered. That is, standard pragmao; nest, following normal variable scoping rules. except 
that they can be specified more than once at the same scope level. 

References scope 4.2. J 

3.7.3 _Pragma Operator 

e99 adds a _ Pragma operator to make the pragma facility more flexible. After macro ex
pansions, an operator expression of the fonn 

_Pragma ( "string-literal" ) 

is treated as if the contents of the string literal (after removing the outer quotations, chang
ing \ n to n, and changing \ \ to \) were the preprocessing-tokens appearing in a #prag 
ma directive. For example, the expression 

_ Pragma (II STDC FENV _ ACCESS ON I! ) 

would be treated as if the following pragma had appeared at that location: 

#pragma STDC FENV_ ACCESS ON 

While #pragma must appear on a line by itself, and its preprocessing-tokens are not mac
ro expanded, _ Pragma can be surrounded by other expressions and can be produced by 
macro expansIOn. 

3.8 ERROR DIRECTIVE 

The #error directive is new in Standard C. Any sequence of tokens can follow the com
mand name: 

# error preprocessor-tokens 

The #error directive produces a compile-time error message that includes the argument 
tokens, which are subject to macro expansion. 

Example 

The #error directive is most useful in detec ting programmer inconsistencies and violations 
of constraints during preprocessing. Here are some examples: 

#if defined {A_ THING) && defined(NOT_A_ THING) 
#error Inconsistent things! 
#endif 
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#include "sizes.h" /* defines SIZE */ 

#if (SIZE % 256) !. 0 
#error "SIZE must be a multiple of 256!" 
#endif 

Chap. 3 

In the first #error example, we did not use a string constant. In the second , we did because 
we do not want the token SIZE to be expanded in the output message. 

References defined 3.5.3; #i£ 3.5. 1 

3.9 C++ COMPA TlBILITY 

c++ uses the C89 preprocessor, so there are few differences going from C to C++. 

3.9.1 Predefined Macros 

The macro cplusplus is predefined by C++ implementations and can be used in 
source files meant to be used in both C and C++ environments. The name does not follow 
Standard C spelling conventions for predefined macros, but rather is compatible with ex
isting C++ implementations. In Standard CH, its value is a version number, such as 
199711L. 

Whether STDC is defined in C++ environments is-in the current definition of 
C++-implementation-defined. There are enough differences between Standard C and C++ 
that it is not clear whether STDC should be defined. 

None of the C99-only macros in Table 3-2 are in C++. 

Example 

For compatibility with traditional C, Standard C, and C++, you should test the environment in 
this fashion: 

#ifdef __ cplusplus 
/* It's a C++ compilation */ 

#else 
#ifdef STDC 

/* It's a Standard C compilation */ 
#else 

/* It's a non-Standard C compilation */ 
#endif 
#endif 

If you know that your C implementations will be Standard C conforming, this can be short
ened to 
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#!£ defined( __ cplusplus) 
/* It's a C++ compilation */ 

#eIse 
/* It's a Standard C compilation */ 

#endif 

References STDC 3.3.4; STDC VERSION 3.3.4 

3.10 EXERCISES 
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I. Which of the fo llowing Standard C macro definitions are (probably) wrong? Why? Which def
initions might cause problems in traditional C? 

(a) #define ident (x) x (c) #define PLUS + 
(b) # define FIVE = 5; (d) #define void int 

2. Following are some macro definitions and invocations. How would each macro invocation be 
expanded by Standard C and by traditional C? 

Definition 
(a) #define sum(a,b) a+b 

(b) #define paste (x,y) x/**/y 

Invocation 
sum (b , a) 

paste(x,4) 

(c) #define str (x) # x str (a book) 

(d) #define free (x ) x ? free (x) : NULL free (p) 

3. Two header files and a C program file are shown next. If the C preprocessor is applied to the 
program file , what is the result? 

/* File blue.h */ /* File red.h */ /* File test.c */ 
int blue - OJ #ifndef red #include "blue.h" 
#include "red.h" #define red #include "red.h" 

#include "blue.h" 
int red = OJ 

#endif 

4. A friend shows you the following definition for a macro that is supposed to double its numeric 
argument. What is wrong with the macro? Rewrite the macro so that it operates correc tly. 

#define DBL(a) a+a 

5. In the following Standard C program fragment, what is the expansion of M (M) (A, B) ? 
#define M(x) M ## x 
#define MM(M,y) M:::: # y 
M(M) (A.B) 

6. Write a sequence of preprocessor directives that will cause a Standard C program to fail to 
compile if the macro SIZE has not been defined or if it has been defined but has a value not in 
the range I through 10. 

7. Give an example of a sequence of characters that is a single token to the preprocessor but not to 
the C compiler proper. 

8. What is wrong with the following program fragment? 
if (x !:::: 0) 

y :::: z/x; 
else 

# error "Attempt to divide by zero, line " LINE 
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Dec/arations 

To declare a name in the C language is to associate an identifier with some C object. such 
as a variable, functi on, or type. The names that can be declared in Care 

• variables • structure and union components 

• functions • enumeration constants 

• types • statement labels 

• type tags • preprocessor macros 

Except for statement labels and preprocessor macros, all identifiers are declared by 
their appearance in C declarations. Variables, functions, and types appear in declarators 
within deciarations, and type tags, structure and union components, and enumeration con
stants are declared in certain kinds of type specifiers in declarations. Statement labels are 
declared by their appearance in a C function, and preprocessor macros are declared by the 
#define preprocessor command. 

Declarations in C are difficult to describe for several reasons. First, they involve 
some unusual syntax that may be confusing to the novice. For example, the declaration 

int (*f) (void) ; 

declares a pointer to a function taking no arguments and returning an integer. 
Second, many of the abstract properties of declarations, such as scope and extent , 

are more complicated in C than in other programming languages. Before jumping into the 
actual declaration syntax, we discuss these properties in Section 4.2. 

Finally, some aspects of C's declarations are difficult to understand without a 
knowledge of C's type system, which is described in Chapter 5. In particular, discussions 
of type tags, structure and union components, and enumeration constants are left to that 

73 
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chapter, although some properties of those declarations are discussed here for 
completeness. 

References enumeration type 5.5; #define preprocessor command 3.3; statement labels 
8.3; structure types 5.6; type specifiers 4.4; union types 5.7 

4.1 ORGANIZA TlON OF DECLARA TlONS 

Declarations may appear in several places in a C program, and where they appear affects 
the properties of the declarations. A C source file, or translation unit, consists of a se
quence of top-level declarations of functions, variables, and other things. Each function 
has parameter declarations and a body; the body in tum may contain various blocks, in
cluding compound statements. A block may contain a sequence of inner declarations. 

The basic syntax of declarations is shown next. A discussion of function definitions 
is deferred until Chapter 9. 

declaration: 
declaration-specifiers initialized-declarator-list ; 

declaration-specifiers: 
storage-class-specijier declaration-specijiersopt 
type-specijie r decla ra lion -speci/ie rs opt 
type-qualifier declaration-specijiersopt 

junction-specifier declaration-specijiersopt 

initialized-declarator-list : 
initialized-declarator 
initialized-declarator-list , initialized-declarator 

initialized-declarator: 
declarator 
declarator = initializer 

(e99) 

At most one storage class specifier and one type specifier may appear in the declaration
specifiers, although a single type specifier may be formed of several tokens (e.g., 
unsigned long int). In C99, a type specifier is required. Each of the type qualifiers 
can appear at most once in the declaration-specifiers. The C99 function specifier ( in
line) can appear only on function declarations. Within these constraints, type specifiers, 
storage class specifiers, function specifiers, and type qualifiers can appear in any order in 
declarat ion-speciJie rs. 

Example 

It is customary to put any storage class speci fier first, followed by any type qualifiers, and fi
nally the type specifiers. In the following declarations, i and j have the same type and stor
age class, but the declaration of i is better style. 
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unsigned volatile long extern int const j; 
extern const volatile unsigned long int i; 

References declarators 4.5; expressions Ch. 7; function definitions Ch. 9; initializers 4.6; 
statements ch. 8; storage class specifiers 4.3; type specifiers and qualifiers 4.4 

4.2 TERMINOLOGY 

This section establishes some terminology used to describe declarations. 

4.2.1 Scope 

The scope of a declaration is the region of the C program text over which that declaration 
is visible. In C, identifiers may have one of the six scopes listed in Table 4-1. 

Table 4-1 Identifier scopes 

Kind 

Top-level identifiers 

Formal parameters in func
tion definitions 

Formal parameters in 
function pro(otypcsR 

Block (local) identifiers 

Statement labels 

Preprocessor macros 

a New in Standard C. 

Visibility of declaration 

Extends from its declaration point (section 4.2.3) to the end of the source pro
gram file. 

Extends from its declaration point to the end of the function bcxly. 

Extends from its declaration point to the end of the prototype. 

Extends from its declaration point in a block to the end of the block. 

Encompasses the entire function body in which it appears. 

Extends from the #define command that declares it through the end of the 
source program file, or until the first #unde f command that cancels its defi
nition. 

Nonpreprocessor identifiers declared within a function definition or block (includ
ing formal parameters) are often said to have block scope or local scope. Identifiers in pro
totypes have prototype scope. Statement labels have function scope. All other identifiers 
have file scope. 

A block is most commonly a compound statement. In C99, there are also implicit 
blocks associated with selection and iteration statements. 

The scope of every identifier is limited to the C source file in which it occurs. How
ever, some identifiers can be declared to be external, in which case the declarations of the 
same identifier in two or more files can be linked as described in Section 4.8. 

References #define preprocessor command 3.3; external names 4.8; prototypes 9.2; 

#undef preprocessor command 3.3 
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4.2.2 Visibility 

A declaration of an identifier is visible in some context if a use of the identifier in that con· 
text will be bound to the declaration (i.e ., the identifier will be associated with that decla
ration). A declaration might be visible throughout its scope, but it may also be hidden by 
other declarations whose scope and visibility overlap that of the first declaration. 

Example 

In the following program, the declaration of foo as an integer variable is hidden by the inner 
declaration of foo as a floating-point variable. The outer foo is hidden only within the 
body of function main. 

int foo = 10 ,. foo defined at the top level */ 
int main(void) 

{ 
float foo; /* this foo hides the outer foo */ 

} 

In C, declarations at the beginning of a block can hide declarations outside the 
block. For one declaration to hide another, the declared identifiers must be the same, must 
belong to the same overloading class, and must be declared in two distinct scopes, one of 
which contains the other. 

In Standard C, the scope of formal parameter declarations in a function definition is 
the same as the scope of identifiers declared at the beginning of the block that forms the 
function body. However, some earlier implementations of C have considered the parame
ter scope to enclose the block scope. 

Example 

The following redeclaration of x is an error in Standard C, but some older implementations 
permit it, probably allowing a troublesome programming error to go undetected. 

tnt f (x) 

int x; 
{ 

} 

long x = 34; 
return Xi 

1* invalid? *1 

References block 8.4; overloading class 4.2.4; parameter declarations 9.3; top-level decla
rations 4.1 

4.2.3 Forward References 

An identifier may not normally be used before it is fully declared. To be precise, we define 
the declaration point of an identifier to be the end of the declarator that contains the iden
tifier 's lexical token. Uses of the identifier after the declaration point are permitted. In the 
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following example, the integer variable, intsize, can be initialized to its own size be
cause the use of intsize in the initializer comes after the declaration point 

static int intsize = sizeof(intsize)i 

When an identifier is used before it is completely declared, aforward reference to 
the declaration is said to occur. C permits forward references in three situations: 

1. A statement label may appear in a goto statement before it appears as a label since 
its scope covers the entire function body: 

if (error) goto recoveri 

recover: 
CloseFiles()i 

2. An incomplete structure, union, array, or enumeration type may be declared, allow
ing it to be used for some purposes before it is fully defined (Section 5.6.1). 

3. A function can be declared separately from its definition, either with a declaration or 
implicitly by its appearance in a function call (Sections 4.7 and 5.8). C99 does not 
permit a function call to implicitly declare a function. 

Example 

Invalid forward references are illustrated in this example. The programmer is attempting to 
define a self-referential structure with a typedef declaration. In this case, the last occur
rence of cellon the line is the declaration point, and therefore the use of cell within the 
structure is invalid. 

typedef struct { int Value; cell *Next; } cell; 

The correct way to declare such a type is by use of a structure tag, S, which is defined on its 
first appearance and then used later within the declaration: 

typedef struct S { int Value; struct S *Next; } cell; 

See also the later discussions of implicit declarations (Section 4.7) and duplicate 
declarations (Section 4.2.5). 

References duplicate declarations 4.2.5; function types 5.8; goto statement 8.10; implicit 
declarations 4.7; pointer types 5.3; structure types 5.6 

4.2.4 Overloading of Names 

In C and other programming languages, the same identifier may be associated with more 
than one program entity at a time. When this happens, we say that the name is overloaded, 
and the context in which the name is used determines the association that is in effect. For 
instance, an identifier might be both the name of a variable and a structure tag. When used 
in an expression, the variable association is used; when used in a type specifier, the tag as
sociation is used. 
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There are five overloading classes for names in C. (We sometimes refer to them as 
name spaces.) They are listed and described in Table 4-2. 

Table 4-2 Overloading classes 

Class 

Preprocessor macro 
names 

Statement labels 

Structure. union, and 
enumeration tags 

Component names 
("members" in Stan
dard C) 

Other names 

Included identifiers 

Because preprocessing logically occurs before compilation, names used by {he 
preprocessor are independent of any other names in a C program. 

Named statement labels are part of statements. Definitions of statement labels are 
always fo llowed by : (and arc not part of case labels). Uses of statement labels 
always immediately follow the reserved word goto . 

These tags are part of structure, union, and enumeration type specifiers and, if 
present, always immediately fo llow the reserved words struct, union, or 
enwn. 

Componen t names are allocated in name spaces associated with each structure and 
union type . That is, the same identifier can be a component name in any number of 
structures or unions at the same time. Definitions of component names always 
occur within structure or union type specifiers. Uses of component names always 

immediately follow the selection operators . and - >. 

All other names fall into an overloading class that includes variables, functions, 
typedef names, and enumeration constants. 

These overloading rules differ slightly from those in the original definition of C. 
First, statement labels were originally in the same name space as ordinary identifiers. Sec
ond, all structure and union component names were placed in single name space instead of 
separate name spaces for each type. 

When a name is overloaded with several associations, each association has its own 
scope and may be hidden by other declarations independent of other associations. For in
stance, if an identifier is being used both as a variable and structure tag, an inner block 
may redefine the variable association without altering the tag association. 

C++ injects structure and union tags into the "other" name space (Section 4.9 .2). 

References component names 5.6.3; duplicate definition 4.2.5; enumeration tags 5.5; 
goto statement 8. 10; selection operators 7.4.2; statement labels 8.10; structure tags 5.6; structure 
type speCifiers 5.6; typedef names 5.10; union tags 5.7; union type specifiers 5.7 

4.2.5 Duplicate Declarations 

It is invalid to make two declarations of the same name (in the same overloading class) in 
the same block or at the top level. Such declarations are said to conflict. 

Example 

The two declarations of howmany, next, are conflicting, but the two declarations of s tr are 
not (because they are in different name spaces). 
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extern int howmany; 
extern char str[lO]; 
typedef double howmany(); 
extern struct str {int a. hi} Xi 

79 

There are two exceptions to the prohibition against duplicate declarations. First, any 
number of external (referencing) declarations for the same name may exist as long as the 
declarations assign the same type to the name in each instance. This exception reflects a 
belief that declaring the same external1ibrary function twice should not be invalid. 

Second, if an identifier is declared as being external, that declaration may be fol
lowed with a definition (Section 4.8) of the name later in the program, assuming that the 
definition assigns the same type to the name as the external declaration(s). This exception 
allows the user to generate valid forward references to variables and functions. 

Example 

We define two functions, f and g , that reference each other. Normally, the use of f within g 
would be an invalid forward reference. However, by preceding the definition of g with an ex
ternal declaration of f , we give the compiler enough information about f to compile g. (With
out the initial declaration of f , a one-pass compiler could not know when compiling g that f 

returns a value of type double .) 

extern double f(double z); 

double g(double x, double y) 
{ 

... f(x-y) ... 

} 

double f(double z) 
{ 

... g(z, z/2.0) ... 

} 

References defining and referencing declarations 4.8; extern storage class 4.3; forward 
references 4.2; overloading class 4.2; static storage class 4.3 

4.2.6 Duplicate Visibility 

Because C's scoping rules specify that a name's scope begins at its declaration point rath
er than at the head of the block in which it is defined, a situation can arise in which two 
nonconflicting declarations can be referenced in different parts of the same block. 

Example 

In the following code, there are two variables named i referenced in the block labeled B- the 
integer i declared in the outer block is used to initialize the variable j , and then a floating
point variable i is declared, hiding the first i. 
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{ 
int i = 0, 

B, { 
int j = i, 
float i = 10.0; 

} 
} 

The reference to i in the initialization of j is ambiguous. Which i was wanted? Most compil
ers will do what was (apparently) intended; the first use of i in block B is bound to the outer 

definition , and the redefinition of i then hides the outer definition for the remainder of the 
block. This is the Standard C rule. We consider this usage to be bad programming style ; it 
should be avoided. 

4.2.7 Extent 

Variables and functions, unlike types, have an existence at run time-that is, they have 
storage allocated to them. The extent (or lifetime) of these objects is the period of time that 
the storage is allocated. Standard C calls this the storage duration. 

An object is said to have slatic extent when it is allocated storage at or before the be
ginning of program execution and the storage remains allocated until program tennina· 
tion. In C, all function s have static extent, as do all variables declared in top-level 
declarations. Variables declared in blocks may have static extent depending on the decla· 
ration. 

An object is said to have local extent when it is created on entry to a block or 
function and is destroyed on exit from the block or function. If a variable with local extent 
has an initializer, the variable is initialized each time it is created. Formal parameters have 
local extent, and variables declared at the beginning of blocks may have local extent 
depending on the declaration. A variable with local extent is called automatic in C. 

Finally, it is possible in C to have data objects with dynamic extent-that is, Objects 
that are created and destroyed explicitly at the programmer's whim. However, dynamic 
objects must be created through the use of special library routines such as malloe and 
are not viewed as part of the C language. 

References auto storage class 4.3; initializers 4.6; malloe function 16.1; static 
storage class 4.3; storage allocation functions 16.1 

4.2.8 Initial Values 

Allocating storage for a variable does not necessarily establish the initial contents of that 
storage. Most variable declarations in C may have initializers--expressions used to set the 
initial value of a variable at the time that storage is allocated for it. If an initializer is not 
specified for a local variable. its value after allocation is unpredictable. (Static variables 
are initialized to zero by default.) 

It is important to remember that a static variable is initialized only once and retains 
its value even when the program is executing outside that variable's scope. 
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Example 

In the following code, two variables, L and S, are declared at the head of a block and both are 
initialized to O. Both variables have local scope, but S has static extent while L has local (au
tomatic) extent. Each time the block is entered, both variables are incremented by one and the 
new values printed. 

{ 

} 

static int S = 0; 
auto int L = 0; 

L = L + 1; 
S = S + 1; 
printf ("L "" %d , S = \ d \ n" , L, S) i 

What values will be printed? If the block is executed many limes, the output will be this: 

L • 1, S • 1 

L • 1, S • 2 
L • 1, S • 3 

L • 1, S • 4 

There is one dangerous feature of C's initialization of automatic variables declared 
at the beginning of blocks. The initialization is guaranteed to occur only if the block is en
tered normally- that is, if control flows into the beginning of the block. Through the use 
of statement labels and the goto statement, it is possible to jump into the middle of a 
block; if this is done, there is no guarantee that automatic variables will be initialized. In 
fact, most Standard and non-Standard implementations do not initialize them. In the case 
of a swi tch statement, it is normal to jump into the block that is the swi tch statement' s 
body to a case or defaul t label, so automatic variables before the first such label will 
not be initialized. 

Example 

The initialization of variable sum, next, will (probably) not occur when the goto statement 
transfers control to label L. This causes sum to begin with an indetenninate value. 

goto L, 

{ 

} 

static int vector(10] = {1,2,3,4,5,6,7,8,9,10}; 
int sum = 0; 

/* Add up elements of "vector". */ 
for ( i=O , i <10 ; i++ ) sum += vec tor[i], 

printf("sum is \ d R , sum); 

References gata statement 8.10; initialization of variables 4.6; storage classes 4.3; 
switch statement 8.7 
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4.2.9 External Names 

A special case of scope and visibility is the external identifier, also called an identifier 
with external linkage. All instances of an external identifier among all the files making up 
a C program will be forced to refer to the same object or function and must be declared 
with compatible types in each file or else the result is undefined. 

External names must be declared extern explicitly or implicitly, but not all names 
declared extern are external. External names are usually declared at the top level of a C 
program and therefore have file scope. However, non-Standard implementations differ on 
how external names declared within a block are handled. 

Example 

The following program fragment is acceplable to many C compilers; it declares an external 
name within a block and then uses it outside the block: 

{ 
extern int E; 

} 
E = 1; 

According to nonnal block-scoping rules, the declaration should not be visible outside the 
block, but many implementations of C implicitly give E fi le scope and so compile this frag
ment without error. Standard C requires the declaration to have block scope, but does not state 
that the prior fragment should be invalid. Technically, the behavior of an implementation in 
thi s case is undefined, thus permitting a conforming implementation to accept the program. 
We think programmers should treat this fragment as a programming error even if the compiler 
accepts it and the run-time behavior is correct. , 

It is indisputably an error if two external declarations (in the same file or different 
files within the same program) specify incompatible types for the same identifier. 

Example 

In the fo llowing program, the two declarations of X do not conflict in the source file, although 
their behavior at run time is undefined: 

int f() { extern int X; return X; } 
double g() { extern double X; return X; } 

References external name conventions 2.5; external name definition and reference 4.8; 
scope 4.2.1; type compatibility 5. 11 ; viSibility 4.2.2 

4.2.10 Compile-Time Names 

So far the discussion has focused mainly on variables and functions, which have an exist
ence at run time. However, the scope and visibility rules apply equally to identifiers asso
ciated with objects that do not necessarily exist at run time: typedef names, type tags, 
and enumeration constants. When any of these identifiers are declared, their scope is the 
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same as that of a variable defined at the same location. Macros and labels are also com
pile-time names, but their scopes are different. 

References enumeration constants 5.5; scope 4.2. 1; structure type 5.6; typedef name 
5.10; visibility 4.2.2 

4.3 STORAGE CLASS AND FUNCTION SPECIFIERS 

We now proceed to examine the pieces of declarations: storage class specifiers, type spec
ifiers and qualifiers, function specifiers, declarators, and initializers. 

A storage class specifier determines the extent of a declared object (except for 
typedef, which is special) . At most one storage class specifier may appear in a declara
tion. It is customary for storage class specifiers (if any) to precede type specifiers and 
qualifiers in declarations. 

storage-class-specifier : one of 
auto extern register static typede£ 

The meanings of the storage classes are given in Table 4-3. Note that not all storage class
es are permitted in every declaration context. 

Table 4-3 Storage class specifiers 

Specifier 

auto 

extern 

register 

static 

typedef 

Usage 

Permiued only in declarations of variables withina blocks. It indicates that the variable 
has local (automatic) extent. (Because this is the default, auto is rarely seen in C pro
grams.) 

May appear in declarations of external functions and variables, either at the top level 
or withina blocks. It indicates that the object declared has static extent and its name is 
known to the linker. See Section 4.8. 

May be used for local variables or parameter declarations. It is equivalent to auto, 
except that it provides a hint to the compiler that the object will be heavily used and 
should be allocated in a way that minimizes access time. 

May appear on declarations of functions or variables. On function definitions, it is 
used only to specify that the function name is not to be exported to the linker. On func
tion declarations, it indicates that the declared function will be defined-with storage 
class static- later in the file. On data declarations, it always signifies a defining 
declaration that is not exported to the linka-.Variables declared with this storage class 
have static extent (as opposed to local extent, signified by auto). 

Indicates that the declaration is defining a new name for a data type, rather than for a 
variable or function. The name oi the data type appears where a variable name would 
appear in a variable declaration, and the data type itself is the type that would have 
been assigned to the variable name (see Section 5. 10). 

a C99 permits declarations anywhere within a block. Previous versions of C pennitted them only before the 
first statement 
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Standard C allows register to be used with any type of variable or parameter, 
but it is not permitted to compute the address of such an object, either explicitly (with the 
& operator) or implicitly (e.g., by converting an array name to a pointer when subscripting 
the array). Many non-Standard C compilers behave differently: 

• They may restrict the use of register to objects of scalar types. 

• They may permit the use of & on register objects. 

• They may implicitly widen small objects declared with register (e.g., treating 
the declaration register char x as if it were regis ter int x ). 

Implementations are permitted to treat the register storage class specifier the 
same as the auto specifier. However, programmers can expect the use of register on 
one or two heavily used variab les in a function to increase performance. Using 
register on many declarations is likely to be ineffective or counterproductive. The use 
of register with most modem compilers is likely to have less effect since those com
pilers already allocate variables to registers as necessary. 

Refel'ences address operator &: 7.5 .6; formal parameter declarations 9.3; initializers 4.6; 
subscripts 7.4.1 ; top-level declarations 4.1; typedef names 5. 10 

4.3.1 Default Storage Class Specifiers 

If no storage class specifier is supplied with a declaration, one will be assumed based on 
the declaration context as shown in Table 4-4. 

Table 4-i Default storage class specifi ers 

Location of declaration 

Top level 

Function parameter 

Within blocks 

With in blocks 

Kind of declaration 

All 

All 

Functions 

Nonfunctions 

Default storage class 

extern 

none (Le., "not register") 

extern 

auto 

Omitting the storage class specifier on a top-level declaration may not be the same 
as supplying extern, as discussed in Section 4.8. As a matter of good programming 
style, we think programmers should supply the storage class extern when declaring an 
external function inside a block. The auto storage class is rarely seen in C programs; it is 
usually defaulted. 

References blocks 8.4; parameter declarations 9.3 ; top-level declarations 4.1 , 4.8 

4.3.2 Examples of Storage Class Specifiers 

An implementation of the heapsort algorithm is shown next. It is beyond the scope of this 
book to explain how it works in detail. 
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Example 

The algorithm regards the array as a binary tree such that the two subtrees of element b [k] 
are elements b [2*k] and b [2*k+l] . A heap, as used here, is a tree such that every node 
contains a number that is no small er than any ofthe numbers contained by that node's descen· 
dants. 

#define SWAP (x, y) (temp = (x), (x) = (Y) I (Y) = temp) 

static void adjust (int vel, int m, register int n) 
/* If v[m+l] through v[n] is already in heap form, 

this puts v[m] through v[n] into heap form. */ 
{ 

} 

register int -h, j, k, tempi 

b = v - 1i /* b is "l-origin", customary in heapsort, 
i.e., v[j] is the same as b[j-1J */ 

j • m; 

k = m * 2; 
while (k <= n) { 

} 

if (k < n «& b [k] < b (k+l]) ++k; 

if (b [j) < b[k» SWAP(b [j), b [k»; 

j • k; 

k *= 2; 

/* Sort v[OL.v[n-I] into increasing order. */ 
void heapsort(int v[], int n) 
{ 

} 

int *b, j, temp; 
b = v - 1; 
/* Put the array into the form of a heap. */ 
for (j = n/2; j > 0; j--) adjust(v, j, n); 
/* Repeatedly extract the largest element and 

put it at the end of the unsorted region. */ 
for (j • n-l; j > 0; j--) { 

SWAP(b[l), b[j+l»; 

adjust(v, 1, j)i 

} 

The auxiliary function adjust does not need to be externally visible. and so it is declared 
static. The speed of the adjust function is crucial to the performance of the sort , and so 
its local vari ables have heen given storage class register as a hint to the compiler. The for
mal parameter n is also referred to repeatedly within adjust , and so it is also specified with 
storage class register. The other two formal parameters for adjust are defaulted to "not 
register." 

The main function is heapsort ; it must be visible to users of the sort package, and so it has 
the default storage class, namely extern. The local variables of function heapsort do not 
impact performance~ they have been given the default storage class, auto. 
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4.3.3 Function Specifiers 

Function specifiers are new to e99. 

junction-specifier: 
in line 

Declarations Chap. 4 

(C99) 

The inline function specifier can appear only on function declarations; such 
functions are then termed inline junctions. The specifier can appear more than once with 
no change of meaning. The use of in! ine is a hint to the C implementation that calls on 
the function should be as fast as possible. 

Detailed rules for in line functions are discussed in Chapter 9. 

References inline functions 9. 10 

4.4 TYPE SPECIFIERS AND QUALIFIERS 

Type specifiers provide some of the information about the data type of the program identi
fiers being declared. Additional type information is supplied by the declarators. Type 
specifiers may also define (as a side effect) type tags, structure and union component 
names, and enumeration constants. 

The type qualifiers cons t, volatile, and restric t specify additional proper· 
ties of types that are relevant only when access ing objects of the type through lvalues: 

type-specifier: 
enumeration-type-specijier 
j1 oa ting-point-type -s peciji e r 
integer-type-specijier 
structure-type-specijier 
typedefname 
union-type-specijier 
void-type-specifier 

type-qualifier: 
const 
volatile 
restrict 

Example 

(C99) 

Here are some examples of type specifiers: 

void 

int 

unsigned long int 

my_ struct_ type 

union { int a; char b; } 

enum {red, blue, green} 

char 

float 
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The type specifiers are described in detail in Chapter 5, and we defer further discus
sion of particular type specifiers until then. However, a few general issues surrounding 
type specifiers are discussed in the following sections. 

References declarators 4.5; enumeration type specifier 5.5; floating-point type specifier 
5.2; integer type specifier 5. 1; Ivalue 7.1; structure type specifier 5.6; type qualifiers 4.4.3; 
typedef name 5. 10; union type specifier 5.7; void type specifier 5.9 

4.4.1 Default Type Specifiers 

Originally, C allowed the type specifier in a variable declaration or function definition to 
be omitted, in which case it defaulted to in t . This is considered bad programming style in 
modem C, and in fact C99 treats it as an error. Older compilers did not implement the 
void type, so a rationale behind omitting the type specifier on function definitions was to 
indicate to human readers that the fun ction did not really return a value (although the com
piler had to assume that it did). 

Example 

In pre-Standard C, it was common to see function definitions like this: 

/ * Sort v[O). .. v[n-l] into increasing order . * / 
sort (v, n) 

int v[l, n; 
{ 

} 

The modem, Standard C style is to declare those functions with the void type: 

Example 

/* Sort v[O] ... v[n-l] into increasing order. * / 
void sort(int vel, int n} 
{ 

} 

When using a compiler that does no t implement void, it is much nicer to define void your
self and then use it explicitly th an to omit the type specifier entirely: 

/ * Make "void" be a synonym for "int". * / 
typedef int void; 

At least one compiler we know of actually reserves the identifier void, but does not imple
ment it. For that compiler, the preprocessor definition 

#define void int 

is one of the few cases in which using a reserved word as a macro name is justified. 
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Example 

The declaration syntax (Section 4.1) requires declarations to contain a storage class specifier, 
a type specifier, a type qualifier, or some combination of the three. This requirement avoids a 
syntactic ambiguity in the language. If all specifiers and qUalifiers were defaulted, the decla
ration 

extern int f () ; 

would become simply 

fO; 

which is syntactically equivalent to a statement consisting of a function call. We think that the 
best style is to always include the lype specifier and allow the storage class specifier to de
fault, at least when it is auto. 

Example 

A final nOle for LALR(I) grammar aficionados: both the storage class specifier and the type 
specifier can be omitted on a function definition, and this is very common in C programs, as in 

main 0 { ... } 

There is no syntactic ambiguity in this case because the declarator in a function declaration 
must be followed by a comma or semicolon , whereas the declarator in a function definition 
must be followed by a left brace. 

References declarations 4.1; function definitions 9.1; void type specifier 5.9 

4.4.2 Missing Dec/aratars 

The following discussion deals with a subtle point of declarations and type specifiers. 
Type specifiers that are structure, union. or enumeration definitions define new types or 
enumeration constants. If you simply want to define a type, it makes sense to omit all the 
declarators from the declaration and write only the type specifier. Declarations in Standard 
C must have a declarator, define a st ructure or union tag, or define enumeration constants. 
In traditional C, nonsensical declarations were often silently ignored. 

Example 

The following declaration consists of a single type specifier. It defines a new structure type S 
with components a and b_ 

struct S { int a, b; }; /* Define struct S */ 

The lype ca n be referenced later by Ilsingjllst th e specifi er 

struct S x, y, Zi /* Define 3 variables */ 

However, the following declarations are nonsensical and (in Standard C) illegal: 

struct { int a, b; }; /* no tag */ 
int ; /* no declarator */ 
static struct T { int a, h; }; /* extra storage class */ 
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In the flfst case, there is no structure tag. $0 it would be imposs ible to refer to the type later in 
the program. In the second case, the declaration has no effect at all. In the third case, a storage 
class specifier has been supplied, which will be ignored. You might think that a later declara· 
tiOD of the form 

struct T X, ¥i 

will cause x and y to have the storage class static. It will not. 

References enu meration types 5.5; declarators 4.5; structure types 5.6; type specifiers 4.4; 
union types 5.7 

4.4.3 Type Qualifiers 

The type qualifiers cons t and volatile were added in e89; restrict was added in 
e99. An identifier declared using any combination of these qualifiers is said to have a 
qualified type, so there are seven possible qualified versions of each unqualified type. 
(The order of type qualifiers does not matter.) None of the seven is compatible with the 
others or with the unqualified type. If the same qualifier appears more than once in a dec
laration, then the extra occurrences are ignored in C99, but cause an error in C89. 

Type qualifiers specify additional properties of types that are relevant only when ac
cessing objects through lvalues (designators) with those qualified types. When used in a 
context that requires a value rather than a designator, the qualifiers are eliminated from the 
type. That is, in the expression L=R, the type of the right operand of = always has an un
qualified type even if it was declared with type qualifiers. The left operand, however, 
keeps its qualification since it is used in lvalue contex t. 

In addition to their presence at the top level of declarations, type qualifiers may also 
appear within 'pointer declarators and (in C99) array declarators. 

Example 

When using a C compiler that does not support type qualifiers, you can supply the following 
macro definitions so that the use of the type qualifiers will not cause the compilation to fail. 
Of course, the qualifiers will also have no effect. 

#ifndef STDe 
#define const / *nothing* / 
#define volatile / *nothing* / 
#define restrict / *nothing* / 
#endif 

References #ifndef 3.5.3; STDe 
4.5.2; type compatibility 5.1 1 

4.4.4 Const 

11 .3; array declarators 4.5 .3; pointer declarator 

An lvalue expression of a cons t -qualified type cannot be used to modify an object. That 
is, such an lvalue cannot be used as the left operand of an assignment expression or the op
erand of an increment or decrement operator. The intent is to use the const qualifier to 
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designate objects whose value is unchanging, and to have the C compiler attempt to ensure 
that the programmer does not change the value. 

Example 

The following declaration specifies that io is to be an integer with the constant value 37: 

canst int ic : 37; 

ic = 5; /* Invalid */ 
ic++; / * Invalid */ 

The cons t qualifier can also appear in pointer declarators to make it possible to de
clare both "constant pointers" and "pointers to constant data": 

int * const const_pointer; 
const int *pointer_ to_ const; 

The syntax may he confusing: Constant pointers and constant integers, for example, have 
the type qualifier const in different locations. The appearance also changes when 
typedef names are used-the constant pointer const-'pointer in the previous ex
ample may also be declared like this: 

typedef int *int-'pointer; 
const int-'pointer const-'pointer ; 

This makes canst_pointer look like a "pointer to constant int_pointer," but it is 
not- it is still a constant pointer to a (nonconstant) into In fact, because the order of type 
specifiers and quali fiers does not matter, the last declaration may be written: 

int_pointer const const-'pointer; 

You Can alter a variable that has type "pointer to constant data," but the object to 
which it points cannot be altered. Expressions with this type can be generated by applying 
the address operator & to values of const-qualified types. To protect the integrity of con
stant data, assigning a value of type "pointer to cons t T" to an object of type "pointer to 
T " is allowed only by using an explicit cast. 

Example 

const int *pc ; j* pointer to a constant integer */ 
int *p , ii 

const int iCi 

pc = P = &i; 1* OK *1 
pc = &iC i 1* OK *1 
*p = 5; 1* OK *1 
*pc = 5; 1* Invalid *1 
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pc = &i; 1* OK *1 
pc '" Pi 1* OK *1 
p = &ie. 1* Invalid *1 
p = PCi 1* Invalid *1 
p = (tnt '*)&ie; 1* OK *1 
p = (int ·)pCi 1* OK *1 

The language rules for cons t are not foolproof-that is, they may be bypassed or 
overridden if the programmer tries hard enough. For instance, the address of a constant 
object can be passed to an external function without a prototype, and that function could 
modify the constant object. However, implementations are permitted to allocate static ob
jects of cons t-qualified types in re ad-only storage so that attempts to alter the objects 
could cause run-time errors. 

Example 

This program fragment illustrates some dangers in circumventing the const qualifier. 

const int '* pCi 

int * Pi 
const int ic '" 0; 

pc = &ie; 
p ' = (int *)p 

*p = 5; 

/* OK */ 
Ci/- Valid, but dangerous */ 

/* Valid, but may cause a run-time error */ 

Finally, a top-level declaration that has the type qualifier const but no explicit 
storage class is considered to be extern in C. 

References assignment expression 7.9; increment and decrement expressions 7.4; pointer 
declarators 4.5.2 

4.4.5 Volatile and Sequence Points 

The volatile type qualifier informs the Standard C implementation that certain objects 
can have their values altered in ways not under control of the implementation. Volatile ob
jects (Le., any object accessed using an Ivalue expression of a vola ti Ie-qualified type) 
should not participate in optimizations that assume no hidden side effects. 

To be more precise, Standard C introduces the notion of sequence points in C pro
grams. A sequence point exists at the completion of all expressions not part of a larger ex
pression- that is, at the end of expression statements; after the control expressions of the 
if, switch, while, and do state ments; after each of the three control expressions in 
the for statement; after the first operand of the logical AND (&&), logical OR (II), con
ditional (7: ) and comma (,) operators; after return statement expressions; and after 
initializers. Additional sequence points are present at the end of a full declarator, in func
tion calls immediately after all the arguments are evaluated, before library functions re
turn , after the actions associated with printf/scanf conversion specifiers, and around 
calls to comparison functions supplied to bsearch and qsort. 
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References to and modifications of volatile objects must not be optimized across se
quence points, although optimizations between sequence points are permitted. Extra refer
ences and modifications beyond those appearing in the source code are allowed by the C 
language standard. In our experience. however, programmers prefer that implementations 
access and modify volatile objects exactly "as written." It is easy enough for a program
mer to copy a value out of a volatile object to encourage optimization. 

Example 

Consider the following program fragmeOl, where j is assigned some value before the loop: 

extern int feint); 
auto int i, j; 

i=f(O); 
while (i) { 

if (f(j*j» break; 

} 

If the variable i were not used again during its lifetime, then traditional C implementations 
wou ld be permitted to rewrite this program fragment as 

if (f (0» { 

i = j*j; 
while( If(i) ; 

} 

The first assignment to i was eliminated, and i was reused as a temporary variable to hold 
j * j, which is evaluated once outside the loop. If the declaration of i and j were 

auto volatile int i,j; 

then these optimizations would not be permitted. However, we could write the loop as shown 
next, eliminating one reference to j before the sequence point at the end of the if statement 
control expression: 

i = flO); 
while (i) { 

} 

register int , temp = j; 
if (f(temp*temp» break; 

The new syntax for pointer deciarators allows the declaration of type "pointer to 
volatile .... " References to this kind of pointer may be optimized, but references to the 
object to which it points cannot be. Assigning a value of type "pointer to volatile T' to 
an object of type "pointer to T' is allowed only when an explicit cast is used. 

Example 

Here are some examples of valid and invalid uses of volatile objects: 
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volatile int * pV; 
int *Pi 
pv = p; 1* OK *1 
p : pV; 1* Invalid *1 
p : {int *}pVi 1* OK */ 

The most common use of volatile is to provide reliable access to special memo
ry locations used by the computer hardware or by asynchronous processes such as inter
rupt handlers. 

Example 

Consider the following typical example. A computer has three special hardware locations: 

Address 

OxFFFFFF20 

OxFFFFFF24 

OxFFFFFF28 

Use 

Input data buffer 

Output data buffer 

Control register 

The control register and input data buffer can be read by a program but not written; the output 
buffer can be written but not read. The third least significant bit of the control register is input 
available; it is set to I when data have arrived from an external source, and it is set to 0 auto
matically when these data are read out of the input buffer by the program (after which time the 
contents of the buffer are undefined until "input available" becomes I again). The second 
least significant bit of the control register is called output available; when the external device 
is ready to accept data, the bit is set to I . When data are placed in the output buffe r by the pro
gram, the bit is automaticall y set to 0 and the data are written out. Placing data in the output 
buffer when the control bit is 0 causes unpredictable results. 

The function copy_ data next copies data from the input to the output until an input value 
of 0 is seen. The number of characters copied is returned. There is no provision for overflow 
or other error conditions: 

typede£ unsigned long datatype, control type. counttypei 

#define CONTROLLER \ 
«const volatile control type * const) OxFFFFFF28) 

#define INPUT_ BUF \ 
«const volatile datatype * const) OxFFFFFF20) 

#define OUTPUT_ BUF \ 
«volatile datatype * const) OxFFFFFF24) 

#define input_ ready «*CONTROLLER) & Ox4) 
#define output_ ready «*CONTROLLER) & Ox2) 



94 Declarations Chap. 4 

counttype copy_ data(void) 
{ 

} 

counttype count = 0; 
data type tempi 
for(i;) { 

while (! input_ ready) i 

temp = *INPUT_ BUFi 

/* Wait for input */ 

if (temp == 0) return count; 

} 

while (!output_ ready); /* Wait to do output */ 
·OUTPUT BUF = tempi 
count++; 

References bsearch 20.5; conversion specifications 15.8.2, 15.11.2; declarators 4.5; ini
tia1izers 4.6; pointer declarators 4.5 .2; qsort 20.5 

4.4.6 Restrict 

The type qualifier restrict is new in e99. It may only be used to qualify pointers to 
object or incomplete types, and it serves as a " 00 alias" hint to the C compiler. T~is means 
that the pointer is, for the moment, the only way to access the object to which it points. Vi
olating this assumption results in undefined behavior. The phrase "at the moment" means 
that in some circumstances within a function or block aliases can be created from the orig
inal restrict-qualified pointer as long as those aliases are eliminated by the end of the func
tion or block. The C99 standard provides a precise mathematical definition of 
restrict, but here are some common situations. 

1. A file-scope pointer declared using res tr i c t is assumed to be the only means to 
access the object to which it refers. This might be an appropriate way to declare a 
global pointer initialized by malloc at run time. 

extern double * restrict ptri 

void initialize(void) 
{ 

ptr : my_malloc( sizeof(double) )i 

} 

2. A restricted pointer that is a function parameter is assumed to be the only way to ac
cess its object at the beginning of the function's execution, and so no other pointer 
not created from the parameter could be used to modify the object. For example, the 
memcp¥ function (unlike memmove) requires that its source and destination memo
ry areas do not overlap. In C99, this expectation can now be expressed in the func
tion prototype: 
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#include cstring.h> 
void *memcpy( 

void * restrict sl, 
const void * restrict s2, 
size_ t n)i 
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3. Two restricted pointers, or a restricted and nonrestricted pointer, can refer to the 
same object if the object is not modified during the lifetime of the restricted point
ers. For example, consider the following function, which sums two vectors, storing 
the sum in a third vector: 

void add(int n, int * restrict deat, 
int * restrict apI, int * restrict op2) 

{ 
int i; 
for (i : 0; i < n; i++) 

deat [il :::: opl [i] + op2 (iJ ; 
} 

If a and b are disjoint arrays of length N, then it is all right to call add (N, a, b, 
b) , resulting in opl and op2 designating aITay b because the array b is never mod
ified. Of course, this depends on knowledge of the implementation of add; a pro
grammer seeing only the prototype for add would have no way to know that such a 
call was safe. 

4. A structure member can be a restricted pointer. The meaning is that, when an in
stance of the structure is created, the restricted pointer is the only way to reference 
the designated object. 

Before restrict was added to the language, programmers had to rely on nonport
able pragmas or compiler switches to enable the kinds of pointer optimizations that are 
safe when an object can only be accessed by a single pointer at a time. These optimiza
tions can result in great speedups at run time. 

Omitting restrict does not change the meaning of a program; a C implementa
tion is free to ignore restrict. In this book, many library function prototypes are writ
ten with the restrict qualifier. Programmers using pre-C99 implementations should 
omit or disregard restrict. 

References malloe 16.1 ; memepy 14.3 

4.5 DECLARATORS 

Declarators introduce the name being declared and also supply additional type informa
tion. No previous programming language had anything quite like C's declarators: 

declarator: 
pointer-declarator 
direct-declarator 
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direct-declarator: 
simple-declarator 
( declarator ) 

junction-declarator 
array-declarator 

Declarations 

The different kinds of declarators are described in the following sections. 

4.5.1 Simple Dec/arators 

Chap. 4 

Simple declarators are used to define variables of arithmetic, enumeration, structure , and 
union types: 

simple-declarator: 
identifier 

Suppose that S is a type specifier and id is any identifier. Then the declaration 

S id ; 

indicates that id is of type S. The id is called a simple declarator. 

Example 

Declaration 

int x; 

float Xi 

struct S { int 8; float bi} x; 

Type of x 

integer 

floating-point 

structure of two components 

Simple declarators may be used in a declaration when the type specifier supplies all 
the typing infonnation. This happens for arithmetic , structure, union, enumeration, and 
void types, and for types represented by typede£ names. Pointer, array, and function 
types require the use of more complicated declarators. However, every declarator includes 
an identifier, and thus we say that a declarator "encloses" an identifier. 

References type specifiers 4.4; structure types 5.6; typedef names 5.10 

4.5.2 Pointer Dec/srstors 

Pointer declarators are used to declare variables of pointer types. The type-quaLifier-list in 
the following syntax is new in Standard C; in older compilers, it is omitted: 

pointer-declarator: 
pointer direct-declarator 
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pointer: 
* type-qualifier-lis!opt 
* type-qualijier-lislopt pointer 

type-qualifier-list: 
type-quaLifier 
type-quali!er-list type-qualifier 
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(C89) 

Suppose that D is any declarator enclosing the identifier id and that the declaration 
"S D; " indicates that id has type " ... S." Then the declaration 

S *D i 

indicates that id has type " ... pointer to S." The optional type-qualifier- list in pointer de
clarators is allowed only in Standard C. When present, the qualifiers apply to the pointer, 
not to the object pointed to. 

Example 

In the three declarations of x in the following table, id is x , S is int, and " ... " is, respective
ly, "", "array of," and "function returning." (It is harder to explain than it is to learn .) 

Example 

Declaration 

int *x; 

int .x[]; 

int .x (); 

Type of)( 

pointer (0 int 

array of pointers to int 

function returning a pointer to int 

In the following declarations, ptr _ to _ const is a (nonconstant) pointer to a constant int , 
whereas const ptr is a constant pointer to a (nonconstant) int : 

const int * ptr_ to_ const; 
int • const const-ptr; 

References array declarators 4.5.3; cons t type qualifier 4.4.4; function declarators 4.5.4; 
pointer types 5.3; type qualifiers 4.4.3 

4.5.3 Array Dec/arators 

AlTay declarators are used to declare objects of array types: 

array-declarator: 
direct-declarator 
direct-declarator 
direct-declarator 

constant-expressionopr (until e99) 
array-qualifier-!istoPf array-size-expressionopt ] (C99) 
array-qualijier-listopr *] (C99) 

constant-expression : 
conditional-expression 
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array-qualifier-list: 
array-qualifier 
array-qualifier-list array-qualifier 

array-qualifier: 
static 
restrict 
const 
volatile 

array-size-expression : 
assignment-expression 

* 

Declarations Chap. 4 

If D is any declarator enclosing the identifier id and if the declaration "S D; " indicates 
that id has type " ... S," then the declaration 

S (D) [ e 1 . , 

indicates that id has type ", .. array of S." ([he parentheses may often be elided according 
to the precedence rules in constructing declarators; see Section 4.5.5.) Type S may not be 
an incomplete Of function type. 

In the most common case, an integer constant expression e appears within the square 
brackets and specifies the number of elements in the array. The number must be an integer 
greater than O. C's arrays are always "O-origin." That is, the declaration int A [3] defines 
the elements A [0] , A [1] , and A [2] . Higher dimensioned arrays are declared as "arrays 
of arrays" (see Section 5.4.2). 

Example 

In the following three declarations, id is x , S is int, and" ... " is, respectively, "", "pointer to," 
and "array of." 

Declaration 

int (x) [5] ; 

int (*x) [ 5 ] ; 

int (x [5] ) [5] ; 

int x [5) [5) ; 

Type of x: 

array of integers 

pointer to an array of integers 

array of arrays of integers 

array of arrays of integers (same) 

An integer constant expression need not appear within the brackets of an array de
clarator. Three variations are possible: incomplete array types, variable length arrays, and 
the use of array-qualifiers (type qualifiers and s ta tic) inside array-decLarators. 

Incomplete array types If the brackets are empty, then the declarator describes 
an incomplete array type. Objects of incomplete types cannot be created because their size 
is not known. You can declare pointers to incomplete types. Here are the cases in which 
array sizes may be omitted: 
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I . The array being declared is a formal parameter of a function. Since array parameters 
are converted to pointers, the array size is not needed. If the array has multiple di
mensions, only the leftmost dimension may be omitted. For example, 

int f(int arY[])i /* array of unspecified length */ 

2. The declarator is accompanied by an initializer from which the length of the array 
can be deduced. The type is no longer incomplete after the initializer is processed. 
For example, 

char prompt[] : RYes or NO?ft; 

3. The declaration is not a defining occurrence, but rather refers to an object defined 
elsewhere, after which the type is not incomplete. For multidimensional arrays, only 
the leftmost dimension may be omitted. You can create a pointer to an incomplete 
type. For example. 

extern int matrix [] [10] i /* incomplete type * / 

static int matrix [5] [10] i /* no longer incomplete */ 

4. In C99, the last component of a structure may be a flexible array member, which is 
declared with no size. 

The declaration of any n-dimensional array must include the sizes of the last n- l dimen
sions so that the accessing algorithm can be determined. 

Variable length arrays In C99, if the array-size-expression within the array
declarator brackets is * or is an expression that is not constant, then the declarator de
scribes a variable length array. The * can only appear in array parameter declarations 
within function prototypes that are not part of a function definition. Variable length arrays 
are not incomplete. See Sect ion 5.4.5 for a discussion of variable length arrays and their 
use in function prototypes. 

Array qualifiers In e99, an array-qualifier-list within the brackets of an array
declarator is pennitted, but only when declaring a function parameter with an array type. 
This is discussed in Section 9.3. 

References array types 5.4; assignment expression 7.9; conditional expression 7.8; con
stant expressions 7. 11 ; flexihle array member 5.6.R; formal parameters 9 . .1; initiali zers 4.6; referenc
ing and defining declarations 4 .8; type qualifiers 4.4.~ variable length arrays 5.4.5 

4.5.4 Function Dec/arators 

Function declarators are used to declare or define functions and declare types that have 
function pointers as components: 
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Junct ion-declarator : 
direct-declarator 
direct-declarator 

parameter-type-list: 
parameter-list 
parameter-list 

parameter-type-list 
identijier-lislopt ) 

parameter-list: 
parameter-declaration 
parameter-list , parameter-declaration 

parameter-declaration: 
declaration-specifiers declarator 
declaration-specifiers abstract-declararoropt 

identifier-list: 
identifier 
parameter-list , identifier 

Declarations Chap. 4 

(C89) 

If D is any declarator enclosing the identifier id and if the declaration "s D i " indicates 
that id has type " ... S," then the declaration 

S (D) (P) ; 

indicates that id has type ", .. function returning S with parameters P." The parentheses 
around D can be omitted in most cases according to the precedence rules in constructing 
declarators (Section 4.5.5). The presence of parameter-type-list in the declarator syntax 
indicates that the declarator is in Standard C prototype form. Without it, the declarator is 
in traditional form, which is accepted by both traditional and Standard C compilers. 

Example 

Some examples of function declarators are shown below: 

Declaration 

int x(); 

int x (double, float); 

int x (double d, float 

int (*x) (); 

int (*x[) (int, . . . ); 

int ( * const xl (void) 

f) ; 

Type ofx 

function with unspecified parameters returning 
an integer 

functio n taking a double and a float parameter 
and returning an integer (prototype) 

same as the preceding declarator 

pointer to a fu nction with unspecified parameters 
retWlling an integer 

array of pointers to fu nctions that take a variable 
number of parameters beginning wi th an integer 
and return an integer (prototype) 

constant pointer to a function taking no parame
ters and returning an integer 
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Function declarators are subject to several constraints depending on whether they 
appear in a function definition or as part of an object or function type declaration. Table 4-
5 shows the possible forms of a function declarator, indicates whether it is in traditional C 
form or Standard C prototype form, reveals whether it can appear in a function definition 
or function type declaration, and shows what parameter information is specified. In the t3-

Table 4-5 Function declarators 

Syntax Fonn Appears in 

fO traditional definitions 

fO traditional type declarations 

f(x, y, ...• z) traditional definitions 

f(void) prototype either 

f(T x. Ty •. ". T,) prototype type declarations 

f(Tx' Ty •... , Tzr.·) prototype type declarations 

f(Txx,Tyy, ... , Tzz) prototype either 

I{l"x x, Ty y, . .. , Tz ~ ... ) prototype eilher 

a Before Standard C it was possible to have additional, unspecified parameters. 
b The number and type of the extra parameters are unspecified. 

Parameters specified 

no parameters 

any number of parameters , 
fixed 

no parameters 

fixed 
b 

fixed, plus extras 

fixed 

fixed . plus extras b 

ble, the notation T x x refers to the syntax "declaration-specifiers declarator" (Le., a pa
rameter type declaration that includes the parameter name, x). T x refers to 

declaration-specifiers abstracl -declarator Op l 

- that is, a parameter type declaration that omits the parameter name. 

The declaration and use of funct ions are discussed in more detail In Chapter 9. 
Variable-length parameter lists are accessed wit'h the facilities in the s tdarg . h or 
varargs. h header files. 

References abstract declarator 5.12; array declarators 4.5.3; defining and referencing dec
larations 4.8; function types and declarations 5.8; function definitions 9.1; pointer declarators 4.5; 
stdarg.h and varargs.h 11.4 

4.5.5 Composition of Dec/arators 

Declarators can he composed to form more campi icated types, such as "5-element array of 
pointers to functions returning int," which is the type of ary in this declaration: 

int (*ary [5]) () ; 

The only restriction on declarators is that the resulting type must be a valid one in C. The 
only types that are not valid in Care: 
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I. Any type inc luding void except in the form of" ... function returning void" or (in 
Standard C) "pointer to void." 

2. "Array of function of . . . ," Arrays may contain pointers to functions, but not func
tions themselves. 

3. "Function returning array of .... " Functions may return pOinters to arrays, but not ar
rays themselves. 

4. "Function returning function of . ... " Functions may return pointers to other func
tions, but not functions themselves. 

When composing declarators, the precedence of the declarator expressions is im
portant. Function and array declarators have higher precedence than pointer declarators, 
so that "*x () " is equivalent to " * (x () )" ("function returning pointer ... ") instead of 
" (*x) () " ("pointer to function returning .,. "). Parentheses may be used to group declar
ators properly. Early C compilers had an upper limit of 6 on the depth of declarator nest
ing. Standard C compilers must allow at least a depth of 12. 

Although declarators can be arbitrarily complex, it is better programming style to 
factor them into several simpler declarators. 

Example 

Example 

Declaration 

int x{); 

int (*x) (); 

void (*x) () ; 

void *x (); 

Rather than writing 

int *(*(*(*x) (}) [10)} OJ 

write instead 

Type of x 

function returning an integer 

pointcr to a fu nction returning an integcr 

pointer (0 a function returning no result 

fu nction returning "pointer to void" 

typedef int '* (*print_ functionytr) () ; 
typedef print_ functionytr (*digit_ routines) [10]; 
digit_ routines ('*x) ()j 

The variable x is a pointer to a function returning a pointer to a ) O-element aITay of pointers 
to functions returning pointers to integers. in case you wondered. 

Example 

The rationale behind the syntax of declarators is that they mimic the syntax of a use of the en
closed identifier. To illustrate the symmetry in the declaration and use, if you see the declara
tion 

int '*(*X) (4)i 

then the type of the expression 
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* (*x) [i] 

is into 

References array types 5.4; function types 5.8; pointer to void 5.3.2; pointer types 5.3; 
void type specifier 5.9 

4.6 INITIALIZERS 

The declaration of a variable may be accompanied by an initializer that specifies the value 
the variable should have at the beginning of its lifetime. The full syntax for initializers is 

initializer : 
assignment-expression 
{ initializer-list I Opt } 

initializer-list ; 
initializer 
initializer-list , initializer 
designation initializer 
initializer-list, designation initializer 

designation: 
designator-list = 

designator-list: 
designator 
designator-list designator 

designator .-
[ constant-expression ] 

identifier 

(C99) 
(C99) 

The optional trailing comma inside the braces does not affect the meanmg of the 
ini tializer. 

e99 allows designated initializers (Section 4.6.9), in which a programmer can name 
particular components of aggregates to be initialized. 

The initializers permitted on a particular declaration depend on the type of the object 
to be initialized and on whether the declared object has static or automatic storage class. 
The options are li sted in Table 4-6 and presented in more detail in the following sections. 
Declarations of external objects should have initializers only when they are defining dec
larations (see Section 4.8). 

The shape of an initializer- the brace-enclosed lists of initializers- should match 
the structure of the variable being initialized. The language definition specifies that the 
initializers for scalar variables may optionally be surrounded by braces, although such 
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Table 4--6 Fonn of initializers 

Storage Type Initializer expression Default initializer 

static scalar constant 0,0.0, false, or null pointer 

static arraya or 
structure 

static unionb 

automatic scalar 

automatic arral,b 

automatic structureb 

automatic 

brace-enclosed constants (or noncon- recursive default for each 
stant expressions in C99) component 

consta11l (or nonconstan( expression in default for the ftrst compo-
C99) nent 

any none 

brace-enclosed constants none 

brace-enclosed constants, or a single none 
nonconstant expression of the same 
structure type 

constant, or a single non::onstant 
expression of the same union type 

none 

a The array may have an unknown size; the initializer determines the size. Variable length arrays may not be 
initialized. 
b Standard C; older implementations may not permit initializations of these objeclS. 

braces are logically unnecessary. We recommend that braces be reserved to indicate ag
gregate initialization. There are special rules for abbreviating initializers for aggregates. 

Historical note: C originally had a syntax for initializers in which the = operator was 
omitted, and some current C compilers accept this syntax for compatibility. Users of these 
compilers, when they accidentally omit a comma or semicolon in a declaration (e.g., 
" int a b; "), get an obscure error message about an invalid initializer. Standard C does 
not support this obsolete syntax. ) 

The following sections explain the special requirements for each type of variable. 

References automatic and static lifetime 4.2; declarations 4.1 ; external objects 4.8; static 
storage class 4 .3 

4.6.1 Integers 

The fonn of an initializer for an integer variable is 

declarator = expression 

The initializing expression must have a type that would be permitted in a simple assign
ment to the initialized variable; the usual assignment conversions are applied. If the vari
able is static or external, the expression must be constant. If the variable is automatic or 
register, any expression is permitted. The default initializer for a static integer is O. 

Example 

In the following code fragment, Count is initialized by a constant expression, but ch is ini
tialized by the result of a function call. 
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#include <stdio.h> 
static int Count = 4*200; 

tnt main(vold) 
{ 

int ch = getchar(}; 

} 
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References constant expression 7.11; integer types 5.1; static and automatic extent 4.2; 
usual assignment conversions 6.3.2 

4.6.2 Floating Point 

The fonn of an initializer for a floating-point variable is 

declarator = expression 

The initializing expression must have a type that would be perntitted in a simple assign
ment to the initialized variable; the usual assignment conversions are applied. If the vari
able is static or ,.external, the expression must be constant. If the variable is automatic or 
register, any expression is permitted. 

Example 

static void process_ data{double K) 
{ 

static double epsilon = 1.De-6; 
auto float fudge_factor = K*epsilon; 

} 

Standard C explicitly permits floating-point constant expressions in initializers. 
Some older C compilers have been known to balk at complicated floating-point constant 
expressIOns. 

The default initialization of static, floating-point variables is 0.0. This value might 
not be represented on the target computer as an object whose bits are zero. Standard C 
compilers must initialize the variable to the correct representation for 0.0, but most older 
C compilers always initialize static storage to zero bits. 

References arithmetic types Ch. 5; constant expressions 7.11; floating-point constant 2.7.2; 
floating-point types 5.2; static and automatic extent 4.2; unary minus operator 7.5.3; usual assign
ment conversions 6.3.2 

4.6.3 Pointers 

The fonn of an initialization of a pointer variable is 

declarator = expression 
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The initializing expression must have a type that would be permitted in a simple assign
ment to the initialized variable; the usual assignment conversions are applied. If the vari
able is automatic, then any expression of suitable type is permitted. 

If the variable is static or external, then the expression must be constant. Constant 
expressions used as initializers of a pointer type PT(pointer to 1) may be fonned from the 
following elements. 

1. An integral constant expression with the value 0, or such a value cast to type 
void *. These are null pointer constants usually referred to by the name NULL in 
the standard library. 

#define NULL «void *)0) 
double *dp = NULL; 

2. The name of a static or external function of type "function returning T" is converted 
to a constant of type "pointer to function returning T." 

extern int f () ; 
static int (*fp) () '" f ; 

3. The name of a static or external array of type "array of T" is converted to a constant 
of type "pointer to T." 

char ary[lOO]; 
char *cp = ary; 

4. The & operator applied to the name of a static or external variable of type T yields a 
constant of type "pointer to T." 

static short Si auto short *sp '" &s; 

5. The & operator applied to an external or static array of type "array ofT," subscripted 
by a constant expression, yields a constant of type "pointer to T." 

float PowersOfPi[lO]; 
float *PiSquared '" &PowersOfPi[2]; 

6. An integer constant cast to a pointer type yields a constant of that pointer type, al
though this is not portable. 

long *PSW _ (long *) OxFFFFFFFO; 

Not all compilers accept casts in constant expressions, but they are permitted in 
Standard C. 

7. A string literal yields a constant of type "pointer to char" when it appears as the 
initializer of a variable of pOinter type. 

char *greeting = "Type <cr> to begin "i 

8. The sum or difference of any expression shown for Cases 3 through 7 and an integer 
constant expression. 

static short s; 
auto short *sp '" &s + 3, *msp _ &8 - 3; 
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In general, the initializer for a pointer type must evaluate to an integer cast to a pointer 
type or to an address plus (or minus) an integer constant. This limitation reflects the capa
bilities of most linkers. 

The default initialization for static pointers is the null pointer. In the (rare) case that 
null pointers are not represented by an object whose bits are zero, Standard C specifies 
that the correct null pointer value must be used. Most older C compilers simply initialize 
static storage to zero bits. 

References address operator &: 7.5.6; array types 5.4; conversions involving pointers 6.2.7; 
func tion types 5.8; integer constants 2.7; pointer declarator 4.5; pointer types 5.3; string constants 
2.7; usual assignment conversions 6.3.2 

4.6.4 Arrays 

If Ij is an expression that is an allowable initializer for objects of type T, then 

{ I o I I~ , ... , In_~ } 

is an allowable initializer for type "n-element array ofT." C99 permits the Ij to be noncon
stant expressions, but previous versions of C required them to be constant. The initializer 
Ij is used to initialize element j of the array (zero origin). Multidimensional arrays follow 
the same pattern, with initializers listed by row. (The last subscript varies most rapidly in 
C.) 

Example 

A singly dimensioned array is initiaJized by listing its elements: 

int ary[4] = { 0, 1, 2, 3 }; 

A multiply dimensioned array is initialized by each subarray: 

int ary[4] [2] [3] • 
{ { { 0, 1, 2}, { 3, 4, 5} }, 

{ { 6, 7, a}, { 9, 10, 11} }, 
{ {12, 13, 14}, {15, 16, 17} }, 
{ {la, 19, 20}, {21, 22, 23} } }; 

Arrays of structures (Section 4.6.6) may be initialized analogously: 

struct {int a; float b;} a[3] • { {1, 2.5}, 
{2, 3.9}, 
{O, -4.0} }; 

Static and external arrays may always be initialized in this way. Standard C permits 
the initialization of automatic arrays, but that feature was not in the original definition of 
C. Array initialization has a number of special rules: 

1. The number of initializers may be less than the number of array elements, in which 
case the remaining elements are initialized to their default initialization value (the 
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one used in static arrays), If the number of initializers is greater than the number of 
elements, it is an error. 

Example 

The declarations 

float ary[S] : { 1 . 2. 3 }; 
int mat[3] [3] : { {1. 2}. {3} }; 

are the same as 

int ary[S] • { 1 .0, 2 . 0, 3.0, 0.0 , 0 .0 }; 
int mat [3] [3] • { {1. 2 • a}. 

{3. o. a}. 
{a. o. o} }, 

2. The bounds of the array need not be specified (as in an incomplete type), in which 
case the bounds are derived from the length of the initializer. This is true for both 
static and automatic initializations. 

Example 

The declaration 

int squares [1 _ { 0, 1, 4 , 9 }; 

is the same as 

int squares{4] :: { 0, 1, 4, 9 }; 

3. String literals may be used to initialize variables of type "array of char ." In this 
case, the first element of the array is initialized by the first character in the string, 
and so forth. The string's terminating null character, 1\0' , is stored in the array if 
there is room or if the size of the array is unspecified. The string may optionally be 
enclosed in braces. It is not an error-but it might be confusing to a reader-if the 
string is too long for a character array of specified size. (It is an error in C++.) 

An array whose element type is compatible with wchar _ t can be initialized by a 
wide string literal in the same way. 

Example 

The declarations 

char x[S] = "ABCDE" i 
char str[] = "ABCDE"i 
wchar_ t q[S] = L"A"; 

are the same as 

char x[S] = { 'A', 'B', 'C', 'D', 'E' }; /* No ' \ O' ! */ 
char str[6] = { 'A', 'B', 'C', 'D', 'E', ' \ 0' }. 
wchar_ t q[S] = { L'A', L' \ O', L' \O ', L' \ O', L' \ O' }; 

4. A list of strings can be used to ini tialize an array of character pointers. 
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Example 

char *astr[] = { "John", "Bill", "Susan", "Mary" }; 

5. Variable length arrays may not be initialized. 

References array types 5.4; character constants 2.7; character types 5.1.3; pointer types 
5.3; string constants 2.7; variable length arrays 5.4.5; wide strings 2.7.4 

4.6.5 Enumerations 

The fonn of initializers for variables of enumeration type is 

declarator = expression 

The initializing expression must have a type that would be permitted in a simple assign
ment to the initialized variable; the usual assignment conversions are applied. If the vari
able is static or external, the expression must be constant. If the variable is automatic or 
register, any expression is permitted. 

Example 

Good programming style suggests that the type of the initializing expression should be the 
same enumeration type as the variable being initialized. For example: 

static enum E { a, b, c } x : a; 
auto enum E y : x; 

References cast expressions 7.5.1; constant expressions 7.11; enumeration types 5.5; usual 
assignment conversions 6.3.2 

4.6.6 Structures 

If a structure type T has n named components of types Tj,j= I, .. . ,n, and if lj is an initializer 
that is allowable for an object of type Tj' then 

is an allowable initializer for type T. Unnamed bit field components do not participate in ini· 
tialization. The initializers lj need not be constant in C99, but they must be constant in 
previous versions of C. 

Example 

struct S {int ai char b[5]; double c; }; 
struct S x : { 1, "abcd", 45 . 0 }; 

Static and external variables of structure types can be initialized by all C compilers. 
Automatic and register variables of structure types can be initialized in Standard C, and 
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either of two forms may he used. First, a brace-enclosed list of constant expressions may 
be used , as for static variables. Second, an initialization of the form 

declarator = expression 

may be used, where expression has the same type as the variable being initialized. A few 
older C compilers are deficient in not allowing the initialization of structures containing 
bit fie lds. 

As with array initializers, structure initializers have some special abbreviation rules. 
In particular, if there are fewer initializers than there are structure components, the re
maining components are initialized to their default initial values. If there are too many ini
tializers for the structure, it is an error. 

Example 

Given the structure declaration 

struct Sl {int a; 

the initialization 

struct S2 {double b; 
char C; } b; 

intc[4]i }; 

struct .1 x • { 1, {4.5} }; 

is the same as 

struct .1 x • { 1, { 4.5, ' \0 ' }, { 0, 0, 0, ° } }; 
References bit fields 5.6.5; constant expressions 7.11; structure types 5.6 

4.6.7 Unions 

Standard C allows the initialization of union variables. (Traditional C does not.) The ini
tializer for a static , external, automatic , or register union variable must be a brace-enclosed 
constant expression that would be allowable as an initializer for an object of the type of 
the first component of the union. The initializer for an automatic or register union may al 
ternatively be any single expression of the same union type. In C99, a designator may be 
used to initialize a component other than the first one. 

Example 

These two initiali7.er forms are shown next for the union variables x and y : 

enum Greek { alpha , beta , gamma }; 
union U { 

struct { enum Greek tag; 
struct { enum Greek tag; 

}; 
static union U x • ({ alpha, 42 )), 
auto union U y : Xi 

int Size; } I; 
float Size; } P; 
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The only remaining C types are function types and void. Since variables of these types 
cannot be declared, the question of initialization is moot. 

References designated initializers 4.6.9; static extent 4.2; union types 5.7 

4.6.8 Eliding Braces 

C pennits braces to be dropped from initializer lists under certain circumstances, although 
it is usually clearer to retain them. The general rules are listed next. 

1. If a variable of array or structure type is being initialized, the outermost pair of brac
es may not be dropped. 

2. Otherwise, if an initializer list contains the correct number of elements for the object 
being initialized, the braces may be dropped. 

Example 

The most common use of these rules is in dropping inner braces when initializing a multidi
mensional array: 

int matrix [2) [3] = { 1, 2, 3, 
/* same as: { {1, 2, 3}, 

4,5,6}; 
{4,5,6}}* f 

Many C compilers treat initializer lists casually, permitting too many or too few braces. 
We advise keeping initializers simple and using braces to make their structure explicit. 

4.6.9 Designated Initializers 

C99 allows you to name the components of an aggregate (structure, union, or array) to be 
initialized within an initializer list. Designated initializers and positional (nondesignated) 
initializers may be intermixed in the same initializer list. 

In an initializer list for an array, the designator takes the form { e ] , where the con
stant expression e specifies an array element by index. If the array has unspecified size, 
then any non-negative index is allowed, and the highest explicitly initialized index deter
mines the final size of the array . If a positional initializer follows a designated initializer, 
then the positional initializer begins initializing components immediately following the 
designated element. It is possible in this fashion for later values in a list to overwrite earli
er values. 

Example 

Each of the following initializations is followed by a comment that gives the resulting initial 
values for all the clements. 

int a1[5] _ { [2]_100. [1] -3 }; 

f* {O, 3, 100, 0, O} *f 
int a2 [5] - { [0]-10, [2]--2, -1. -3 }; 

f* {10, 0, -2, -1, -3} *f 
int a3 [] _ { 1, 2, 3, [2]-5, 6, 7}; 

/* {l, 2, 5, 6, 7} ; a3 has length 5 */ 
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In an initializer list for a structure, the designator takes the fonn • c, where c is the 
name of a component of the structure. If a positional initializer follows a designated ini
tializer, then the positional initializer begins initializing components immediately fo llow
ing the designated component. It is possible in this fashion for later values in a list to 
overwrite earlier values. 

Example 

Each of the following initializations is followed by a comment that gives the resulting initial 
values fo r all the components. 

struct S {int aj float bi char c(4]; }; 
struct S 81 : { .c = "abc· }i 

/ * {O, 0 . 0, "abc" } * / 
struct S 82 = { 13, 3.3, "xxx", .h=4.5 }; 

/ * {13 , 4 . 5 , "xxx"} * / 
struct S 83 _ { .c '" {'a','b','c',' \ O'}}; 

/ * {O, 0.0, "abc"} * / 

In an initializer list for a union, the designator takes the [onn • c, where c is one of 
the components of the union. This allows a union to be initialized via any of its compo
nents, not just the first one. 

Example 

Each of the fo llowing initializations is followed by a comment that gives the resulting initial 
values fo r all the components. 

union U {int ai float bi char C[4]i }i 
union U ul : { .c _ "abc" }; 

/ * ul . c is "ahc \ O" i other components undefined */ 

union U u2 : { .a - 15 }i 
/ * u2 . a is lSi other components undefined */ 

union U u3 = { . b _ 3 . 14 }i 
/ * u3.h is 3.14 i other components undefined * / 

Nested aggregates can be in itialized with designators in the corresponding fashion. 
Designators may be concatenated to initialize more deeply nested elements. 

Example 

Each of the fo llowing initializations is followed by a comment that gives the resulting initial 
val ues for all the components. 

struct Point {int Xi int Yi int Zi }i 
typedef struct Point PointVector[4]i 
PointVector pv1 = { 

[O] . x = 1, [OJ.y = 2, [O].z = 3, 
[1] = {.x = 11, . y=12, .z=13}, 
[3] _ {.y=3} }; 

/ * {{l,2,3},{11,12,13},{O,O,O},{O,3,O}} * / 
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typedef int Vector[)li 
typede£ int Matrix[3] [3]; 

struct Trio {Vector Vi Matrix mi }; 

struct Trio t = { 
.m={[O] [0]=1, [1] [1]=1, [2] [2]=1}, 
.v={[1]=42,43} }, 

/* {{0,42,43},{{1,0,0},{0,1,0},{0,0,1}}} */ 

4.7 IMPLICIT DECLARATIONS 

113 

Before e99, an external function used in a function call need not have been declared pre
viously. If the compiler sees an identifier id followed by a left parenthesis and if id has not 
been previously declared, then a declaration is implicitly entered in the innermost enclos
ing scope of the form: 

extern int id () ; 

e99 implementations issue a diagnostic if id is not previously declared as a function. but 
they are then free to continue by making the implicit declaration. Some non-Standard im
plementations may declare the identifier at the top level rather than in the innermost scope. 

Example 

Allowing funct ions to be declared by default is poor programming style and may lead to er
rors, particularly those concerning incorrect return types. If a pointer-returning function, such 
as malloe (Section 16.1), is allowed to be implicitly declared as 

extern int malloe()i 

rather than the correct 

extern char *malloe()i /* returns (void *) in Standard C */ 

then calls to malloc will probably not work if the types int and char * are represented 
differently. Suppose type in t occupies two bytes and pointers occupy four bytes. When the 
compiler sees 

int *Pi 

p: (int *) malloc(sizeof(int»; 

it generates code to extend what it thought was a two-byte value returned by malloe to the 
four bytes required by the pointer. The effect is that only the lower half of the address returned 
by malloe is assigned to p , and the program begins to fail when enough storage has been al
located to cause malloe to return addresses larger than OxPPPP. 

4.8 EXTERNAL NAMES 

An important issue with external names is ensuring consistency among the declarations of 
the same external name in several files . For instance, what if two declarations of the same 



114 Declarations Chap. 4 

external variable specified different initializations? For this and other reasons, it is useful 
to distinguish a single defining declaration of an external name within a group of files. 
The other declarations of the same name are then considered referencing declarations
that is, they reference the defining declaration. 

It is a well-known deficiency in C that defining and referencing OCClUTences of ex
ternal variable declarations are difficult to distinguish. In general, compilers use one of 
four models to determine when a top-level declaration is a defining occurrence. 

4.8.1 The Initializer Model 

The presence of an initializer on a top-level declaration indicates a defining occurrence; 
others are referencing occurrences. There must be a single defining occurrence among all 
the files in the C program. This is the model adopted by Standard C, with one additional 
rule discussed in the next section. 

4.8.2 The Omitted Storage Class Model 

[n this scheme, the storage class extern must be explicitly included on all referencing 
declarations, and the storage class must be omitted from the single defining declaration for 
each external variable. The defining declaration can include an initializer, but it is not re
quired to do so. It is invalid to have both an initializer and the storage ctass extern in a 
declaration. 

In Standard C, a top-level declaration without a storage class or initializer is consid
ered to be a tentative definition. That is, it is treated as a referencing declaration, but if no 
other declaration of the same variable with an initializer appears in the file, then the tenta
tive definition is considered a real definition. 

In C++ extern is ignored when an initializer is present. 

4.8.3 The Common Model 

This scheme is called the "common model" because it is related to the way multiple refer
ences to a COMMON block are merged into a single defining occurrence in implementations 
of the FORTRAN programming language. Both defining and referencing external declara
tions have storage class extern, whether explicitly or by default. Among all the 
declarations for each external name in all the object files linked together to make the pro
gram, only one may have an initializer. At link time, all external declarations for the same 
identifier (in all C object files) are combined and a single defining occurrence is conjured, 
not necessarily associated with any particular file. If any declaration specified an initializ
er, that initializer is used to initialize the data object. (If several declarations did, the results 
are unpredictable.) 

This solution is the most painless for the programmer and the most demanding on 
system software. 
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4.8.4 Mixed Common ModeJ 

This model is a cross between the "omitted storage class" model and the "common" mod
el. It is used in many versions of UNIX. 

1. If extern is omitted and an initializer is present, a definition for the symbol is 
emitted. Having two or more such definitions among all the files comprising a pro
gram results in an error at link time or before. 

2. If extern is omitted and there is no initializer, a FORTRAN COMMON-style defini
tion is emitted. Any number of these definitions of the same identifier may coexist. 

3. If extern is present, the declaration is taken to be a reference to a name defined 
elsewhere. It is invalid for such a dec laration to have an initializer. 

If no explicit ini tializer is provided for the external variable, the variable is initialized as if 
the initializer had been the integer constant O. 

4.8.5 Summary and Recommendations 

Table 4-7 shows the interpretation of a top-level declaration according to the model for 
external references in use. To remain compatible with most compilers, we recommend 

Table 4-7 Interpretation of top-level declarations 

Model 

Top-level Omitted storage Mixed Stan-
declaration Initializer class (and C++) Common common dard C 

int x, Reference Definition Definition or Definition or Reference! 
reference reference 

int x • 0, Definition Definition Definition Definition Definition 

extern Reference Reference Defmition or Reference Reference 

int x ; reference 

extern Definition (Invalid) Definition (Invalid) Definition 

int x '"' 0, 

! Ifno subsequent defining occurrence appears in the file, this becomes a defin ing occurrence. 

fo llowing these rules: 

1. Have a single definition point (source file) for each external variable; in the defining 
declaration, omit the extern storage class and include an explicit initializer: 

int errcnt '" Oi 

2. In each source file or header file referencing an external variable defined elsewhere, 
use the storage class extern and do not include an initializer: 

extern int errcnti 
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Independent of the defining/referencing distinction, an external name should always 
be declared with the same type in all files making up a program. The C compiler cannot 
verify that declarations in different files are consistent in this fashion, and the punishment 
for inconsistency is erroneous behavior at run time. The 1 in t program, usually supplied 
with the C compiler in UNIX systems, can check mUltiple files for consistent declarations, 
as can several commercial products for UNIX and Windows. 

4.8.6 Unreferenced External Declarations 

Although not required by the C language, it is customary to ignore declarations of external 
variables or functions that are never referenced. For example, if the declaration 
"extern double fft () ;" appears in a program, but the function fft is never used, 
then no external reference to the name fft is passed to the linker. Therefore, the function 
fft will not be loaded with the program, where it would take up space to no purpose. 

4.9 C++ COMPATIBILITY 

4.9.1 Scopes 

In C++, struct and union definitions are scopes. That is, type declarations occurring 
within those definitions are not visible outside, whereas they are in Standard C (Section 
5.6.3). To remain compatible, simply move any type declarations out of the structure. 
(Some C++ implementations may allow this as an anachronism, when no ambiguity can 
result.) 

Example 

In the following code, a structure t is defined within a structure s , but is referenced outside 
that structure. This is invalid in G~ ... 

struct s { 
struct t {int a; int bi} f1; /* define there */ 

} xl; 
struct t x2; /* use t here; OK in C, not in c++ */ 

References scope 4.2.1; structure components 5.6.3 

4.9.2 Tag and Typedef Names 

Structure and union tag names should not be used as typedef names except for the same 
tagged type. [n C++, tag names are implicitly declared as typedef names as well as tags. 
(However, they can be hidden by a subsequent variable or function declaration of the same 
name in the same scope.) This can result in diagnostics, or-in rare cases-simply differ
ent behavior. 

Example 

Here are some examples that result in diagnostics in C or C++. 
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typede£ struct nl { ... } nl, /* OK in both C and c++ */ 
struct n2 { ... } , 
struct n3 { ... } i 

typede£ double n2; /* OK in C, not in c++ */ 
n3 Xi /* OK in C++, not in C */ 

However, the tag name can be used as a variable or function name without confusion. The fol
lowing sequence of declarations is acceptable to both C and C++, although it would probably 
be better to avoid the inevitable confusion: 

struct n4 { ... } i 
int n4 i 
struct n4 Xi 

A declaration of a s true t tag in an inner scope in C++ can hide a variable declaration from 
an outer scope. This can cause a C program's meaning to change without warning. In the fol
lowing code, the expression sizeof (ary) refers to the size of the array in C, but it refers to 
the size of the struct type in C++. 

int ary[lO]i 

void f (int x) 

{ 
struet ary { ... } i /* In C++, this hides previous ary * / 

x = sizeof(ary) i J* Different meanings in C and C++! */ 
} 

See Section 5.13.2 concerning the compatibility of typedef redefinitions in C++. 

References name spaces 4.2.4; redefining typedef names 5.10.2 

4.9.3 Storage Class Specifiers on Types 

Do not place storage class specifiers in type declarations. They are ignored in traditional 
C, but are invalid in C++ and Standard C. 

Example 

static struct s {int ai int hi} , /* invalt!A 

References storage classes on types 4.4.2 

4.9.4 canst Type Qualifier 

A top-level declaration that has the type qualifier const but no explicit storage class is 
considered to be static in C+t but extern in C. To remain compatible, examine top
level cons t declarations and provide an explicit storage class. 

In C++, string constants are implicitly const; they are not in C. 

Example 

The fo llowing declaration will have different meanings in C and C++: 
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const int c1 = 10i 

However, the following declarations will have the same meaning in C and C++: 

static const int c2 = 11; 
extern const int c3 = 12; 

Chap. 4 

All const declarations-except those referencing externally-defined constants-must have 
initializers in C++. 

References cons t type qualifier 4.4 .4 

4.9.5 Initializers 

In C++, when a string literal is used to initialize a fixed-size array of characters (or a wide 
string literal for an array of wchar _ t ), there must be enough room in the array for the en
tire string, including the terminating null character. 

Example 

char str[5] = "abcde"; / * valid in C, not in c++ * / 
char str[6] = "abcde-; / * valid in both C and c++ */ 

4.9.6 Implicit DeclaratIons 

Implicit declarations of functions (Section 4.7) are not allowed in C++ or C99. All func
tions must be declared before they are used. 

References implicit dec larations 4.7 

4.9.7 Defining and Referencing Declarations 

In C++, there are no tentative definitions of top-level variables. What would be considered 
a tentative definition in C is considered a real definition in C++. That is, the sequence of 
declarations 

int i; 

would be valid in Standard C, but would cause a duplicate-definition error in C++. 

Example 

This rule applies to static variables also, which means that it is not possible to create mutually 
recursive, statically initialized variables. 

struct cell {int val; struct cell *next;} ; 
static struct cell a; /* tentative declaration */ 
static struct cell b : {o, &a}; 
static struct cell a = {l, &b); 
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This is not a problem for global variables; the fIrst static could be replaced by extern 
and the second and third static could be removed. (You can declare mutually recursive, 
statically initialized variables in C++, but not in a way that is compatible with C.) 

References structure type reference 5.6.1; tentative declaration 4.8.2 

4.9.8 Function Linkage 

When calling a C function from C++, the function mllst be declared to have "C" linkage. 
This is discussed in more detail in Chapter lO. 

Example 

If in a C++ program you wanted to call a function f compiled by a C implementation, you 
would write the (C++) declaration as: 

/* This is a c++ program. */ 
extern "C" int f(void);/* f is a C, not C++, function */ 

4.9.9 Functions With No Arguments 

In C++, a function declared with an empty parameter list is assumed to take no arguments, 
whereas in C such a function is understood to have unspecified arguments. That is, the 
C++ declaration int f () is equivalent to the C declaration int f (void). 

4.10 EXERCISES 

I. The definition of a static function P is shown next. What will be the value of P (6) if P has 
never been called before? What will P (6) be the second time it is called? 

static int P(int x) 
{ 

} 

int i '" Oi 
i = i+li 
return i*Xi 

2. The following program fragment shows a block containing various declarations of the name f. 
Do any of the declarations conflict? If so, cross out declarations until the program is valid, 
keeping as many different declarations of f as possible. 

{ 

} 

extern double f()i 
int fi 
typedef int f; 
struct f {int f,g;}; 
union f {int X,Yi}i 
enum {f,b,s}; 
f: ... 
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3. The following program fragment declares three variables named i with types i n t , l ong, and 
fl oat. On which lines is each of the variables declared and used? 

1 i nt i; 
2 void f ( i ) 

3 l o ng i ; 
4 { 
5 l o ng 1 = i ; 
6 { 
7 fl oat i ; 
8 i = 3. 4 ; 

9 } 
1 0 1 = i +2; 
11 } 
1 2 i n t 'p = &i; 

4. Write C declarations that express the fo llowing English statements. Use prototypes for function 
declarations. 
(a) P is an external function that has no parameters and returns no result. 

(b) i is a local integer variable that will be heavily used and should be optimized for speed. 
(c) LT is a synonym for type "pointer to character." 

(d) Q is an external function with two arguments and no result. The first, i , is an integer and 
the second, c p , is a string. The string will not be modified. 

(e) R is an external function whose only argument, p , is a pointer to a function that takes a 
single 32-bit integer argument, i , and returns a pointer to a value of type d ouble . R re
turns an integer value. Assume type l ong is 32 bits wide. 

(f) STR is a static, uninitialized character string that should be modifiable and hold up to to 
characters, not inclUding the tenninating null character. 

(g) STR2 is a character string initialized to the string literal that is the value of the macro 
INIT_ STR2 . Once initialized, the string will not be modified. 

(h) IP is a pointer to an integer, initialized with the address of the variable 1. 

5. The matrix m is declared as int m [3] [3 J ; the first subscript specifies the row number and 
the second subscript specifies the column number. Write an initializer form that places ones in 
the firs t column, twos in the second column, and threes in the third column. 

6. Given the declarations 

c onst i nt • c ip ; 
i n t • const c p i; 
int i ; 
int • ip ; 

which of the fo llowing assignments, if any, are pennitted? 
(a) c ip = i p; 
(b) c p i = ip ; 

(c) *c ip = i ; 
(d) 'cpi = i; 

7. Using e99 designated initializers, write the declaration and initializer for a 3x3 matrix of i n t 
elements named i dent i ty. The initializer should assign the value I to elements 
identi ty [1] [1] , identi ty [2] [2 J , and iden t i ty [3 J [3] , and should assign zero 
to all other elements. 
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8. Write the C declarations for two structures willi structure tags left and right. The left 
structure should contain a double field named data and a pointer named link to a right 
structure, in that order. The right structure should contain an int field named data and a 
pointer named link to a left structure, in that order. 

9. You have just purchased a e99 compiler and you are recompiling your existing software using 
it. The software compiled without errors on your older e89 compiler, but e99 is reporting 
some problems. For each of the following reported errors, explain what might be causing them: 
(a) The e99 compiler rejects a function call, reponing that the function is not defined. 
(b) The e99 compiler rejects the local declaration register i;. 

to. In your C program, suppose that fm is defined as a function-like macro and om is defined as an 
object-like macro (Section 3.3). If your program also contains the local variable declarations 

int fmi 
int omi 

will there be any conflict with between these declarations and the macros? Discuss what will 
happen when the program is compiled. 
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Types 

A type is a set of values and a set of operations on those values. For example, the values of 
an integer type consist of integers in some specified range, and the operations on those 
values consist of addition, subtraction, inequality tests, and so forth. The values of a 
floating-point type include numbers represented differently from integers, and a set of 
different operations: floating-point addition, subtraction, inequality tests, and so forth. 

We say a variable or expression "has type T" when its values are constrained to the 
domain of T. The types of variables are established by the variable's declaration; the types 
of expressions are given by the definitions of the expression operators. The C language 
provides a large number of built-in types, including integers of several kinds, floating
point numbers, pointers, enumerations, arrays, structures, unions, and functions. 

It is useful to organize C's types into the categories shown in Table 5-1. The inte
gral types include all fonns of integers, characters, and enumerations. The arithmetic 
types include the integral and floating-point types. The scalar types include the arithmetic 
and pointer types. The junction types are the types «function returning .... " Aggregate 
types include arrays and structures. Union types are created with the union specifier. The 
void type has no values and no operations. 

The _ 8001, _ Complex, and _ Imaginary types are new in C99. The boolean 
type L 8001) is an unsigned integer type, whereas the six complex types are floating
point types. C99 further classifies arithmetic types into domains: The six complex types 
are in the complex domain; all other arithmetic types are in the real domain and are real 
types. 

All of C' s types are discussed in this chapter. For each type, we indicate how objects 
of the type are declared, the range of values of the type, any restrictions on the size or rep
resentation of the type, and what operations are defined on values of the type. 

References array types 5.4; boolean type 5.1.5; character types 5.1.3; complex types 5.2.1 ; 
declarations 4.1; enumerated type..'! 5.5; floating-point types 5.2; function types 5.8; integer types 
5.1; pointer types 5.3; structure types 5.6; union types 5.7;void type 5.9 
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Table 5- 1 C types and categories 

C types Type categories 

short , int , long, long long 
(signed and unsigned) 

char (signed and unsigned) Integral types 

Boo1 b -
enum { ... } 
float , double, Ari thmetic typcrf 
long double 

float _ Complex, 
d ouble _ Comp l ex, Floating-point 

long double _ complex. types 

f loat - Imaginary, 
double - Imaginary, 
l o ng double Imaginary b 

T • Pointer types 

T [ .. .1 Array types 

struc t {. .. } Structure types 

Wlion { ... } Union types 

T C.') Function types 

void Void type 

a All ari thmetic types except the complex types arc also categorized as real types. 
bNew in e99. Imaginary is optional. 

5.1 INTEGER TYPES 

Types Chap. 5 

Scalar types 

Aggregate types 

C provides more integer types and operators than do most programming languages. The 
variety reflects the different word lengths and kinds of arithmetic operators found on most 
computers, thus allowing a close correspondence between C programs and the underlying 
hardware. Integer types in C are used to represent: 

1. signed or unsigned integer values, for which the usual arithmetic and relational 
operations are provided 

2. bit vectors, with the operations "not," "and," "or," "exclusive or," and left and right 
shifts 

3. boolean values, for which zero is considered "fal se" and all nonzero values are 
considered "true," with the integer I being the canonical "true" value 

4. characters, which are represented by their integer encoding on the computer 

Enumeration types are integral, or integerlike, types.They are considered in Section 5.5. 
Standard C requires implementations to use a binary encoding of integers; this is a 

recognition that many low-level C operations are not describable in any portable fashion 
on computers with nonbinary representations. 
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It is convenient to divide the integer types into four classes: signed types, unsigned 
types, the boolean type, and characters. Each of these classes has a set of type specifiers 
that can be used to declare objects of the type. 

inreger-type-specijier: 
signed-type-specijier 
unsigned-type-specijier 
character-type-specijier 
bool-type-specijier 

5.1.1 Signed Integer Types 

(C99) 

C provides the programmer with four standard signed integer types denoted by the type 
specifiers short, int, long, and long long in nondecreasing order of size. Type 
signed char is a fifth signed integer type, but is discussed in Section 5.1.3. C99 intro
duced the long long type, as well as extended integer types (Section 5.1.4). 

Each type can be named in several equivalent ways; in the following syntax, the 
equivalent names are shown for each of the four types. 

signed-Type-specifier : 
short or short int or signed short or signed short int 
intorsigned intor signed 
long or long int or signed long or signed long int 
long long or long long int or signed long long or 

signed long long int 

The keyword signed was new in C89 and can be omitted for compatibility with older C 
implementations. The only time the presence of signed might affect the meaning of a 
program is when it is used in conjunction with type char and with bit fields in structures; 
in that case a distinction can be made between a signed integer and a "plain integer" (Le., 
one written without signed). 

Standard C specifies the minimum precision for most integer types. Type char must 
be at least 8 bits wide, type short at least 16 bits wide, type long at least 32 bits wide, 
and type long long at least 64 bits wide. (That is, C99 requires 64-bit integer types and 
the full set of 64-bit arithmetic operations.) The actual ranges of the integer types are re
corded in limi ts. h. 

The precise range of values representable by a signed integer type depends not only 
on the number of bits used in the representation, but also on the encoding technique. By 
far the most common binary encoding technique for integers is called twos-complement 
notation, in which a signed integer represented with n bits will have a range from _2n- 1 

through 2n-l_l encoded in the following fashion : 

1. The high·order (leftmost) bit of the word is the sign bit. If the sign bit is 1, the num
ber is negative; otherwise, the number is positive. 

2. Positive numbers follow the normal binary sequence: 

o = 000 ... 0000, 
I = 000 .. . 0001, 
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2 = 000 ... 0010, 
3 = 000 ... 0011, 
4 = 000 ... 0100, 

In an n-bit word, omitting the sign bit, there are n-l bits for the positive integers, 
which can represent the integers 0 through 2n- l_1. 

3. To negate an integer, complement all the bits in the word and then add 1 to the re
sult . Thus, to form the integer - I, start with I (00 ... 0001 2), complement the bits 
(11...1110,), and add 1 (11. .. 11112 = - I). 

4. The maximum negative value, 10 ... 00002 or _ 2n-l, has no positive equivalent; ne
gating this value produces the same value. 

Other binary integer encoding techniques are ones-complement notation, in which 
negation simply complements all the bits of the word, and sign magnitude notation, in 
which negation involves simply complementing the sign bit. These alternatives have a 
range from _(2n

-
l_l) through 2n

-
1_l; they have one less negative value and two represen

tations for zero (positive and negative). All three notations represent positive integers 
identically. All are acceptable in Standard C. 

Standard C requires that implementations document the ranges of the integer types in 
the header file limi ts. h ; it also specifies the maximum representable range aC program
mer can assume for each integer type in all ISO-conforming implementations. The symbols 
that must be defined in limi ts. h are shown in Table 5- 2. Implementations can substitute 
their own values, but they must not be less in absolute magnitude than the values shown, 
and they must have the same sign. Therefore, an ISO-confonning implementation cannot 
represent type in t in only eight bits, nor can a strictly confonning C program depend on, 
say, the value -32,768 being representable in type short . (This is to accommodate com
puters that use a ones-complement representation of binary integers.) Programmers using 
non-ISO implementations can create a limi ts. h file for their implementation. The 
ranges documented here are not necessarily the same as the types' sizes due to the possible 
presence of padding bits (see Section 6. 1.6). 

Amendment I to C89 adds the symbols WCHAR _ MAX and WCHAR _ MIN for the 
maximum and minimum values represented in type wchar_ t. However, these symbols 
are defined in the wchar. h header file, not limi ts. h . C99 adds the new header file 
stdint. h , which contains limits for additional integer types. 

Example 

Here are some examples of typical declarations of signed integers: 

short i, j, 

long int 1; 
static signed int ki 

To keep programs as portable as possible, it is best not to depend on type in t being able to 
represent integers outside the range -32,767 to 32,767. Use type long if this range is insuffi
cient. It is usually good style to define special integer types with typede£ based on the 
needs of each particular program. For example: 
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Table 5-2 Values defined in lim! ts. h 

Name 

CHAR BIT 

SCHAR MIN 

SCHAR MAX 

UCHAR MAX 

SHRT MIN 

SHRT MAX 

USHRT MAX 

INT MIN 

INT MAX 

UINT MAX 

LONG MIN 

LONG MAX 

ULONG MAX 

LLONG MIN 

Minimum value Meaning 

8 width of char type, in biLS 

_(27_ 1); - 127 minimum value of signed char 

27_1; 127 maximum value of signed char 

28_ 1; 2553 maximum vaJue of unsigned char 

_(2 15_ 1); -32,767 minimum value of short int 

215_ 1; 32,767 maximum value of short int 

2 16_1; 65,535 maximum value of unsigned short 

_ (2 15_ 1); -32,767 minimum value of int 

215_ 1; 32,767 maximum value of int 

2 16_ 1; 65,535 maximum value of unsigned int 

_(231 _ 1); - 2,147,483 ,647 minimum value oflong int 

2 31 _1; 2,147,483,647 maximum value of long int 

232_1; 4,294,967,295 maximum value of unsigned long 

_(263_ 1); -9,223,372,036,854,775,807 minimum value oflong long in t 

263_1; +9,223,372,036,854,775,807 maximum value of long long tnt 

127 

LLONG MAX 

ULLONG MAX 264_1; 18,446,744,073,709,551,615 maximum value of unsigned long long 
b 

CHAR MIN 

CIiAR MAX 

SCHAR MIN or 0 minimum value of char , 
SCHAR MAX o r UCHAR MAX maximum value of char 

MB LEN MAX maximum number of bytes in a multibyte 
character in any supported locale 

aUCHAR MAX must be 2CHAR_BIT_ 1. 

b If (ype ~har is signed by defaul t, then SCHAR MIN, else O. 
c Iftypc char is signed by default, then SCHAR_ MAX, else UCHAR_ MAX. 

/* invdef.h Inventory definitions for the XXX computer. */ 
typedef short part_ number; 
typedef int order_quantity; 
typedef long purchase order; 

The best solution in C99 is to use one of the extended integer type names, specifying the pre
cision needed. 

Example 

/* invdef.h Inventory definitions for the XXX computer. */ 
#include <stdint.h> 
typedef uint least64 t 
typedef int fast32 t 
typedef int32 t 

part_number; 
order_quantity; 
purchase_order; 

II 
II 
II 

at least 64 bits 
fast and 32 bits 
exac tly 32 bi t s 

In C, any integer type may be used to represent boolean values. The value zero represents 
"false" and all nonzero values represent "true." Boolean expressions evaluate to 0 if false and 
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1 if true. For example, i '" (a<b) assigns to the integer variable i the value I if a is less 
than b, and 0 if a is not less than b. Likewise, the statement 

if (i) statement l ; / * Do this if i is nonzero */ 
else statement2 i / * Do this if i is zero */ 

results in statement1 being executed if i is nonzero (true), and statement2 if i is zero. 

C99 introduces a true boolean type, _ Boo1. It also introduces a header file, stdbool. h , 
which defines the more convenient type name bool and the boolean values true and 
false. These names are consistent with the boolean type in C++, but different from the mac
ro names traditionally used in C. FALSE and TRUE: 

#include <stdbool.h>; 
bool hi 

b = (x < y) &&: (y < z) 1 

if (bl 

Programmers without access to C99 can easily definebool, true, and false . 

References bit fields in structures 5.6.5; Bool type 5.1.4; declarations 4.1; extended inte
ger types 5.1.4; integer constants 2.7.1; signed type specifier 5.1. 1; s tdbool . h 11.3; 
stdint. h Ch. 21; type conversions Ch. 6; typede£ 5.10 

5.1.2 Unsigned Integer Types 

For each of the signed integer types, there is a corresponding unsigned type that occupies 
the same amount of storage but has a different integer encoding. The unsigned type is 
specified by preceding the corresponding signed type specifier with the keyword 
unsigned (replacing the keyword signed if it were present). 

unsigned-type-speciJier: 
unsigned short intopr 
unsigned in t oP! 

unsigned long in t opr 
unsigned long long intopl (C99) 

In each case, the keyword intis optional but recommended. Choosing from among the 
unsigned types involves the same considerations already discussed for the signed integer 
types. C99 introduced the type unsigned long long int and the Bool type, which 
is considered unsigned but is discussed separately. 

All unsigned types use straight binary notation regardless of whether the signed 
types use twos-complement, ones-complement, or sign magnitude notation; the sign bit is 
treated as an ordinary data bit. Therefore, an n-bit word can represent the integers 0 
through 2n_1. Most computers are easily able to interpret the value in a word using either 
signed or unsigned notation, For example, when the twos-complement notation is used, 
the bit pattern 11...11112 (n bits long) can represent either - 1 (using the signed notation) 
or2n-1 (using the unsigned notation). The integers from 0 through 2"-1_1 are represented 
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identically in both signed and unsigned notations. The particular ranges of the unsigned 
types in a Standard C implementation are documented in the header file 1 imi ts . h. 

Whether an integer is signed or unsigned affects the operations performed on it. All 
arithmetic operations on unsigned integers behave according to the rules of modular (con
gruence) arithmetic modulo 2n, So, for example, adding 1 to the largest value of an unsigned 
type is guaranteed to produce O. The behavior of overflow is well defined. 

Expressions that mix signed and unsigned integers are forced to use unsigned opera
tions. Section 6.3.4 discusses the conversions performed. and Chapter 7 discusses the 
effect of each operator when its arguments are unsigned. 

Example 

These conversions can be surprising. For example, because unsigned integers are always non
negative, you would expect that the following test would always be true: 

unsigned int Ui 

if (u > -1) ... 

Howeve.r, it is always false! The (signed) - 1 is converted to an unsigned integer before the 
comparison, yielding the largest unsigned integer, and the value of u cannot be greater than 
that integer. 

The original definition ofC provided only a single unsigned type, unsigned. Most 
non-Standard C implementations now provide the full range of unsigned types. 

References _ Bo01 type 5.1.5; integer conversions 6.2.3; constants 2.7; limi ts. h 5.1.1; 
signed types 5.1.1 

5.1.3 Character Types 

The character type in C is an integral type-that is, values of the type are integers and can 
be used in integer expressions: 

character-type-specijier : 
char 
signed char 
unsigned char 

There are three varieties of character types: signed, unsigned, and plain. Each occupies the 
same amount of storage, but may represent different values. The signed and unsigned rep
resentations used are the same as used for the signed and unsigned integer types. The plain 
character type corresponds to the absence of both signed and unsigned in the type 
specifier. The signed keyword is new in Standard C, so in C implementations not recog
nizing the keyword, there are only two varieties of character types: unsigned and plain. An 
array of characters is C's notion of a "string." 

Example 

Here are some typical declarations involving characters. 
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static char greeting[7] i / * a 7-character string */ 
char *prompt; 1* a pointer to a character */ 
char padding_character = '\0'; /* a single character */ 

The representation of the character types depends on the nature of the character and 
string processing facilities on the target computer. The character type has some special 
characteristics that set it apart from the Donnal signed and unsigned types. For example, 
the plain char type may be signed, unsigned, or a mixture of both. For reasons of effi
ciency, C compilers are free to treat type char in either of two ways: 

1. Type char may be a signed integral type equivalent to signed char. 

2. Type char may be an unsigned integral type equivalent to unsigned char. 

In some pre-Standard implementations, type char was a "pseudo-unsigned" inte
gral type-that is, it could contain only non-negative values, but it was treated as if it were 
a signed type when performing the usual unary conversions. 

Example 

If a true unsigned character type is needed, the type unsigned char can be specified. If a 
true signed type is needed, the type signed char can be specified. If type char uses an 
8-bit, twos-complement representation, and given the declarations 

unsigned char uc = -1; 
signed char se = -1; 
char c = -1; 
int i = uc, j = sc, k = c; 

then i must have the value 255 and j must have the value - 1 in all Standard C imple
mentations. However, it is implementation-defined whether k has the value 255 or - I. If a C 
implementation does not recognize the keyword signed or does not permit 
unsigned char, you are stuck with the ambiguous plain characters. 

The signedness of characters is an important issue because the standard 110 library 
routines, which normally return characters from files, return a negative value when the 
end of the file is reached. (The negative value, often -1, is specified by the macro EOF in 
the standard header files.) The programmer should always treat these functions as return
ing values of type int since type char may be unsigned. 

Example 

The following program is intended to copy characters from the standard input stream to the 
standard output stream until an end-of-file indication is returned from getchar. The first 
three definitions are typically supplied in the standard header file B tdio . h : 

extern int getchar(void); 
extern void putchar(int)i 
#define EOF (-1) /* Could be any negative value */ 
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void copy_ characters(void) 

{ 
char Chi /* Incorrect! */ 
while «ch = getchar (» 1= EOF) 

putchar (ch) i 

} 

However, this function does not work when char is unsigned. To see this, assume the char 
type is represented in 8 bits and the in t type in 16 bilS, and that twoo-complement arithmetic 
is used. Then when getchar returns - I , the assignment ch = getchar () assigns the 
value 255 (the low-order 8 bits of -1) to ch. The loop lest is then 2 55 I = -1 . I f type char 
is unsigned, the usual conversions will cause - 1 to be converted to an unsigned integer, yield
ing the (unsigned) comparison 255 I = 6 5 53 5 , which evaluates to "true." Thus, the loop 
never tenninates. Changing the declaration of ch to "int ch; " makes everything work 
fine. 

Example 

To improve readability, you can define a "pseudo-character" type to use in these cases. For ex
ample, the following rewriting of copy_characters uses a new type, character, 
for characters that are represented with type in t : 

typede£ int character; 

void copy_ characters(void) 
{ 

} 

character Chi 
while «ch '" getchar() 

putchar (ch) i 

I", EOF) 

A second area of vagueness about characters is their size. In the prior example, we 
assumed they occupied 8 bits, and this assumption is almost always valid, although it is still 
unclear whether their values range from 0 to 255 or from -127 (or -128) to 127 . However, 
a few computers may use 9 or even 32 bits. Programmers should be cautious. Standard C 
requires that implementations document the range of their character types in the header file 
limits.h. 

References bit fields 5.6.5; character constants 2.7.3; character set 2.1; EOF 15.1; 
getchar 15.6; integer types 5. 1; integer conversions 6.2.3; limi ts. h 5.1.1 

5.1.4 Extended Integer Types 

In C99, implementations may have additional "extended" signed integer types in addition 
to the "standard" integer types. Each extended signed integer type must have a corre
sponding unsigned type. Keywords chosen for these types must be spe lled beginning with 
two underscores or with an underscore and an uppercase letter. (Such identifiers are re
served for "any use" in Standard C.) These extended types are considered integer types, 
and all statements that apply to the standard integer types also apply to these extended 
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integer types. Access to the extended integer types can be through the e99 header files 
stdint. hand int types. h described in Chapter 21. 

The standard integer conversions apply to extended types. The rules are specified in 
the discussion of conversion rank in Chapter 6. 

References conversion rank 6.3.3; signed integer types 5.1.1 

5.1.5 Boolean Type 

e99 introduced the unsigned integer type Boo1, which can hold only the values 0 or 1 
("false" and "true," respectively). Other integer types can be used in boolean contexts 
(e,g., as the test in a conditional expression), but the use of Boo1 may be clearer if the C 
implementation conforms to e99. When converting any scalar value to type _ Bool , all 
nonzero values are converted to 1, while zero values are converted to O. 

The header file stdbool. h defines the macro bool to be a synonym for _Bool 
and defines false and true to be 0 and 1, respectively. The name boo 1 is not a key
word to protect older C programs, which may have a user-defined type named bool. 
Conversions involving _Bool are described with the other integer conversions and pro
motions. 

References integer conversions 6.2.3; integer promotions 6.3.3; stdbool. h 11.3 

5.2 FLOA TING-POINT TYPES 

C's floating-point numbers have traditionally come in two sizes: single and double preci
sion, or float and double: Standard C added long double, and C99 adds three 
complex f1oating'point types (Section 5.2.1). The noncomplex floating-point types are 
also called the real floating-point types. 

jIoating-point-type-specijier : 
float 
double 
long double 
complex-type-specijie r 

(C89) 
(C99) 

The type specifier long f loa t was permitted in older implementations as a synonym 
for double , but it was never popular and was eliminated in Standard C. 

Example 

Here are some typical declarations of objects of floating-point types: 

double d; 
static double pi; 
float coefficients (lO] ; 
long double epsilon; 
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The use of float , double, and long double is analogous to the use of short, 
int, and long. Prior to Standard C, implementations were required to convert all values 
of type float to type double before any operations were performed (see Section 6.3.4), 
so using type float was not necessarily more efficient than using type double . In Stan
dard C, operations can now be performed using type float, and there is a full set of library 
functions in e99 to support type float . 

C does not dictate the sizes to be used for the floating-point types or even that they 
be different. The programmer can assume that the values representable in type float are 
a subset of those in type double, which in turn are a subset of those in type 
long double. Some C programs have depended on the assumption that double can 
accurately represent all values of type long- that is, converting an object of type long 
to type double and then back to type long results in exactly the original long value. 
Although this is often true, it cannot be depended on. 

Standard C requires that the characteristics of the real floating-point types be docu
mented in the header file float. h. Table 5-3 lists the symbols that must be defined. 
Symbols whose names begin with FLT document type float , names beginning with 
DBL refer to type double, and names beginning with LDBL refer to type 
long double. Also shown are the permitted magnitudes for each symbol- that is, the 
minimum requirements for range and precision of the floating-point types. 

Most of the arithmetic and logical operations may be applied to floating-point oper
ands. These include arithmetic and logical negation; addition, subtraction, multiplication, 
and division; relational and equality tests; logical AND and OR; assignment; and conver
sions to and from all the arithmetic types. 

A real, floating-point number x--{}ne with sign-magnitude representations and no 
"hidden" bits--can be written as 

x = 

where 

s 

b 

e 

p 

fk 

p 
sxbex " f xb-k < < ~ k ,emin-e_emax 

k = I 

is the sign (± I ) 

is the base or radix of the representation (typically 2, 8, 10, or 16) 

is the exponent value between some emin and emax 
is the number of base-b digits in the significand 

are the significand digits, ° $.Ik < b 

A normalized floating-point number has 11> 0 if x is not O. A subnormal number is 
one that is nonzero, with e = emin and II = O. An un-normalized number is one that is 
nonzero, with e > emin andiJ = 0. (A subnormal number is too small to be normalized; an 
un-normalized number could be normalized, but for some reason is not.) 

Floating-point types can include special values that are not floating-point numbers: 
infinity and NaN (Not-a-Number). A quiet NaN propagates though arithmetic expressions 
without causing an exception; the result of an expression containing a NaN is a NaN. A 
signaling NaN causes an exception when it is encountered. Infinity and NaN can be 
signed, and there may be different varieties of NaN. e99 extends the standard library to 
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Table 5-3 Values defined in float. h 

Name 

FLT RADIXa 

FLT ROUNDS! 

FLT EPSILON 

DBL EPSILON 

LDBL EPSILON 

FLT DIG 
DBL DIG 

LDSL DIG 

FLT KANT DIG 

DBL MANT DIG 

LDBL MANT_ DIG 

DECIMAL DIGc 

FLT MIN 

DBL MIN 

LDBL MIN 

FLT MIN EXP 

DBL MIN EXP 

LDBL MIN EXP 

FLT MIN 10 EXP 

DBL MIN 10 EXP 

LDBL MIN 10 EXP 

FLT MAX 

DDL MAX 

LDBL MAX 

FLT MAX EXP 

DBL MAX EXP 

LDBL MAX EXP 

FLT MAX 10 EXP 

DBL MAX 10 EXP 

LDBL MAX 10 EXP 

Minimum 

2 

none 

none 

10-5 

10-9 

10-9 

6 
10 
10 

none 

10 

10-37 

10-37 

10- 37 

none 

-37 
-37 
-37 

10+37 

10+37 

10+37 

none 

37 
37 
37 

Types Chap. 5 

Meaning 

the value of (he radix, b 

rounding mode: -1: indeterminable; 0: toward 0; 1: to ncar· 
est; 2: toward + infinity; 3: toward - infinitY' 

-I: indeterminable; O:just to the range and precision of the 

type; I: float and double use double ; long 
double uscs itself; 2: long double is used for all eval
uations 

the mini mum x>O.O such that 1.0 + x > 1.0; b1
- p; the values 

shown arc the maximum ones permitted 

the number of decimal digits of precision 

P. the number of base-b d igits in the significand 

number of decimal digits needed to represent values of the 
widest supported floating-point type; 

equal to 1 + Pmax 10gIO b if b is not a power of 10. 

the minimum nonnalized positive number 

emin. the minimum negative integer x such that t/-I is in the 
range of nonnalizcd floating-poi nt numbers 

minimum x such that 1 (Y is in the range of nonnalizcd 

floating-point numbers 

mrulimum representable finite number 

emu> the maximum integer x such that 1:1-1 is a represent
able finite floating-point numbers 

maximum x such that I(Y is in the range of representable 
finite fl oating-point numbers 

a FLT RADIX and FLT ROUNDS apply to all three fl oating-point types. 
b Othe-;:- values arc implc~entation-defined. 
C New in e99. 

permit input and output of these special values, and provides library functions to create 
and test for these values (Sections 17.13 and 17.14). 



Sec. 5.2 Floating-Point Types 135 

Example 

A common floating-point representation used by many microprocessors is given by the IEEE 
Standardfor Binary Floating- Point Arithmetic (lSOIIEEE Sld 754- 1985). The models for 32-
bit single and 64-bil double precision floating-point numbers under that standard (adj usted to 
the Standard C notational conventions) are 

24 
X n oat sx2e x I. fkx r k 

k = I 
-125 :5e:5+ 128 

53 
2e "fk X 2-k 

xdoubJe = sX X ~ - 102 1 :S; e:5 +1024 

k = I 
The values from float. h corresponding to these types are shown in Table 5-4. Floating
point constants of type float use the Standard C suffix F to denote their type. IEEE 
support in Standard C is optional. 

References floating-point constants 2.7.2; floating-point conversions 6.2.4; floating-point 
representations 6.1.1; NaN-related functions 17.14, 17.15 

Table S-4 IEEE fl oating-point characteristics 

RADIX 

ROUNDS 

Nruno 

EPSILON 

DIG 

KANT DIG 

DECIMAL DIGa 

MIN 

MIN EXP 

MIN 10 EXP 

MAX 

MAX EXP 

MAX 10 EXP 

FLT name value 

2 

implementation-defined 

1.1 9209290E-07F or 
OXIP-23F (C99) 

6 

24 

17 

1.17549435E-38F or 
OX1P-126F (C99) 

- 125 

-37 

3.40282347E+38F or 
OX1.fffffep127F (C99) 

128 

38 

a This name is not prefixed by FLT _ or DBL_ . 

5.2.1 Complex Floating-Point Types 

DBL name value 

not applicable 

not applicable 

2.2204460492503131 E-16 or 
OX1P-52 (C99) 

15 

53 

17 

2.225073858507201 4E-308 or 
OX1P-1022 (C99) 

-1021 

-307 

1.7976931348623 157E+308 or 
OX1.fffffffffffffp1023 (C99) 

1024 

308 

C99 adds six complex types to C: float Complex, double Complex, long - -
double _Complex, float _Imaginary, double _Imaginary, long double 
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Imaginary. The complex types are considered to be floatin g-point and arithmetic 
types. The noncomplex arithmetic types are termed rea/types. A freestanding implemen
tation ofC need not implement any complex types, and the pure-imaginary _Imaginary 
types are optional even in hosted implementations. 

complex-type-specijier : 
float _ Complex 
d.ouble _ Complex 
long double Complex 

(C99) 

The keyword _Complex was chosen to avoid conflicts with user-defined types 
named complex in existing programs. The type specifiers that precede the keyword 
_Complex designate the corresponding real type. The header file complex. h defines a 
macro complex to be a synon ym for _Complex, so programmers without legacy prob
lems can use the simpler name. 

Each complex type is represented as a two-e lement array of the corresponding real 
type, and each has the same alignment requirements as such an array. The first element 
represents the real part of the complex number; the second represents the imaginary part. 

A e99 implementation can optionally support pure-imaginary types, float 
_Imaginary, double _ Imaginary, and long double _Imaginary. These are 
considered to be complex types also, but they are represented as a single element of the 
corresponding real type. They are convenient for some kinds of complex calculations, but 
not convenient enough to be an official part of the Standard. 

A complex (or imaginary) value that has at least one infinite part is considered to be 
infinite even if the other component is a NaN. For a complex number to be finite, both 
parts must be finite (not infinite or NaN). A complex or imaginary number is zero if all of 
its parts are zero. 

References complex conversions 6.2.4; complex. h header fi le Ch. 23; usual binary con
version 6.3.4 

5.3 POINTER TYPES 

For any type T, a pointer type "pointer to T" may be formed. Pointer types are referred to 
as object pointers or function pointers depending on whether T is an object type or a func
tion type. A value of pointer type is the address of an object or function of type T. The 
declaration of pointer types is discussed in Section 4.5.2. 

Example 

int *ipi /* ip : a pointer to an object of type int * / 
char *CPi / * cp: a pointer to an object of type char */ 
int (*fp) (); / * fp: a pointer to a function returning 

an integer * / 
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The two most important operators used in conjunction with pointers are the address 
operator, &, which creates pointer values, and the indirection operator, * , which derefer
ences pointers to access the object pointed to. 

Example 

In the following example, the pointer ip is assigned the address of variable i (& i ). After 
that assignment, the expression * ip refers to the same object denoted by i : 

int i. j • *ip; 
ip = &i; 
i = 22; 
j = *iPi I · j now has the value 22 ·1 
*ip = 17 i I · i now has the v alue 17 ·1 

Other operations on pointer types include assignment, subtraction, relational and 
equality tests, logical AND and OR, addition and subtraction of integers, and conversions 
to and from integers and pointer types. 

The size of a pointer is implementation-dependent and in some cases varies depend
ing on the type of the object pointed to. For example, data pointers may be shorter or longer 
than function pointers (Section 6.1.5). There is not necessarily any relationship between 
pointer sizes and the size of any integer type, although it has been common to assume that 
type long is at least as large as any pointer type. In C99, use intptr _ t . 

In Standard C, pointer types may be qualified by the use of the type qualifiers 
const, volatile, and restrict (C99). The qualification of a pointer type (if any) 
can affect the operations and conversions that are possible with it and the optimizations 
pennitted on it. 

References address operator &: 7.5.6; arrays and pointers 5.4.1; assignment operators 7.9; 
cast expressions 7.5.1; conversions of pointers 6.2.7; if statement 8.5; indirection operator * 7.5.7; 
intptr _ t 21.5; pointer declarators 4.5.2; type quali fiers 4.4.3 

5.3.1 Generic Pointers 

The need for a generic data pointer that can be converted to any object pointer type arises 
occasionally in low-level programming. In traditional C, it is customary to use type char * 
for this purpose, casting these generic pointers to the proper type before dereferencing them. 
Further details are given in Section 6.2, where pointer conversions are discussed. The prob
lem with this use of char * is that the compiler cannot check that programmers always 
convert the pointer type properl y. 

Standard C introduced the type void· as a "generic pointer." It has the same repre
sentation as type char· for compatibility with older implementations, but the language 
treats it differently. Generic pointers cannot be dereferenced with the * or subscripting 
operators, nor can they be operands of addition or subtraction operators. Any pointer to an 
object or incomplete type (but nat to a function type) can be converted to type void· and 
back without change. Typevoid * is considered to be neither an object pointer nor a func
tion pointer. 
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Example 

Some sample pointer declarations and convers ions: 

void *generic-ptr; 
int *int_ptri 

1* OK */ 
1* OK */ 

Types Chap. 5 

char *charytr; 
generic_ptr = intytr; 
int_ptr = genericytri 
int_ptr = char_ptr; 
intytr = (int *) char_ptr; 

1* Invalid in Standard C */ 
/* OK */ 

Generic pointers provide additional flexibility in using function prototypes. When a 
function has a fannal parameter that can accept a data pointer of any type, the formal pa
rameter should be declared to be of type void *. If the formal parameter is declared with 
any other pointer type, the actual argument must be of the same type since different point
er types are not assignment compatible in Standard C. 

Example 

The strcpy faci lity copies character strings and therefore requires arguments of type 
char *: 

char *strcpy(char *sl, const char *s2); 

Yet memcpy can take a pointer to any type and so uses void *: 

void *memcpy(void *sl, const void *s2, size_t n); 

References assignment compatibility 6.3.2; const type specifier 4.4; memcpy 
facility 14.3; strcpy facility 13.3 

5.3.2 Null Pointers and Invalid Pointers 

Every pointer type in C has a special value called a null pointer, which is different from 
every valid pointer of that type, which compares equal to a null pointer constant, which con
verts to the null pointers of other pointer types, and which has the value "fal se" when used 
in a boolean context. The null pointer constant in C is any integer constant expression with 
the value 0, or such an expression cast to type void *. The macro NULL is traditionally 
defined as the null pointer constant in the standard header files- s tddef . h in Standard 
C and s tdio • h in older implementations. 

It is usual for all null pointers to have a representation in which all bits are zero, but 
that is not required. In fact, different pointer types can have different representations for 
their null pointers. If null pointers are not represented as zero, then an implementation 
must go to some lengths to be sure to properly convert null pointers and null pointer con
stants among the different pointer types. 

Example 

The statement 

if (ip) i '" *ip; 
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is a common shorthand notation for 

if (ip 1= NULL) i = *ip; 

It is good programming style to be sure that all pointers have the value NULL when 
they are not designating a valid object or function. 

It is also possible to inadvertently create invalid pointers-that is, pointer values 
that are not null but also do not designate a proper object or function. An invalid pointer is 
most frequently created by declaring a pointer variable without initializing it to some valid 
pointer or to NULL. Any use of an invalid pointer, including comparing it to NULL, pass
ing it as an argument to a function, or assigning its value to another pointer, is undefined 
in Standard C. Invalid pointers can also be created by casting arbitrary integer values to 
pointer types, by deallocating the storage for an object to which a pointer refers (as by us
ing the free facility), or by using pointer arithmetic to produce a pointer outside the 
range of an array. An attempt to dereference an invalid pointer may cause a run-time error. 

In conjunction with pointer arithmetic, C does require that the address of an object 
one past the last object of an array be defined, although such an address can still be invalid 
to dereference. This requirement makes it easier to use pointer expressions to walk 
through arrays. 

Example 

The following loop uses the address just beyond the end of an array, although it never at
tempts to dereference that address: 

int array[N]; /* last object address is &array[N-l] */ 
int *Pi 

for (p = &array(O]; p < &array[N]; P++) 

This requirement may restrict implementations for a few target computers that have non
contiguous addressing architectures, reducing by one object the maximum length of an ar
ray. On such computers, it may be impossible to perform arithmetic on pointers that do not 
fall within a contiguous area of memory, and only by allocating an array is the program
mer guaranteed that the memory is contiguous. 

References free 16.1 ; integer constants 2.7. 1; pointer arithmetic 7.6.2; s tddef . h facil
ity ll.l ; void * type 5.3.1 

5.3.3 Some Cautions With Pointers 

Many C programmers assume that all pointer types (actually , all addresses) have a unifonn 
representation. On common byte-addressed computers, all pointers are typically simple 
byte addresses occupying, say, one word. Conversions among pointer and integer types on 
these computers require no change in representation and no infonnation is lost. 

In fact, the C language does not require such nice behavior. Section 6.1 discusses the 
problems in more detail, but here is a brief summary: 
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1. Pointers are often not the same size as type in t and sometimes not the same size as 
type long. Sometimes their size is a compiler option. In C99, type intptr_t is 
an integer type large enough to hold an object pointer. 

2. Character and void * pointers can be larger than other kinds of pointers, and they 
may use a representation that is different from other kinds of pointers. For example, 
they may use high-order bits that are normally zero in other kinds of pointers. 

3. Function pointers and data pointers may have significantly different representations, 
including different sizes. 

The programmer should always use explicit casts when converting between pointer 
types, and should be especially careful that pointer arguments given to functions have the 
correct type expected by the function. In Standard C, void * can be used as a generic ob
ject pointer, but there is no generic function pointer. 

References casts 7.5.1; intptr _ t 21.5; malloe function 16.1; pointer conversions 
6.2.7 

5.4 ARRA Y TYPES 

If Tis any C type except void, an incomplete type, or a function type, then the type "array 
of T" may be declared. Values of this type are sequences of elements of type T. An arrays 
are O-origin. See Section 4.5.3 for a discussion of syntax and meaning of array deciarators, 
including incomplete and variable length array types. 

Example 

The array declared int A [3] ; consists of the elements A [0] , A [1] , and A [2] . In the fol
lowing code, an array of integers (ints) and an array of pointers (ptrs) are declared, and 
each of the pointers in ptrs is set equal to the address of the corresponding integer ioints : 

int ints[lO], *ptrs[10] , i; 
for (i = 0; i < 10i i++) 

ptrs[i] = &ints[i]; 

The memory size of an array (in the sense of the sizeof operator) is always equal to the 
length of the array in elements multiplied by the memory size of an element 

References array declarators 4.5.3; sizeof operator 7.5.2; storage units 6.1.1; structure 
types 5.6; variable length arrays 5.4.5 

5.4.1 Arrays and Pointers 

In C there is a close correspondence between types "array of T' and "pointer to T." First, 
when an array identifier appears in an expression, the type of the identifier is converted 
from "array of T' to "pointer to T," and the value of the identifier is converted to a pointer 
to the first element of the array. This rule is one of the usual unary conversions. The only 
exceptions to this conversion rule is when the array identifier is used as an operand of the 
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sizeof or address (&) operators, in which case sizeof returns the size of the entire ar
ray and &: returns a pointer to the array (not a pointer to a pointer to the first element). 

Example 

In the second line below, the value a is converted to a pointer to the first element of the array: 

int a [10] I *iPi 

ip = 8; 

It is exactly as if we had written 

ip = &a[O]; 

The value of sizeof (a) will be sizeof (int) *10, not sizeof (int *). 

Second, array subscripting is defined in terms of pointer arithmetic. That is, the ex
pression a [i] is defined to be the same as * ((a) + (i», where a is converted to 
&a [0] under the usual unary conversions. This definition of subscripting also means that 
a [i] is the same as i [a] ,and that any pointer may be subscripted just like an array. It is 
up to the programmer to ensure that the pointer is pointing into an appropriate array of el
ements. 

Example 

If d has type double and dp is a pointer to a double object, then the expression 

d=dp[41, 

is defined only if dp currently points to an element of a double array, and if there are at 
least four more elements of the array following the one pointed to. 

References address operator &: 7.5.6; addition operator + 7.6.2; array declarators 4.5.3; 
conversions of arrays 6.3.3; indirection operator * 7.5.7; pointer types 5.3; si zeof operator 5.4.4, 
7.5.2; subscripting 7.4.1; usual unary conversions 6.3.3 

5.4.2 Multidimensional Arrays 

Multidimensional arrays are declared as "arrays of arrays," such as in the declaration 

int matrix [12] [10] ; 

which declares matrix to be a 12-by-1O element array of into The language places no 
limit on the number of dimensions an array may have. The array ma tr ix could also be 
declared in two steps to make its structure clearer: 

typede£ int vector[10]; 
vector matrix[12); 

That is, matrix is a 12-element array of to-element arrays of into The type of matrix 
is in t [12] [10) . Multidimensional array elements are stored in row-major order. That 
is, those elements that differ only in their last subscript are stored adjacently. 
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The conversions of arrays to pointers happen for multidimensional arrays just as 
they do for singly dimensioned arrays. 

Example 

The elements of the array int t (2] [3 J are stored (in increasing addresses) as 

t [0] [0], t [0] [1], t [0] [2], t [1] [0], t [1] [1], t [1] [2] 

The expression t [1] [2] is expanded to * (* (t+ 1) +2) , which is evaluated in thi s se
quence of steps: 

1. The expression t . a 2-by-3 array, is converted to a pointer to the first 3-element subarray. 

2. The expression t+l is then a pointer to the second 3-element subarray. 

3. The expression * (t+ 1) , the second 3-element subarray of integers. is converted to a 
pointer to the first integer in that subarray. 

4. The expression * (t+l) +2 is then a pointer to the third integer in the second 3-element 
subarray. 

5. Finally, * (* (t+1) +2) is the third integer in the second 3-element subarray; t [1) [2). 

In general, any expression A of type "i-by-j-by- ... -by-k array of T" is immediately 
converted to "pointer toj-by- .. . -by-k array of T." 

References addition operator + 7.6.2; array declarators 4.5.3; indirection operator * 7.5.7; 
pointer types 5.3; subscripting 7.4.1 

5.4.3 Array Bounds 

Whenever storage for an array is allocated, the size of the array must be known. However, 
because subscripts are not normally checked to lie within declared array bounds, it is pos
sible to omit the size (i.e., to use an incomplete array type) when declaring an external, 
singly dimensioned array defined in another module or when declaring a singly dimen
sioned array that is a formal parameter to a function (see also Section 4.5.3). 

Example 

The following function, Bum, returns the sum of the first n elements of an external array, a , 
whose bounds are not specified: 

extern int a{]i 

int Bum(int n) 
{ 

} 

inti,s=Oi 
for (i = 0; i c n; i++l 

B += a [i] ; 

return s; 

The array could also be passed as a parameter like this: 
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int sum(int a [] , int n) 
{ 

int i, s • 0; 
for (i • 0; i < n; i++ ) 

s += a [il i 

return s; 
} 

The parameter a could be declared as int *a without changing the body of the function. 
That would more accurately reflect the implementation but less clearly indicate the intent. 

When multidimensional arrays are used, it is necessary to specify the bounds of all 
but the first dimension so that the proper address arithmetic can be calculated: 

extern int matrix[] [10]; /* ?-by-10 array of int */ 

If such bounds are not specified, the declaration is in error. In C99, arrays may have vari
able length, including multidimensional arrays. 

References array declarators 4.5.3; defining and referencing declarations 4.8; indirection 
operator * 7.5.7; omitted array bounds 4.5; pointer types 5.3; subscripting 7.4.1; variable length ar
rays 5.4.5 

5.4.4 Operations 

The only operations that can be performed directly on an array value are the application of 
the sizeof and address (&) operators. For sizeof, the array must be bounded and the 
result is the number of storage units occupied by the array. For an n-element array of type 
T, the result of sizeof is always equal to n times sizeof T. The result of & is a pointer 
to (the fIrst element of) the array. 

In other contexts, such as when subscripting an array, the array value is actually 
treated as a pointer, and so operations on pointers may be applied to the array value. 

References array declarators 4.5.3; conversions from array to pointer 6.2.7; pointer types 
5.3; sizeof operator 7.5.2; subscripting 7.4.1 

5.4.5 Variable Length Arrays 

C99 gives C programmers the ability to use variable length arrays, which are arrays whose 
sizes are not known until run time. A variable length array declaration is like a fixed array 
declaration except that the array size is specified by a non constant expression. When the 
declaration is encountered, the size expression is evaluated and the array is created with 
the indicated length, which must be a positive integer. Once created, a variable length ar
ray cannot change in length. Elements in the array can be accessed up to the allocated 
length; accessing elements beyond that length results in undefined behavior. There is no 
check required for such out-of-range accesses. The array is destroyed when the block con
taining the declaration completes. Each time the block is started, a new array is allocated. 
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Ignoring for the moment array parameters in functions, a variable length array must 
be declared at block scope and must not he static or extern. Only ordinary identifiers 
(not structure or union members) may be declared as variable length arrays. The scope of 
the array variable extends from the dec1aration point to the end of the innermost enclosing 
block. The lifetime of the array extends from the declaration until execution leaves the ar
ray's scope. In e99, this includes finishing the block, jumping out of the block, or jumping 
back to a location in the block before the declaration. Implementors can allocate space for 
the array on the execution stack when the declaration is processed. 

Variably modified types include variable length arrays and other types that have a 
variable length array type as part of them, such as pointers to variable length arrays. Only 
ordinary identifiers at block scope with no linkage may be declared with variably modified 
types. This leaves a loophole: It is possible to use a variably modified type (that is not a 
variable length array) as the type of as ta tic block-scope identifier. In that case, although 
the value of the s ta tic identifier is preserved across block executions, the embedded vari
able length array could change its dimensions each time the block is entered. 

Example 

In the following code fragment, a and b are variable length arrays and the pointer c has a 
variably modified type. 

int a size; 

void £(int b _ size) 
{ 

} 

int c _ size = b_ size + a_ size; 
int a[a_size++]i 
int b [b_ sizeJ (b_size] ; 
static int (*c) [5] (c size]; 

The restrictions on variable length arrays simplify the implementation of C99 while 
still preserving most of their usefulness. Without the restrictions, a host of complications 
and interactions appear. Structures might have to carry hidden type descriptors for compo
nents of variably modified types. Declaring a variable length array at file scope would re
quire C to adopt the overhead of "elaborating" top-level declarations at run time. (C++ 
and other languages have such mechanisms, but they are not in the spirit of C.) 

If a variable length array is used in a typede£ declaration, then the length expres
sion is evaluated once, when the typedef declaration is encountered , not each time the 
new type name is used. 

Example 

/* Assume n has the value 5 here */ 
typede£ int[n] vector; 
n += 1; 
vector a; 
intb[n]; 
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The variable a is a five-element array of integers, reflecting the value of n when the 
typede£ declaration was encountered. In contrast, b is a six-element array of integers be
cause the value ofn changed by the time the declaration ofb was encountered. 

Variable length array parameters A variable length array or a variably modified 
type may be used as the type of a function parameter. When the array's length is also a pa
rameter, it must necessarily appear first due to C's lexical seoping rules. 

When a function with a variable length array parameter is cai1ed, the size(s) of the di
mension(s) of the array argument must agree with the array parameter declaration in the 
function definition or else the result is undefined. 

Example 

The first function definition is correct. The second will either be illegal, or values of some 
other variables r and e will be used to compute the dimensions of a . 

void f( int r, int e, int ale) [r] ) { ... } /* OK */ 
void f( int ale] [r], int r, int e ) { ... } 

/* NO: r, c are not visible to a [c] [r] * / 

In a function prototype declaration (not part of a function definition), a variable 
length array dimension may be designated by [*]. Any nonconstant expression that ap
pears within array brackets in such a function prototype is treated as equivalent to [*] . 

Example 

The following prototypes are all compatible. Although the third prototype implies a square ar
ray, that constraint is not checked at compile time. The last prototype shows that the innermost 
(or only) dimension of a variable length array can simply be omitted. 

void f (int, int [*] [*}); 

void f(int n, int 1*) [m]); 

void f (int n, int In) [n] ) ; 
void f(int, int [] [*]); 

References array declarators 4.5.3; function prototypes 9.2; si zeof operator 7.5.2 

5.5 ENUMERA TED TYPES 

The syntax for declaring enumerated types is shown next: 

enumuation-type-speeijier: 
enumeration-type-definition 
enu me ra ti on -type -re Ie renee 

enumeration-type -definition : 
enum enumeration-tagopt { enumeration-definition-list } 
enum enumeration-tagopt { enumeration-definition-list ,} (C99) 
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enumeration-type-reference : 
enum enumeration-tag 

enumeration-tag: 
identifier 

enumeration -definition-list: 
enumeration-constant-definition 
enumeration-definition-list , enum£ration-conSlant-dejinition 

enumeration-constant-definition : 
enu me ra ti on -conSlan t 
enumeration-constant '" expression 

enumeration-constant : 
identifier 

Types Chap. 5 

An enumerated type in C is a set of integer values represented by identifiers called 
enumeration constants. The enumeration constants are specified when the type is defined 
and have type into Each enumerated type is represented by an implementation-defined 
integer type and is compatible with that type. Thus, for the purposes of type checking, an 
enumerated type is just one of the integer types. When the C language permits an integer 
expression in some context, an enumeration constant or a value of an enumerated type can 
be used instead. (This is not true in C++; see Section 5.13. 1.) 

C99 allows a comma to be placed at the end of the enumeration-definition-list-a 
. . 

minor convemence. 

Example 

The declaration 

anum fish { trout, carp, halibut } my_ fish, your_ fish; 

creates an enumerated type, anum fish, whose values are trout, carp, and halibut. 
It also declares two variables of the enumerated type,my _ fish and your_ fish, which can 
be assigned values with the assignments 

my fish = halibut; 
your fish = trout; 

Variables or other objects of the enumerated type can be declared in the same decla
ration containing the enumerated type definition or in a subsequent declaration that 
mentions the enumerated type with an "enumerated type reference." 

Example 

For example, the single declaration 

anum color { red, blue, green, mauve } 
favorite, acceptable, least_favorite; 

is exactly equivalent to the two declarations 
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enum color { red, blue, green, mauve } favorite; 
enum color acceptable, least favorite; 
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and to the four declarations 

enum color { red, blue, green, mauve }; 
enum color favorite; 
enum color acceptable; 
enum color least_ favorite; 

The enumeration tag, color, allows an enumerated type to be referenced after its definition. 
Although the alternative declaration 

enum { red, blue, green , mauve } 
favorite, acceptable, least_ favorite; 

declares the same variables and enumeration constants, the lack of a tag makes it impossible 
to introduce more variables of the lype in later declarations. 

Enumeration tags are in the same overloading class as structure and union tags, and 
their scope is the same as that of a variahle declared at the same location in the source pro
gram. 

Identifiers defined as enumeration constants are members of the same overloading 
class as variables, functions, and typedef names. Their scope is the same as that of a vari
able defined at the same location in the source program. 

Example 

In the following code, the declaration of shepherd as an enumeration constant hides the 
previous declaration of the integer variable shepherd. However, the declaration of the 
floating-point variable collie causes a compilation error because collie is already de
clared in the same scope as an enumeration constant. 

int shepherd = 12; 
{ 

} 

enum dog_breeds {shepherd, COllie}; 
/* Hides outer declaration of the name "shepherd" */ 

float co11iei 
/* Invalid redefinition of the name "collie" */ 

Enumerated types are implemented by associating integer values with the enumera
tion constants so that the assignment and comparison of values of enumerated types can be 
implemented as integer assignment and comparison. Integer values are associated with 
enumeration constants in the following way: 

I. An explicit integer value may be associated with an enumeration constant by writing 

enumeration-constant = expression 

in the type definition. The expression must be a constant expression of integral type, 
including expressions involving previously defined enumeration constants, as in 
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enum boys { Bill = 10, 
John = Bill+2, 

Fred = John+2 }i 
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2. The first enumeration constant receives the value 0 if no explicit value is specified. 

3. Subsequent enumeration constants without explicit associations receive an integer 
value one greater than the value associated with the previous enumeration constant. 

Any signed integer value representable as type int may be associated with an enu
meration constant. Positive and negative integers may be chosen at random, and it is even 
possible to associate the same integer with two different enumeration constants. 

Example 

Given the declaration 

enum sizes { small, medium=10, pretty_big, large=20 }i 

the values of small, medium, pretty_big, and large will be 0, to, 11, and 20, respec· 
tively. Although the following definition is valid: 

enum people { john_l, mary_19, bill_-4, sheila=l }; 

its effect is Lo make the expression john = = shei la true, which is not intuitive. 

Although the form of an enumerated type definition is suggestive of structure and 
union types, with strict type checking, in fact enumerated types in Standard C (which is 
the definition given in this book) act as little more than slightly more readable ways to 
name integer constants. As a matter of style, we suggest that programmers treat enumerat
ed types as different from integers and not mix them in integer expressions without using 
casts. In fact, some UNIX C compilers implement a weakly typed fonn of enumerations in 
which some conversions between enumerated types and integers are not permitted without 
casts. 

References cast expressions 7.5.1; identifiers 2.5; overloading classes 4.2.4; scope 4.2.1 

5.6 STRUCTURE TYPES 

The structure types in C are similar to the types known as records in other programming 
languages. They are collections of named components (also called members or fields) that 
can have different types. Structures can be defined to encapsulate related data objects. 

srructure·type·specijier: 
srrucrure-type-definirion 
srructure·type·re!erence 

structure·type·definition : 
struct structure-tagopt { field-list} 
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structu re~type-reference : 
struct structure-tag 

structure-tag: 
identifier 

field-list: 
component-declaration 
field-list component-declaration 

component-declaration: 
rype-specifier component-declarator-fist; 

component-declarator-list : 
componen t -declara to r 
component-declarator-list , component-declarator 

component-declarator : 
simple-component 
bit-field 

simple-component: 
declarator 

bit-field: 
declarator opt : width 

width: 
constant-expression 

Example 
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A programmer who wanted to implement complex numbers (before e99) might define a 
structure complex to hold the real and imaginary parts as components real and imago The 
first declaration defines the new type, and the second declares two variables, x and y , of that 
type: 

struct complex { 
double real; 
double imag; 

} , 
struct complex X,Yi 

real imag 

double double 

struct com-

A function new_complex can be written to create a new object of the type. Note that the se
lection operator ( .) is used to access the components of the structure: 
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struct complex new_ complex(double r, double i) 
{ 

struct complex c; 
c.real = r; 

c.imag = i; 
return c; 

} 

Operations on (he type, such as complex multiply, can also be defined: 

struct complex complex_multiply( struct complex a , 
struct complex b 

{ 

} 

struct complex product ; 
product. real = a.real 
product . imag = a . real 
return product; 

ft b.real a . imag * b.imag; 
* b.imag + a . ~g * b.real; 

Example 

The single declaration 

struct complex { double real. imag; } X, Yi 

is equivalent to the two declarations 

struct complex { double real, imagi }; 
struct complex X, Yi 

5.6.1 Structure-Type References 

Chap. 5 

The use of a type specifier of the syntactic classes structure-type-deJinition Of union-type
definition (Section 5.7) introduces the definition of a new type different from all others. If 
present in the definition, the s tructure tag is associated with the new type and can be used 
in a subsequent structure-type reference. 

The scope of the definition (and the type tag if any) is from the declaration point to 
the end of the innennost block containing the specifier. The new definition explicitly 
overrides (hides) any definition of the type tag in an enclosing block. 

The use of a type specifier of the syntactic classes structure-type-reference or union
type-reference (Section 5.7) without a preceding definition in the same or enclosing scope 
is allowed when the size of the structure is not required. including when declaring: 

I. pointers to the structure 

2. a typedef name as a synonym for the structure 

The use of this kind of specifier introduces an "incomplete" definition of the type and type 
tag in the innermost block containing the use. For this definition to be completed, a 
structure-type-definition or union-type-definition must appear later in the same scope. 
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As a special case, a structure-type-reJerence or union-type-reference in a declaration 
with no declarators hides any definition of the type tag in any enclosing scope and establishes 
an incomplete type. 

Example 

Consider the following correct definition of two self-referentia1 structures in an inner block: 

{ 
struct celli 
struct header { 
struct cell { 

} 

struct cell 
struct header 

*first; 
*headi 

}; 
} ; 

The incomplete definition " 8 true t cell i " in the first line it is necessary to hide any defi
nitions of the tag cell in an enclos ing scope. The definition of struct header in the 
second line automaticall y hides any enclosing definitions, and its use of struct cell 10 
define a pointer is valid. The definition of struct cellon the third line completes the in
formation about cell. 

An incomplete type declaration also exists within a struclure-type-definition or 
union-type-definition from the first me ntion of the new tag until the definition is complete. 
This allows a single structure type to include a pointer to itself (see Figure 5- 1). 

Reference to 
incomplete type. 

struct list { struct list *next; int data; }; 

t t 
Type is complete here Type is incomplete here 

Figure 5-1 Incomplete structure type within a declaration 

References declarations 4. 1; declarators 4.5; duplicate visibility 4.2.2; scope 4.2.1; selec
tion operator. 7.4.2; type equivalence 5.11 

5.6.2 Operations on Structures 

The operations provided for structures may vary from compiler to compiler. All C compil
ers provide the selection operators . and - > on structures, and newer compilers now allow 
structures to be assigned, passed as parameters to functions, and returned from functions. 
(With older compilers, assignment must be done component by component, and only point
ers to structures may be passed to and from functions.) 
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It is not permitted to compare two structures for equality. An object of a structure 
type is a sequence of components of other types. Because certain data objects may be con
strained by the target computer to lie on certain addressing boundaries, a structure object 
may contain "holes"-storage units that do not belong to any component of the structure. 
The holes would make equality tests implemented as a wholesale bit-by-bit comparison 
unreliable, and component-by-component equality tests might be too expensive. (Of 
course, the programmer may write component-by-component equality functions.) 

In any situation where it is permitted to apply the unary address operator & to a struc
ture to obtain a pointer to the structure, it is also permitted to apply the &. operator to a 
component of the structure to obtain a pointer to the component. It is possible for a pointer 
to point into the middle of a structure. An exception to this rule occurs with components 
defined as bit fields. Components defined as bit fields will in general not lie on machine
addressable boundaries, and therefore it may not be possible to form a pointer to a bit field. 
The C language does not provide bit-field pointers. 

References address operator &: 7.5.6; assignment 7.9; bit fields 5.6.5; equality operator "'''' 
7.6.5; selection operator. and - > 7.4.2; type equivalence 5.11 

5.6.3 Components 

A component of a structure may have any object type that is not variably modified. Struc
tures may not contain instances of themselves, although they may contain pointers to 
instances of themselves. 

In C99, structure components may not have variably modified types. The last com
ponent in a structure may have an incomplete array type, in which case it is called aflexible 
array member (Section 5.6.8). 

Example 

This declaration is invalid: 

struct S { 
int &i 

struct S next; /* invalidl */ 
} ; 

But thi s one is permitted: 

struct S { 

int ai 

struct S *next; /* OK */ 
}; 

The names of structure components are defined in a special overloading class asso
ciated with the structure type. That is, component names within a single structure must be 
distinct, but they may be the same as component names in other structures and may be the 
same as variable, function, and type names. 
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Example 

Consider the following sequence of declarations: 

int Xl 

struct A { int x; double y; } Yi 
struct B { int y; double Xl } Z; 
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The identifier x has three nonconnicting declarations: it is an integer variable, an integer 
component of structure A, and a floating-point component of structure B. These three declara
tions are used, respectively, in the expressions 

x 
y.x 
Z.X 

If a structure tag is defined in one of the components, then the scope of the tag ex
tends to the end of the block in which the enclosing structure is defined. (If the enclosing 
structure is defined at the top level , so is the inner tag.) 

Example 

In the declaration 

struct s { 
struct T {int a, b; } x; 

}, 

The tag T is defined from its first occurrence to the end of the scope in which S is defined. 

Historical note: The original definition of C specified that all components in all 
structures were allocated out of the same overloading class, and therefore no two struc
tures could have components with the same name. (An exception was made when the 
components had the same type and the same relative position in the structures!) This inter
pretation is now anachronistic, but you might see it mentioned in older documentation or 
actually implemented in some old compilers. 

References flexible array member 5.6.8; incomplete array type 5.4; overloading classes 
4.2.4; scope 4.2.1; variably-modified type 5.4.5; 

5.6.4 Structure Component Layout 

Most programmers will be unconcerned with how components are packed into structures. 
However, C does give the programmer some control over the packing. C compilers are 
constrained to assign components increasing memory addresses in a strict order, with the 
first component starting at the beginning address of the structure. 

Example 

There is no difference in component layout between the structure 

struct { int a , b , C; }; 

and the structure 
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struct { int a; int b, c; }; 

Both put a first, b second, and c last in order of increasing addresses, as pictured next: 

struct 

a 

int 

increasing memory 
addresses 

b c 

int int 

Given two pointers p and q to components within the same structure, p < q will be 
true if and only if the declaration of the component to whichp points appears earlier with
in the structure declaration than the declaration of the component to which q points. 

Example 

struct vector3 { int x, y, Zi } S; 

int *P, *q, *r; 

p = &s.X; 
q = &8.y; 

r = 's. Z;/* At this point p < q. q < r, and p < r . *1 

Holes or padding may appear between any two consecutive components or after the 
last component in the layout of a structure if necessary to allow proper alignment of com
ponents in memory. The bit patterns appearing in such holes are unpredictable and may 
differ from structure to structure or over time within a single structure. The space occupied 
by padding is included in the value returned by the sizeof operator. Some implementa
tions provide pragmas or switches to contrql the packing of structures. 

5.6.5 Bit Fields 

C allows the programmer to pack integer components into spaces smaller than the compil
er would ordinarily allow. These integer components are called bit fields and are specified 
by following the component declarator with a colon and a constant integer expression that 
indicates the width of the field in bits. 

Example 

The following structure has three components, a , b , and c , occupying four, five , and seven 
bilS, respectively: 

struct S { 

}; 

unsigned a:4; 
unsigned b:5, c:7; 
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A bit fie ld of n bits can represent unsigned integers in the range 0 through 2 n -I and 
signed integers in the range _Zn-l through 2n-l_l , assuming a twos-complement represen
tation of signed integers. The original definition of C permitted only bit fields of type un
signed, but Standard C permits bit fields to be of type unsigned int , 
signed int, or just int, termed unsigned, signed, and plain bit fields. Like plain char
acters , a plain bit field may be signed or unsigned. Some C implementations allow bit 
fields of any integer type, including char. C99 allows bit fields of type _Bool. 

Bit fields are typically used in machine-dependent progranns that must force a data 
structure to correspond to a fixed hardware representation. The precise manner in which 
components (and especially bit fields) are packed into a structure is implementation
dependent but is predictable for each implementation. The intent is that bit fields should be 
packed as tightly as possible in a structure, subject to the rules discussed later in this section. 
The use of bit fields is therefore likely to be nonportable. The programmer should consult 
the implementation documentation if it is necessary to layout a structure in memory in some 
particular fashion, and then verify that the Ccompiler is indeed packing the components in 
the way expected. 

Example 

Here is an example of how bit fields can be used to create a structure that matches a predefined 
fonnat. Following is the layout of a 32-bit word treated as a virtual address on a hypothetical 
computer. The word contains fields for the segment number, page number, and offset within a 
page, plus a "supervisor" bit and an unused bit. 

[I Segment 

field width (bits) t 1 6 

Page 

8 

Offset 

t6 

To duplicate this layout, we first have to know if our computer packs bit fields left to right or 
right to left- that is, whether it is a "big endian" or a "little endian" (see Section 6.1.2). If 
packing is right to left , the appropriate structure definition is 

typedef struct { 
unsigned Offset 16; 
unsigned Page 8; 
unsigned Segment 6; 
unsigned UNUSED 1; 
unsigned Supervisor 1; 

} virtual address; -
In contrast, if packing is left to right, the appropriate structure definition is 

typedef struct { 
unsigned Supervisor 1; 
unsigned UNUSED 1; 
unsigned Segment 6; 
unsigned Page 8; 
unsigned Offset 16; 

} virtual_ address; 
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The signedness of a plain integer bit field follows the signedness of plain characters. 
That is, a plain integer bit field may actually be implemented as a signed or unsigned type 
(see Section 5.1.3). Signed and unsigned bit fields must be implemented to hold signed 
and unsigned values, respectively. 

Example 

Consider the effect of these Standard C declarations on a twos-complement computer: 

struct S { unsigned ubf:3; 
signed sbf: 3; 
int bf:3; } x = { -1, -1, -1 }; 

int i = x.uhf; 
int j = x.sbfj 
int k = x.bf; 

The value of i must be 7 and of j must be - I, but the value ofk may be either 7 or - I. 

Compilers are free to impose constraints on the maximum size of a bit field and 
specify certain addressing boundaries that bit fields cannot cross. These alignment restric
tions are usually related to the natural word size of the target computer. When a field is too 
long for the computer, the compiler will issue an appropriate error message. When a field 
would cross a word boundary, it may be moved to the next word. 

An unnamed bit field may also be included in a structure to provide padding be
tween adjacent components. Unnamed bit fields cannot be referenced , and their contents 
at run time are not predictable. 

Example 

The following structure places component a in the first four bits of the structure, followed by 
two bits of padding, followed by the component b in six bits. (Assuming a basic word size of 
16 bits , a final four bits will also be unused at the end of the structure; see Section 5.6.7.) 

struct S { 
unsigned a , 4; 
unsigned , 2 ; a 

unsigned b , 6; 
}; 

Specifying a length of 0 for an unnamed bit field has a special meaning- it indicates 
that no more bit fields should be packed into the area in which the previous bit field, if 
any, was placed. Area here means some implementation-defined storage unit. 



Sec. 5.6 Structure Types 157 

Example 

In the following structure, the component b should begin on a natural addressing boundary 
(e.g., 16 bits) following component a . The new structure occupies twice as much storage as 
the old one: 

struct S { 
unsigned a 4, 
unsigned 0, a 
unsigned b 6, 

}, 4 12 6 to 

The address operator & may not be applied to bit-field components since many com
puters cannot address arbitrary-sized fields directly . 

References address operator & 7.5.6; alignment restrictions 6.1.3; _ Boo1 type 5.1.4; byte 
order 6. 1.2; enumerated types 5.5; signed types 5. 1.1 ; unsigned types 5.1.2 

5.6.6 Portability Problems 

Depending on packing strategies is dangerous for several reasons. First, computers differ 
on the alignment constraints on data types. For instance, a four-byte integer on some com
puters must begin on a byte boundary that is a multiple of four, whereas on other computers 
the integer can (and will ) be aligned on the nearest byte boundary. 

Second, the restrictions on bit-field widths will be different. Some computers have a 
16-bit word size, which limits the maximum size of the field and imposes a boundary that 
fields cannot cross. Other computers have a 32-bit word size, and so forth. 

Third, computers differ in the way fields are packed into a word-that is, in their 
"byte ordering." On Ihe Motorola 68000 family of compulers. charaClers are packed left 10 

right into words, from the most significanl bit 10 the least significant bit. On inlel 80x86 
computers, characters are packed right to left, from the least significant bit to the most sig
nificant bit. As seen in the virtual_address example in the previous sec tion , di fferent 
structure definitions are needed for computers with different byte ordering. 

We know of two situations that seem to justify the use of bit fields: 

1. A predefined data structure must be matched exactly so it can be referenced in a C 
program. (These programs may nol be portable anyway.) 

2. An array of structured data must be maintained, and its large size requires that its 
components be packed tightly to conserve memory. 

By using the C bitwise operators to do masking and shifting, it is possible to imple
ment bit fields in a way that is not sensitive to byte ordering within a word. 

Example 

Consider the problem of accessing the Page field in the virtual address structure 
(page 155). Since this 8-bit fIeld is located 16 biLS from the low-order end of the word, it can 
be accessed with the following code: 
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unsigned Vi 

int Page; 
/* for.matted as a virtual address */ 

Page: (V &: OxFFOOOO) » 16; 

Chap. 5 

This is equivalent to the more readable structure component access Page:V. Page, but the 
mask-and-shift approach is not sensitive to the computer's byte ordering, as is the definition 
of virtual_ address. The masking and shifting operations are demonstrated next for 
V""",Oxb393352e (Page",,,,Ox93): 

10110011100100110011010100101110 
00000000111111110000000000000000 
00000000100100110000000000000000 
00000000000000000000000010010011 

V 

OxFFOOOQ 
V &: OxFFOOOO 
(V &: OxFFOOOO» >16 

Similar operations may be used to set the value of a bit field. There may be little dif
ference in the run-time perfonnance of these two access methods. 

References alignment restrictions 6.1.3: bitwise operators 7.6.6; byte order 6.1 .2; shift op
erators 7.6.3 

5.6.7 Sizes of Structures 

The size of an object of a structure type is the amount of storage necessary to represent all 
components of that type, including any unused padding space between or after the compo
nents. The rule is that the structure will be padded out to the size the type would occupy as 
an element of an array of such types. (For any type T, including structures, the size of an n
element array of Tis the same as the size of Ttimes n.) Another way of saying this is that 
the structure must terminate on the same alignment boundary on which it started- that is, 
if the structure must begin on an even byte boundary, it must also end on an even byte 
boundary. The alignment requirement for a structure type will be at least as stringent as for 
the component having the most stringent requirements. 

Example 

On a computer that starts all structures on an address that is a multiple of four bytes, the 
length of the following structure wi ll be a multiple of four (probably exactl y four), even 
though only two bytes are actually used: 

struct s { 
char cl; 
char c2; 

}, Byles: 2 
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Example 

On a computer that requires all objects of type double to have an address that is a multiple 
of 8 bytes, the length of the following structure is probab ly 24 bytes, even though only 18 
bytes are declared : 

struct S { 

) : 

double value; 
char name (10]; 

Bytes: 

value name 

8 10 6 

Six extra units of padding are needed at the end to make the size of the structure a multiple of 
the alignment requirement, eight. If the padding were not used, then in an array of such struc

tures not all of the structures would have the value component aligned properly to a multiple
of -eight address. 

Example 

Alignment requirements may cause padding to appear in the middle of a structure. If the order 
of the components in the previous example is reversed, the length remains 24, but the unused 
space appears between the components so that the value component may be aligned to an ad
dress that is a multiple of 8 bytes relative to the beginning of the structure: 

struct S { 

} : 

char name [10]; 
double value; 

name 

Bytes: 10 

value 

6 8 

Any object of the structure type will be required to have an address that is a multiple of eight, 
and so the value component of such an object will always be properly aligned. 

5.6.8 Flexible Array Members 

In C99, the last component of a structure may have an incomplete array type, in which 
case it is called aflexible array member. Flexible array members were introduced to legit
imize a long-standing but unsafe C programming idiom for structures whose size could 
vary at run time. 

To use a flexible array member, declare a structure type S whose last component is a 
flexible array member F whose element type is E. Type S cannot contain only F; it must 
have at least one other named component. For example, 

struct S { int F_len; double F[]; }; /* E is double */ 

The value of sizeof (S) is defined to be the size of the structure ignoring member 
F, except that the size must include any padding required just before F. (To determine the 
amount of padding needed, assume that F were declared as a fixed size array with the same 
element type, and use the padding, if any, that would be needed in front ofF.) 

When you use an lvalue of type S to access a data object, you may treat F as if it 
were a fixed size array with a length L that does not cause S to exceed the length of the 
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data object. That is, if the data object has length D, then the L is the largest non-negative 
integer such that sizeof (S) + L*sizeof (E) <= D, and you can refer to F[O], 

F [11 , ... , F [L-l 1 . If you were to simply declare a variable of type S, then you could not 
use the array because the data object (the variable) has no space for it. (D would be 
si zeaf (S), so L would be 0.) You can always refer to &F [0] even if there is no room 
for the array. 

To use type S to access a data object larger than itself, you can declare a pointer lOS 

and assign to it the address of a larger object, or you can use a union to overlay S on a larg
er object. 

Example 

It is common to use flexible array members to define a structure to hold a variably sized vec
tor and the vector's length. 

struct Vee { int len; double vec[]i } 

If the length of the vector is a constant, you can declare it statically. 

#define N 20 /* Length of vector */ 
union{ 

char data_obj ect [sizeof (struct Vec) + N*sizeof (double)] ; 
struct S v; 

} u = { .v = {N} }i /* C99 designated initializer */ 

If the length of the vector is not known until run time, use malloc to allocate space for it. 

struct Vec *p; 
int ni /* length of vector */ 

p - malloc( sizeof(struct Vec) + n * sizeof (double}); 
p->len _ ni 

Here is how you would use the vectors. 

for (i = Oi i < u.v . len; i++) u.v.vec[iJ = 0.0; 
for (i = Oi i < p- >len; i++) p- >vec[iJ = 0.0; 

Before e99, you would have had to declare the structure as 

struct Vec { int leni double vec[lli } 

and change the call tomalloc-for example, to 

p = malloc( sizeof(struct Vec) + (len -l)*sizeof (double»; 

Although this code usually worked, its behavior was (and still is) undefined. 

5.7 UNION TYPES 

The syntax for defining union types is almost identical to that for defining structure types: 
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union-type-specifier : 
union-type-defi nilion 
un; on -type -reference 

union-type-definition : 
union union-tagopt { field-fis t} 

union-type-reference : 
union union-tag 

union-tag: 
identifier 
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The syntax for defining components is the same as that used for structures. In traditional 
C, unions could not contain bit fields, but in Standard C this restriction is removed. 

As with structures and enumerations, each union type definition introduces a new 
union type different from all others. If present in the definition , the union tag is associated 
with the new type and can be used in a subsequent union type reference. Forward referenc
es and incomplete definitions of union types are permitted with the same rules as structure 
types. 

A component of a union may have any object type that is not variably modified. Al
so, unions may not contain instances of themselves, although they may contain pointers to 
instances of themselves. As with structures, the names of union components are defined in 
a special overload class associated with the union type. That is, component names within a 
single union must be distinct, but they may be the same as component names in other 
unions and may be the same as variable, function, and type names. 

5.7.1 Union Component Layout 

Each component of a union type is allocated storage starting at the beginning of the union . 
A union can contain only one of its component values at a time. An object of a union type 
will begin on a storage alignment boundary appropriate for any contained component. 

Example 

Here is a union with three components, all effectively overlaid in memory: 

Example 

union U { 
double d; 
char c[2]; 
int i; 

d 

c (2) 

i (4) 

If we have the fo llowing union type and object definitions; 

static union U { ... ; int C; ... J } object, .p = &object; 
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then the fo llowing two equalities hold: 

(union U *) & (p->c) :: p 
&(P- >c) "'''' (int *) p 

Types Chap. 5 

Furthermore, these equalities hold no matter what the type of the component C and no matter 
what other components in the union precede or follow C. 

References alignment restrictions 6.1.3 

5.7.2 Sizes of Unions 

The size of an object of a union type is the amount of storage necessary to represent the 
largest component of that type, plus any padding that may be needed at the end to raise the 
length up to an appropriate ahgnment boundary. The rule is that the union will be padded 
out to the size the type would occupy as an element of an array of such types. Recall that 
for any type T, including unions, the size of an n-element array of T is the same as (the size 
of D-n. Another way of saying this is that the structure must terminate on the same align' 
ment boundary on which it started. That is, if the structure had to begin on an even byte 
boundary, it must end on an even byte boundary. 

Note that the alignment requirement for a union type will be at least as stringent as 
for the component hav ing the most stringent requirements. 

Example 

On a computer that requires all objects of type double to have an address that is a multiple 
of 8, the length of the following union will be 16, even though the size of the longest compo
nent is only La: 

union U { 

) ; 

double value; 
char name (10]; 

(8 bytes) 

value (8 

name (10) 

(6 bytes) 

Six extra units of padding are needed to make the size of the union a multiple of the a lignment 
requirement, eight. If the padding were not used, then in an array of such unions not all of the 
unions would have the val ue component aligned properly to a multiple-of-eight address . 

5.7.3 Using Union Types 

C's union type is somewhat like a "variant record" in other languages. Like structures, 
unions are defined to have a number of components. Unlike structures, however, a union 
can hold at most one of its components at a time; the components are conceptually over
laid in the storage allocated for the union. If the union is very large, or if there is a large 
array of the unions, then the storage savings can be significant. 
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Example 

Suppose we want an object that can be either an integer or a floating-point number depending 
on the situation. We define union da tum: 

union datum { 
int ii 
double d; 

} ; 

and then define a variable of the union type: 

union datum Ui 

To store an integer in the union, we write 

u.i = 15; 

To store a floating-point number in the union, we assign to the other component 

u.d = 88.ge4i 

A component of a union should be referenced only if the last assignment to the 
union was through the same component. C provides no way to inquire which component 
of a union was last assigned; the programmer can either remember or encode explicit data 
tags to be associated with unions. A data lag is an object associated with a union that holds 
an indication of which component is currently stored in the union. The data tag and union 
can be enclosed in a common structure. 

Example 

We can replace the union 

union widget { long count; double value; char name[lOJ;} Xi 

with 

enum widget_ tag { count widget, 
val ue _widget, 
name_ widget }; 

struct WIDGET { 
enum widget_tag tag; 
union { long count; 

double value; 
char name[lO]; } data; 

} x; 

typede£ struct WIDGET widget; 
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The size of the widget structure is 24 bytes, which is caused by the assumption that objects 
of type double must be aligned on 8·byte boundaries. A possible layout is shown next: 

tag (4) 

4 4 10 6 

If, as is common, objects of type double can be placed on 4-bYle boundaries, then 
widget 's length will be only 16 bytes. 

To assign an integer to the union, we write 

x.tag = count_widget; 
x.data.count = 10000; 

To assign a floating-point number, we write 

x.tag = value_widget; 
x.data.value = 3.1415926535897932384; 

To assign a string, we can use the s trncpy library function: 

x.tag = name_widget; 
strncpy(x.data . name, "Mil lard", 10); 

Following is a portable function that can discriminate among the possibilities for the union. 
print_widget can be called without regard to which component was last assigned: 

void print_widget(widget w) 
{ 

} 

switch(w.tag) { 

} 

case count_widget: 
printf(~Count %ld\n~, w.data.count); break; 

case value_widget: 
printf("Value %f\n·, w.data.value); break; 

case name_widget: 
printf("Name \"%s\~\n~, w.data.name); break; 

Although Standard C makes few guarantees about the layout of unions, it does make 
a special guarantee about unions that include a number of components of similar structure 
lypes. If llle types uf thuse structures all begin willI the same initial sequem;e uf their OWIl 

components, then Standard C guarantees that those initial sequences will exactly overlay 
each other. This lets you place a data tag at the beginning of each structure, for example, 
and refer to that tag using any structure member. 

References cast expression 7.5.1; enumerations 5.5; overloading 4.2.4; scope 4.2.1; 
swi tch statement 8.7; s trncpy facility 13.3; structures 5.6; typedef 5.10 
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5.7.4 (Mis)using Union Types 

Unions are used in a nonportable fashion any time a union component is referenced when 
the last assignment to the union was not through the same component. Programmers 
sometimes do this to "reach under" C's type system and discover something about the 
computer's underlying data representation (itself a nonportable concept). 

Example 

To discover how a floating-point number is represented: 

I. Create a union with floating-point and integer components of the same size: 

float (4 

int (4 bytes) 

2. Assign a value to the floating-point component. 

3. Read the value of the integer component and print it out as, say, a hexadecimal number. 

Here is a function that does just this , assuming types float and in t have the same length: 

void print_ rep(f1oat f) 
{ 

} 

union { float f; int i } f or i; 
f _ or_ i.f ::: f; 
printf(-The representation of %12.7e is %#010x\n", 

f_or_i.f, £ or i.i ); 

When print_ rep (1. 0) is called, the output on our Motorola 68020-based workstation is 

The representation of 1.0000000e+00 is Ox003f800000 

Notice that a cast operation cannot be used to discover the underlying representation. The cast 
operator in C converts its operand to the closest value in the new representation; (int) 1.0 
is I, not Ox003f800000. 

5.8 FUNCTION TYPES 

The type "function returning T " is a function type, where T may be any type except "array 
of ... " or "function returning .... " Said another way, functions may not return arrays or oth
er functions, although they can return pointers to arrays and functions. 

Functions may be introduced in only two ways. First, a function definition can cre
ate a function, define its parameters and return value, and supply the body of the function. 
More information about function definitions is given in Section 9.1. Second, a function 
declaration can introduce a reference to a function object defined elsewhere. 
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Example 

Here is a function definition for square: 

tnt square(int x) 
{ 

return X*Xi 

J 
If square were defined elsewhere, the following declaration would introduce its name and 
allow it to be called. 

extern int square(int)i 

An external function declaration can refer to a function defined in another C source 
file or to a function defined later in the same source file (Le., a "forward reference"). 

Example 

Forward references can be used to create mutually recursive functions, such as f and g : 

extern int f(void)i 

int g(void) { ... fO, ... J 
int f(void) { ... gO, ... J 

The same declaration style can also be used for static functions: 

static int f(); 

static int g () { ... f (), ... J 
static int f 0 { ... gO, ... J 

Some non-Standard C compilers may not permit this kind of forward reference to 
static functions. Sometimes they compromise by allowing the first declaration to use the 
storage specifier extern, changing the storage class to static when the definition is 
seen. 

Example 

extern int f (void) ; 1* not really extern, see below ... *1 

static int g(void) { ... fO, ... J 
static int f (void) { ... gO, ... J 1* now, make f static *1 

This programming idiom is misleading at best. Standard C requires that the first declaration 
of a function (in fact, of any identifier) specify whether it will be external or static. This 
permits one-pass compilation of C programs in those cases in which an implementation 
must treat static and external functions differently. Standard C does not explicitly disallow 
the "extern-then-static" style, but it does not specify its meaning. 

The only operations on an expression of function type are converting it to a function 
pointer and calling it. 
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Example 

In the following declarations, external identifiers £ , fp , and apt have types "function return
ing int," "poinler to function returning int," and "array of pointers to functions taking a 
double parameter and returning int," respectively: 

extern int f (), (*fp) (). (*apf [} ) (double) i 

The declaration of apt includes a Standard C prototype for the function. These identifiers 
can be used in function call expressions by writing 

int i,j,k; 

i=f(14); 

i = (* fp) (j. k); 
i = (*apf Ijl) (k); 

When a function with no visible prototype is called, certain standard conversions are 
applied to the actual arguments, but no attempt is made to check the type or number of ar
guments with the type or number of fonnal arguments to the function if known. Argu
ments to functions with visible prototypes are converted to the indicated parameter type. 
In the prior example, the integer argument k to the function designated by * apf [j] will 
be converted to type double. 

In Standard C and some other implementations, an expression of type "pointer to 
function" can be used in a function call without an explicit dereferencing; in that case, the 
call (*fp) (j,k) inthepreviousexamplecanbewrittenas fp(j,k). 

An expression of type "function returning ... " that is not used in a function call, as the 
argument of the address operator, &, or as the argument of the sizeof operator is imme
diately converted to the type "pointer to function returning .... " (Not performing the con
version when the function is the argument of sizeof ensures that the sizeof expression 
will be invalid and not just result in the size of a pointer.) The only expressions that can 
yield a value of type "function returning T" are the name of such a function and an indirec
tion expression consisting of the unary .indirection operator, * , applied to an expression of 
type "pointer to function returning . ... " 

Example 

The following program assigns the same pointer value to fpl and fp2: 

extern int f () ; 
int (*fpl) (). (*fp2) (); 
fpl = f; 

fp2 '" .sef; 
/* implicit conversion to pointer */ 
/* explicit manufacture of a pointer */ 

All the information needed to invoke a function is assumed to be encapsulated in an 
object of type "pointer to function returning .... " Although a pointer to a function is often 
assumed to be the address of the function's code in memory, on some computers a func
tion pointer actually points to a block of information needed to invoke the function . Such 
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representation issues are normally invisible to the C programmer and need concern only 
the compiler implementor. 

References function argument conversions 6.3.5; function call 7.4.3; function declarator 
4.5.4; function definition 9.1; function prototype 9.2; indirection operator * 7.5.7; sizeof operator 
7.5.2; usual unary conversions 6.3.3 

5.9 THE VOID TYPE 

The type void has no values and no operations. 

void-type-specijier: 
void 

Type void is used 

• as the return type of a function, signifying that the function returns no value; 
• in a cast expression when it is desired to explicitly discard a value; 

• to form the type void *, a "universal" data pointer; and 

• in place of the parameter list in a function declarator to indicate that the function 
takes no arguments. 

Example 

The declaration ofwri te _ line uses void both as a return type and in place of the param
eter list. 

extern void write_ line(void); 

write_ line(); /* no value returned */ 

The declaration of wri te line2 indicates that the function returns a value, but the call 
uses a cast to void to explicitly throwaway the returned value. 

extern int write_ line2(void); 

(void) write_line2 ( ... ) i /* ignore returned value */ 

References casts 7.5.1; discarded expressions 7.13; void * 5.3.2 

5.10 TYPEDEF NAMES 

When a declaration is written whose "storage class" is typedef, the type definition fa
cility is invoked. 

typedefname " 
identifier 
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An identifier enclosed in any declarator of the declaration is defined to be a name 
for a type (a " typedef name"); the type is what would have been given the identifier if 
the declaration were a normal variable declaration. Once a name has been declared as a 
type, it may appear anywhere a type specifier is pennitted. This allows the use of mne
monic abbreviations for complicated types. 

Example 

Consider these declarations: 

typedef int '*rPi 

typede£ int (-FP) ( 

typedef int Feint); 

I-
) ; I-

I-

IP: "pointer to int " * / 
FP: ·pointer to function 
returning int" */ 
F: "function with one int 
parameter, returning int" */ 

typede£ double A5[S]; /* AS: liS-element array of double" */ 
typede£ int A[] i / * A : "array of int" * / 

After the prior declarations, (he following declarations are penniued: 

IP ip; 
IP tip () ; 
FP fp; 
F *fp2 i l -

AS as; 
AS a2S [2] ; 

A a; 

A *ap3 [3] ; 

Example 

l -
I-
I-

l -
I-

I-
I-

ip: pointer to an int * / 
fip: function returning a pointer to int * / 
fp: pointer to a function returning int * / 
fp2: pointer to a function taking an 

int parameter and returning an int */ 

as: S-element double array */ 
a25: double [2] [5]: a 2-element array 
of S-element arrays of double */ 
a: array of int (with unspecified bounds) */ 
ap3: 3-element array of pointers to 
arrays of int (with unspecified bounds) */ 

typedef names must not be combined with other type specifiers: 

typedef long int bigint; 
unsigned bigint Xi / * invalid */ 

Combining type qualifiers with typedef names is allowed and useful: 

const bigint Xi / * OK */ 

Declarations with the typede£ storage specifier do not introduce new types; the 
names are considered to be synonyms for types that could be specified in other ways. 

Example 

After the declaration 

typedef struct S { int ai int bi } sltype, s2typei 

the type specifiers sltype, s2type, and struct S can be used interchangeably to refer 
to the same type. 
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Although typede f only introduces synonyms for types that can be named in other 
ways, C implementations may wish to preserve the declared type names internally so that 
debuggers and other tools can refer to types by the names used by the programmer. 

In e99, if a typedef declaration includes a variable length array type, then the ar
ray size expression is evaluated when the typedef declaration is processed, not when 
the typedef name is used to declare an array. 

Example 

In the fo llowing code fragment, the array a is a 100element array of integers because lhe size 
of type Array was bound when the typedef was seen, not when a was declared. 

{ 

} 

int n = 10; 
typedef int Array[n]i 
n = 25; 
Array ai 

References type compatibility 5.11; variable length arrays 5.4.5 

5.10.1 Typedef Names for Function Types 

A function type may be given a typedef name, but functions must not inherit their 
"function-ness" from typedef names. This restricts function typedefs somewhat. 

Example 

DblFunc becomes a synonym for "function returning double" with this declaration: 

typedef double DblFunc()i 

Once declared, DblFunc can be used to declare pointers to the function type, arrays of point
ers to the function type, and so forth, using the normal rules for composing declarators: 

extern DblFunc *f-ptr, *f_array[); 

Abiding by the normal rules of type declarations, the programmer must not declare invalid 
types, such as an array of functions: 

extern DblPunc f _ array[lO]; /* Invalidl * / 

However, DblFunc cannot be used to define functions. The following definition of fabs is 
rejected because it seems to define a function returning another function: 

DblFunc fabs(double x) 
{ 

if (x<O.O) return -x; else return x; 
} 
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It is not possible to get around this problem by omitting the parentheses after fabs , because 
that is where the parameter must be listed. The function definition must be written in the usual 
way, as if OblFunc did not exist: 

double fabs(double x ) 
{ 

if (x<O.O) return -X; else return X; 
} 

In Standard C, typede£ names can include function prototype information, including pa
rameter names: 

typede£ double DFuncType( double x); 
typede£ double (*FuncPtr) ( int, float ); 

In this example, DFuncType is a function type and FuncPtr is a function pointer type. 

References function declarators 4.5; function definitions 9.1; function prototypes9.2 

5.10.2 Redefining Typedef Names 

The language specifies that typede f names may be redefined in inner blocks in the same 
fashion as ordinary identifiers. 

Example 

typedef int Ti 

T foo; 

{ 

} 

float T; / * New definition for T */ 
T :::: 1. 0; 

One restriction is that the redeclaration cannot omit the type specifiers on the assumption 
that the type will default to int. Some non-ISO compilers have been known to have prob
lems with redeclarations of typede f names, probably because of the pressure typedef 
names put on the C language grammar. We now turn to this problem. 

References redefining typedef names in C++ 5.13.2; scope of names 4.2.1 

5.10.3 Implementation Note 

Allowing ordinary identifiers to be type specifiers makes the C grammar context sensitive, 
and hence not LALR(l). To see this, consider the program line 

A ( *B ) ; 

If A has been defined as a typede f name, then the line is a declaration of a variable B to 
be of type "pointer to A." (The parentheses surrounding " *B" are ignored.) If A is not a 
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type name, then the line is a call of the function A with the single parameter *B. This am
biguity cannot be resolved grammatically. 

C compilers based on the parser-generator Y ACC-such as the Portable C Compil
er-handle this problem by feeding information acquired during semantic analysis back to 
lexical analysis. All C compilers must do typedef processing during lexical analysis. 

5.11 TYPE COMPA T1BILITY 

Two types in C are compatible if they are either the same type or "close enough" to be 

considered the same for many purposes. The notion of compatible types was introduced 
by Standard C, but for the most part it captures in a more formal way the rules that are 
used in traditional C. Some additional rules are necessary to handle Standard C features 
such as function prototypes and type qualifiers. For two types to be compatible, they either 
must be the same type, or must be pointers, functions, or arrays with certain properties. 
The specific rules are discussed in the following sections. 

Associated with every two compatible types is a composite type, which is the com
mon type that arises out of the two compatible types. This is similar to the way in which 
the usual binary conversions take two integral types and combine them to yield a common 
result type for some arithmetic operators. The composite type produced by two compatible 
types is described along with the rules for type compatibility. 

References array types 5.4; function prototypes 9.2; function types 5.8; pointer types 5.3; 
structure types 5.6; type qualifiers 4.4.3 ; union types 5.7; usual binary conversions6.3 

5.11.1 Identical Types 

Two arithmetic types can be compatible only if they are the same type. If a type can be 
written using different combinations of type specifiers, all the alternate fOnTIS are the same 
type. That is , the types short and short int are the same, but the types unsigned, 
int, and short are all different. The type signed int is the same as int (and equiv
alently for short and long), except when they are used as the types of bit fields. The 
types char, signed char, and unsigned char are always different. 

Any two types that are the same are compatible and their composite type is the same 
type. In Standard C, the presence of any type qualifiers changes the type: type cons t 
int is not the same as-nor is it compatible with- type into Names declared as types in 
typedef definitions are synonyms for types, not new types. 

Example 

After these declarations, the types of p and q are the same; the types of x and y are the same, 
but neither is the same as the type of u; the types TS and struct S are the same; and the 
types of u, w, and yare the same. 
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Example 

char * p, *qi 
struct {tnt a, b;} X, y; 
struct S {int a, bi} u; 
typede£ struct S TSi 

struct S Wi 

TS Yi 
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After these declarations, the type my_ int is the same as t ype int, and the type 
my_ function is the same as the type "float * () "; 

typede£ int my_ inti 
typedef float *my_ function(); 

Example 

After these declarations, the variables w, x , y , and z all have the same type. 

struct S { int a, bi } Xi 

typede£ struct S tl, t2; 
struct S Wi 

tl Yi 
t2 Z; 

References integer types 5. 1; pointer types 5.3; structure types 5.6; typede£ names 5.10 

5.11.2 Enumeration Compatibility 

Each enumerated type definition gives rise to a new integral type. Standard C requires 
each enumerated type to be compatible with the implementation-defined integer type that 
represents it. The compatible integer type may be different for different enumerations in 
the same program. The composite type is the enumerated type. No two different enumerat
ed types defined in the same source file are compatible. 

Example 

In the fo llowing declarations, the types of El and E2 are not compatible, but the types of El 

and E3 are compatible because they are the same type. 

enum e {a.b} Eli 

enum {c.d} E2; 

enum e E3; 

Because enumerated types are generall y treated as integer types, values of different 
enumerated types can be mixed free ly regardless of type compatibility. 

Example 

The effect of the compatibility rule is that Standard C will reject the second function 
declaration below because the argument type in the prototype does not agree with the first 
declaration: 
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extern int f( enum {a,b} Xli 

extern int f( enum {h,e} x); 

Types Chap. 5 

Non-Standard implementations sometimes treat enumerated types as fully compati
ble with int and with each other. 

References enumerated types 5.5 

5.11.3 Array Compatibility 

Two similarly qualified array types are compatible only if their element types are compat
ible. Ifboth types specify constant sizes, then the sizes must also be the same. However, if 
only one array type specifies a constant size---or if neither do-then the two types are 
compatible. The composite type of two compatible array types is an array type with the 
composite element type and the same type qualification. If either original type specifies a 
constant size, then the composite type has that constant size; otherwise the size is unspeci
fied . If two arrays are used in a context that requires them to be compatible, then the re
sults are undefined unless the dimensions are the same at run time. 

Example 

The following array types are compatible as noted. e is a variable length array (C99). 

extern int a[]; /* compatible 
int b[5]i /* compatible with a 
int c[IO] i /* compatible with a 

withb, c, andei not 
and e only */ 
and e only */ 

const int d[IO]; /* not compatible with other types */ 
int ern]; /* compatible with a, b, and c; not d */ 

d */ 

The type of d is not compatible with other types because its element type,const int, is not 
compatible with element type into The composite type of the types of a and b is int [5] . 
At run time, using a and b in place of one another would be well defined only if the actual 
definition of a had length 5. 

References array types 5.4, array declarators 4.5.3; type qualifiers 4.4.3; variable length ar
ray 5.4.5 

5.11.4 Function Compatibility 

For two function types to be compatible, they must specify compatible return types. If 
both types are specified in traditional (nonprototype) form, that is all that is required. The 
composite type is a (traditional-fonn) function type with the composite return type. 

For two function types both declared in prototype form to be compatible, the follow
ing conditions must hold: 

1. The function return types must be compatible. 

2. The number of parameters and the use of the ellipsis must agree. 

3. The corresponding parameters must have compatible types. 
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It is not necessary that any parameter names agree. The composite type is a function type 
whose parameters have the composite parameter types, with the same use of the ellipsis, 
and with the composite return type. 

If only one of the two function types is in prototype form, then for the two types to 
be compatible the fo llowing conditions must hold: 

I . The return types must be compatible. 

2. The prototype must not include the ellipsis tenninator. 

3. Each parameter type T in the prototype must be compatible with the type resulting 
from applying the usual argument conversions to T. 

The composite type is the prototype-form function type with the composite return value. 

References function prototypes 9.2; function types 5.8 

5.11.5 Structure and Union Compatibility 

Each occurrence of a type specifier that is a structure-type definition or union-type defini
tion introduces a new structure or union type that is neither the same as nor compatible 
with any other such type in the same source fi le. 

A type specifier that is a structure, union , or enumerated type reference is the same 
type introduced in the corresponding definition . The type tag is used to associate the refer
ence with the definition, and in that sense may be thought of as the name of the type. 

Example 

The types of x , y, and u next are all different, but the types of u and v are the same: 

struct { int a; int h; } x; 
struct { int a; int h; } y; 
struct S { int a; int h; } u; 
struct S v; 

References enumerations 5.5; structures 5.6; unions 5.7 

5.11.6 Pointer Compatibility 

Two (similarly qualified) pointer types are compatible if they point to compatible types. 
The composite type for two compatible pointer types is the (similarly qualified) pointer to 
the composite type. 

5.11.7 Compatibility Across Source Files 

Although structure, union, and enumerated type definitions give rise to new (noncompati
ble) types, a loophole must be created to allow references across separately compiled 
source files within the same program. 
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Example 

Suppose a header file contains these declarations: 

struct S {int a,b;}; 
extern struct S Xi 

When two source files in a program both import this header file . the intent is that the two files 
reference the same variable, x , which has the single type struct S. However, each file the
oretically contains a definition of a different structure type that just happens to be named 
struct S in each instance. 

Unless two declarations of the same type are compatible, Standard C states that the 
run-time behavior of the program is undefined, and therefore: 

1. Two structures or unions defined in separate source files are compatible if they de
clare the same members in the same order and each corresponding member has a 
compatible type (including the width of bit fields). In C99, this rule is tightened to 
also require that the structure or union tags be the same (or both be omitted). 

2. Two enumerations detined in separate source fi les are compatible ir they contain the 
same enumeration constants (in any order), each with the same value. 

In these cases, the composite type is the type in the current source file. 

References enumerated types 5.5; struclure types 5.6; union types 5.7 

5.12 TYPE NAMES AND ABSTRACT DECLARA TORS 

There are two situations in C programming when it is necessary to write the name of a 
type without declaring an object of that type: when writing cast expressions and when ap
plying the sizeof operator to a type. In these cases, one uses a type name built from an 
abstract declarator. (Do not confuse "type name" with "typedef name.") 

type-name: 
declaration-specifiers abstract-declarator opt 

abstract-declarator: 
pointer 
pointer opt direct-abstract-declarator 

pointer: 
* type-qualifier-listopt 
* type-qualifier-listopr pointer 

type-qualifier-list: 
type-qualifier 
type-qualifier-lisl type-qualifier 

(C89) 
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direct-abstract-declarator: 
( abstract-declarator) 
direct-abstract-d~claralor opt [ constant-expressionoPI ] 
direct-abstract-declarato'opt [ expression ] 
direct-abstract-declarator opt [ • ] 
direct-abstract-declarator opt (parameter-type-fislopt) 

(C99) 
(C99) 
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An abstract declarator resembles a regular declarator in which the enclosed identifier has 
been replaced by the empty string. Thus, a type name looks like a declaration from which 
the enclosed identifier has been omitted. In the syntax, the declaration-specifiers must not 
include storage class specifiers. The parameter-type-list is permitted only in Standard C, 
where it is used for a prototype-form type declaration. 

The precedences of the alternatives of the abstract declarator are the same as in the 
case of normal declarators. 

Example 

Type name 

int 

float * 

char (*) (int) 

unsigned * [41 

int (*(*) 0) () 

Translation 

type int 

pointer to float 

pointer to function taking an in t parameter and returning 
char 

array of 4 pointers to unsigned 

pointer to function returning pointer to function returning 
int 

Type names always appear within the parentheses that form part of the syntax of the 
cast or sizeof operator. If the type specifier in the type name is a structure, union, or 
enumerated type definition, then Standard C requires an implementation to define a new 
type with the included type tag (if any) at that point. It is considered bad style to make use 
of this feature. (It is invalid in C++.) 

Example 

Assume that struct S is not defined when the following two statements are encountered. 
(A good C implementation should issue a warning on the first line.) 

i = sizeof( struct S {int a,bi})i /* OK, but strange */ 
j = sizeof( struct S ); /* OK, struct S is now defined */ 

References casts 7.5.1; function prototypes 9.2; si zeof operator 7.5.2 
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5.13 C++ COMPATIBILITY 

5.13.1 Enumeration Types 

It is good practice not to use enumerated types or enumeration constants as integer types 
without explicit casts. Unlike C, C++ treats enumerated types as distinct from each other 
and from integer types, although you can convert between them with casts. C++ also per
mits implicit conversions from enumeration types to integer types. 

Example 

enum e {blue, red, yellow} e _vari 
int i _var; 

i var = red; /* valid in both C and c++ */ 
e var = 1; /* valid in c, not in c++ */ 
i var = (int) red. /* valid in both C and c++ */ 
e var = (enum e) 3; /* valid in both C and c++ */ 
assert (sizeof (blue) == sizeof(int}); 

/* always succeeds in C; may fail in c++ */ 

References enumeration type 5.5 

5.13.2 Typedef Names 

As in C, typedef names can be redeclared as objects in inner scopes. However, in C++ it 
is not permitted to do so within a structure or union-which are scopes-if the original 
typede£ name has been used in the structure or union already. This situation is unlikely 
to occur in practice. 

Example 

typedef int INT; 
struct S { 

INT i; 
double INT; /* OK in C, not C++; everywhere a bad idea*/ 

} 

References redefining typedef names 5.10.2 

5.13.3 Type Compatibility 

c++ does not have C' s notion of type compatibility. To do stricter type checking, C++ re
quires identical types in situations in which C would require only compatible types. In 
some cases, C++ will issue a diagnostic if the types are not identical. However, because 
C++ provides "layout compatibility" with C, a C++ program will still work correctly even 
if it contains undetected occurrences of nonidentical but (Standard C) compatible types. 

References type compatibility 5.11 
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5.14 EXERCISES 

1. What C type would you choose to represent the fo llowing sets of values? Assume your main 
prIority is portability across different compilers and computers, and your secondary priority is 
to minimize space consumption. 

(a) a five-digit U.S. Postal Service zip code 

(b) a phone number consisting of a three-digit area code and a seven-digit local number 

(c) the values 0 and 1 

(d) the values - 1,0, and 1 

(e) either an alphabetic character or the value - l 

en the balance in a bank account, in dollars and cents, up to 9,999,999.99 

2. Some popular computers support an extended character set that includes the normal ASCII 
characters as well as additional characters whose values are in the range 128 through 255. 
Assume that type char is represented in eight bits. The fo llowing is _ up _ arrow function is 
supposed to return "true" if the input character represents the up-arrow key and "false" other
wise. Will this function be portable across different Standard C compilers assuming that the 
definition of UP _ARROW_ KEY has the proper value for the target computer? If not, rewrite it 
so that it is. 

#define UP ARROW KEY Ox86 

int is_up_ arrow(char c) 
{ 

return c == UP ARROW_ KEY i 
} 

3. If vp has type void * and cp has type char * , which of the following assignment state
mems are valid in Standard C? 

(a) vp : CPi (e) 

(b) cp : vp; (d) 

4. If i v has type int [3 J and im has type in t 
without using the subscript operator: 

(a) iv [iJ 

(b) im[iJ [jJ 

*vp = *cp; 

*cp = *VPi 

[4] [5], rewrite the following expressions 

5. What imeger value is returned by the following function f ? Is the cast to type int in the 
return statemem necessary? 

enum birds {wren, robin:12, blue jay}; 
i nt f O 
{ 

return (int) blue jaYi 
} 

6. Following is the definition of a structured type and a variab le of that type. Write a series of state
ments that assign a valid value to every component of the structure. If two components of the 
structure overlap, assign to only one of the overlapping components. 
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struct S { 

int i; 
struct T { 

unsigned s: 1; 
unsigned e: 7; 
unsigned m: 24 i 

} F, 
union U { 

double d; 
char a [6] ; 

int * Pi 
} u, 

} Xi 
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7. Make two sketches of the structure defined in the previous problem using the same formal as in 
Sections 5.6.5 and 5.7.3. Assume that the underlying computer is byte-addressed using 8 bits 
for type char, 32 bits for pointers and type int, and 64 bits for type double. In the first 
sketch, assume a big-endian computer with bit fields packed right to left within 32-bit words; 
in the second, assume a little-eodian with bit fields packed right to left within words. In bolh 
cases, assume the compiler packs bit fields as tightly as possible. (Endianness is described in 
Section 6.1.2.) 

8. Write a typedef definition of the type "function returning pointer to integer." Write a decla
ration of a variable that holds a pointer to such a function and write an actual function of that 
type using the typede£ definition where possible. 

9. Write a s tdbool . h header file so that a programmer can use C99-style boolean types in a 
C89 implementation. Are there any limitations? 

10. Rewrite the data tag example of Section 5.7.3, including the print_widget function, mak
ing a WIDGET be a union of three structures, each including a data tag and a data value. Is your 
implementation portable to other Standard C conforming implementations? 



6 

Conversions and 

Representations 

Most programming languages try to hide the details of the language's implementation on a 
particular computer . For the most part, the C programmer need not be aware of these de
tail s, either, although a major attraction of C is that it allows the programmer to go below 
the abstract language level and expose the underlying representation of programs and data. 
With this freedom comes a certain amount of ri sk: Some C programmers inadvertently de
scend below the abstract programming level and build into their programs nonportable as
sumptions about data representations. 

This chapter has three purposes. First, it discusses some characteristics of data and 
program representations, indicating how the choice of representations can affect a C 
program. Second, it discusses in some detail the conversion of values of one type to anoth
er, emphasizing the characteristics of C that are portable across implementations. Finally, 
it presents the "usual conversion rules" of C, which are the conversions that happen auto
matically when expressions are evaluated. 

6.1 REPRESENTATIONS 

This section discusses the representation of functions and data and how the choice of rep
resentations can affect C programs and C implementations. 

6.1.1 Storage Units and Data Sizes 

All data objects in C except bit fields are represented at run time in the computer's memo
ry in an integral number of abstract storage units. Each storage unit is in turn made up of 
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some fixed number of bits, each of which can assume either of two values, denoted 0 and 
1. Each storage unit must he uniquely addressable and is the same size as type char. The 
number of bits in a storage unit is implementation-defined in C, but it must be large 
enough to hold every character in the basic character set. The C Standard also calls storage 
units bytes, but the tenn byte is usually understood to mean a storage unit consisting of ex
actly eight bits. 

By definition, the size of a data object is the number of storage units occupied by 
that data object. A storage unit is taken to be the amount of storage occupied by one char
acter; the size of an object of type char is therefore 1. The number of bits in a character 
(byte) is given by the value of CHAR BIT in limi ts. h. 

Because all data objects of a given type occupy the same amount of storage, we can 
also refer to the size of a type as the number of storage units occupied by an object of that 
type. The sizeof operator may be used to determine the size of a data object or type. We 
say that a type is "longer" or "larger" than another type if its size is greater. Similarly, we 
say that a type is "shorter" or "smaller" than another type if its size is less. Standard C re
quires certain minimum ranges for the integer and floating-point types and provides 
implementation-defined header files limi ts. h and float. h that define the sizes. 

Example 

The following C99 program determines the sizes of the principal C data types. To be compat
ible with older versions of C, the length modifier z in %3 zd should be replaced by a modifier 
character appropriate for size _ t (the type of sizeof): 1 (ell) if it is long and nothing if it 
is into 

#include <stdio.h> 
int main (void) 
{ 

} 

printf("\tType sizes:\n"); 
printf("char\tshort\tint\tlong\tllong\t" 

"float\tdouble\tldouble\n"); 
printf("%3zd\t%3zd\t%3zd\t%3zd\t%3 zd\t" 

"%3zd\t%3zd\t%3zd\n", 
sizeof (char), sizeof (short), sizeof (int) , 
sizeof(long) , sizeof(long long), 
sizeof(float), sizeof(double) 
sizeof(long double» i 

return 0; 

References character types 5.1.3; float.h 5.2; limits . h 5.1.1; minimum integer 
sizes 5.1.1; sizeof operator 7.5.2; s tdio. h standard I/O Ch. 15 

6.1.2 Byte Ordering 

The addressing structure of a computer determines how storage pieces of various sizes are 
named by pointers. The addressing model most natural for C is one in which each charac
ter (byte) in the computer's memory can be individually addressed. Computers using this 
model are called byte-addressable computers. The address of a larger piece of storage-
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one used to hold an integer or a floating-point number, for example-is typically the same 
as the address of the first character in the larger unit. The "first" character is the one with 
the lowest address. 

Even within this simple model, computers differ in their storage "byte order"-that 
is, they differ in which byte of storage they consider to be the "first" one in a larger piece. 
In "right-to-Ieft" or "little-endian" architectures, which include the Intel 80x86 and Pen
tium microprocessors, the address of a 32-bit integer is also the address of the low-order 
byte of the integer. In "left-to-right" or "big-endian" architectures, which include the Mo
torola 680xO microprocessor family, the address of a 32-bit integer is the address of the 
high-order byte of the integer. Some embedded processors can be configured as either big
endian or littIe-endian depending on the needs of the total system. 

Example 

Both the Intel (little-endian) and Motorola (big-endian) architectures are byte-addressed, with 
8-bit bytes and 4-byte words, which can hold 32-bit integers. The following picture shows a 
sequence of words on each architecture, with each word containing the 32-bit value 
Ox0102 03 04. As you can see, the two architectures look the same at this level of detail. 

Big-cndian, 01020304 010203041 
left to right 

A A+4 A+8 

Liltlc-cndian. 01020304 010203041 
right to left 

A A+4 A+8 

The situation changes when we look at the contents of individual bytes within a word. On the 
big-endian, the address of the word is the address of the leftmost (high-order) byte. Since byte 
addresses increase left to right, it appears consistent with the way we drew the words before. 
On the little-endian, however, the address of the word is the address of the rightmost (Iow
order) byte. You can picture this in two ways: Either the addresses in the word increase right 
to left or else the bytes are reversed. Both views are shown next. 

Big-endian, 01 02 03 04 
left 10 right 

A A+l A+2 A+3 A+4 

Liltle-cndian, 01 02 03 04 
righllo left 

A+3 A+2 A+l A 
(first view) 

A+7 

Little-cndian, 04 03 02 01 
right 10 left 

A A+l 
(second view) 

A+2 A+3 A+4 

Components of a structure type are allocated in the order of increasing addresses
that is, either left to right or right to left depending on the byte order of the computer. 
Because bit fields are also packed following the byte order, it is natural to number the bits 
in a piece of storage following the same convention. Thus, in a left-to-right computer, the 
most significant (lefunost) bit of a 32-bit integer would be bit number 0 and the least 
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significant bit would be bit number 31. In right-te-left computers, the least significant 
(rightmost) bit would be bit 0, and so forth. Programs that assume a particular byte order 
will not be portable. 

Example 

Here is a program that determines a computer's byte ordering by using a union in a nonport
able fashion. The union has the same size as an object of type long and is initialized so that 
the low-order byte of the union contains a 1 and all other bytes contain zeroes. In right-to-left 
architectures the character component, Char, of the union will be overlaid on the low-order 
byte of the long component, Long, whereas in left-la-right architectures Char will be over
laid on the high-order byte of Long: 

#include <stdio.h> 
union { 

long Long; 
char Char[sizeof(long}]i 

} u; 

int main (void) 
{ 

} 

u.Long = 1; 
if (u.Char[O] == 1) 

printf("Addressing is right-to-left\n")i 
else if (u.Char[sizeof(long)-l] == 1) 

printf("Addressing is left-to-right\n"); 
else printf("Addressing is strange\n"); 
return 0; 

6.1.3 Alignment Restrictions 

Some computers allow data objects to reside in storage at any address regardless of the da
ta's type. Others impose alignment restrictions on certain data types, requiring that objects 
of those types occupy only certain addresses. It is not unusual for a byte-addressed com
puter, for example, to require that 32-bit (4-byte) integers be located on addresses that are 
a multiple of four. rn this case, we say that the "alignment modulus" of those integers is 
four. Failing to obey the alignment restrictions can result in either a run-time error or un
expected program behavior. Even when there are no alignment restrictions per se, there 
may be a performance penalty for using data on unaligned addresses, and therefore a C 
implementation may align data purely for efficiency. 

The C programmer is not nonnally aware of alignment restrictions because the com
piler takes care to place data on the appropriate address boundaries. However, C does give 
the programmer the ability to violate alignment restrictions by casting pointers to different 
types. Uninitialized pointers may also violate alignment restrictions. 

In general, if the alignment requirement for a type S is at least as stringent as that for 
a type D (i.e., the alignment modulus for S is no smaller than the alignment modulus for D), 
then converting a "pointer to type S" to a "pointer to type D" is safe. Safe here means that 
the resulting pointer to type D will work as expected if used to fetch or store an object of 
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type D, and that a subsequent conversion back to the original pointer type will recover the 
original pointer. A corollary to this is that any data pointer can be converted to type 
char * or void * and back safely since they have the least stringent alignment require
ments. 

If the alignment requirement for a type S is less stringent than that for type D, then 
the conversion from a "pointer to type S" to a "pointer to type D" could result in either of 
two kinds of unexpected behavior. First, an attempt to use the resulting pointer to fetch or 
store an object of type D may cause an error, halting the program. Second, either the hard
ware or the implementation may "adjust" the destination pointer to be valid, usually by 
forcing it hack to the nearest previous valid address. A subsequent conversion back to the 
original pointer type may not recover the original pointer. 

References byte ordering 6.1.2; malloc function 16.1; pointer types 5.3 

6.1.4 Pointer Sizes 

There is no requirement in C that any of the integral types be large enough to represent a 
pointer, although C programmers often assume that type long is large enough, which it is 
on most computers. In C99, header inttypes. h may define integer types intptr t 
and uintptr t , which are guaranteed large enough to hold a pointer as an integer. 

Although function pointers are usually no larger than void * pointers, this is not 
guaranteed to be the case, as discussed in Section 6.1.5. Standard C treats all conversions 
between object and function pointers as undefined. 

References function types 5.8; pointer conversions 6.2.7; pointer types 5.3; sizes of 
types 6.1.1 

6.1.5 Effects of Addressing Models 

This section describes some ways in which a computer's memory design can impact the C 
programmer and implementor. 

Memory models Some smaller and special-purpose microprocessors are designed 
in such a way that the choice of a representation for pointers involves a time-space trade
off that may not be appropriate for all programs.These processors can make use of both 
"short" and "long" addresses. The smaller addresses (those within a single segment) are 
more efficient, but limit the amount of memory that can be referenced. Large programs of
ten require access to multiple segments. 

To accommodate the needs of different programs, C compilers for these computers 
often allow the programmer to specify a memory model, which establishes the time-space 
trade-off used in the program. Table 6--1 shows representative memory models supported 
by the C compilers for early PCs. Variations of these models are still found in some digital 
signal processors. 

There are several points to note here. In all the memory models, code and data are 
kept in separate memory segments with their own address space. Therefore, it is possible 
for data and function pointers to contain the same value even though one points to an 
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Table 6-1 Memory models on early pes 

Memory Data Function 

model name pointer size pointer size Characteristics 

tiny 16 bits 16 bits code, data, and stack all occupy a single segment 

small 16 16 code occupics one 64K-byte segment; data and 
stack occupy a second 64K-byte segment 

medium 16 32 code can occupy many segments; data and slack 
arc limited to onc segment 

compact 32 16 code and stack are each limited to a single 64K 
segment; other data can occupy many segments 

large 32 32 code and data can both occupy many segments; 

stack is restricted to one segment 

huge 32 32 same as large, but single data items can exceed 
(32-bit flat) 64K bytes in size 

object and the other to a function. In the compact and medium memory models, data and 
function pointers have different sizes. Some care should be used with the null pointer con
stant, NULL (Section 5.3.2), which is an object pointer. Simple uses of NULL in expres
sions involving function pointers will be properly converted, but passing NULL as a 
function pointer argument may not work correctly in the absence of a prototype. This 
problem can be mostly eliminated by the careful use of function prototypes in Standard C, 
which will cause arguments to be correctly converted. 

Example 

A C programmer unfamiliar with segmented architectures might suppose that a data pointer 
and function pointer could contain the same value only if both were null pointers, and might 
incorrectly use the following test. This does not work because cp and £p could point into dif
ferent address spaces and accidentally have the same non-null value. 

Example 

char *cp; 
int (*fp) () , 

/* See if cp and £p are both null */ 
if ((int}cp == (int} fp ) /* Incorrect!! */ 

In the fo llowing example from traditional C, the behavior of function f is undefined when us
ing the compact or medium memory models because the null pointer passed as an argument is 
an object pointer, not a function pointer, and therefore is not the correct size: 

extern int f(); /* no parameter information */ 

f (NULL) , /* This is NOT OK! */ 

int f( int (* fp ) () ) { ... } 
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Explicit control over pointer sizes An alternative to using a specific memory 
model for an entire program (or an addition to it) is to specify whether "near" or "far" 
pointers are to be used for specific functions or data objects. In this way, a programmer 
can avoid across-the-board performance penalties, although the program will be less por
table and probably harder to maintain. 

Example 

Several C compilers for segmented architectures define new keywords __ near and __ far 
that can be used in declarations of variables and pointers. Syntactically. they can appear where 
Standard C type qualifiers appear. The keywords are spelled with two leading underscores be
cause those names are reserved for implementations (Section 10.1 .1). 

char __ near near_ char, *cp; 
int __ far (*fp) (), big_ array[30000] 

The intent is that far pointers will occupy 32 bits, whereas near pointers will use 16 bits. 
Functions or data objects declared far can be placed in remote segments by the implementa
tion, whereas near ones must be grouped in the "root" segment. Programmers using these 
language extensions must be very careful when passing the pointers to functions nol declared 
with prototypes. 

Array addressing Regardless of whether a computer uses a segmented address
ing scheme, some computers are designed in a way that makes accessing elements of an 
array more efficient if the array size is small--typically not bigger than 64K bytes. To use 
larger arrays, the programmer must supply a special compiler option or designate the large 
arrays in some way. 

Very difficult computers Although C has been implemented efficiently on many 
computers, a few computers represent data and addresses in forms that are very awkward 
for C implementations. A major problem can occur when the computer's natural word size 
is not a multiple of its natural byte size. Suppose-this was a real example-our computer 
has a 36-bit word and represents characters in 7 bi ts; each word can hold five characters 
with one bit remaining unused. All noncharacter data types occupy one or more full 
words. This memory structure will be very difficult for a C implementor because C pro
gramming relies on the ability to map any data structure onto an array of characters. That 
is, to copy an object of type T at address A, it should be sufficient to copy sizeof (T) 

characters beginning at A. The only alternative for the implementor on this computer 
would be to represent characters using some nonstandard number of bits ( e.g., 9 or 36) so 
that they fit tightly into a word. This representation could have a significant performance 
penalty. 

A similar problem occurs on "word-addressed" computers whose basic addressable 
storage unit is larger than a single character. On these computers, there mayor may not be 
a special kind of address, a "byte pointer," that can represent characters within a word. As
suming there is such a byte pointer, it may very well be larger than a pointer to objects of 
noncharacter types or may use certain bits in the pointer that are ignored and normally set 
to zero in other kinds of pointers. A C implementor must decide whether to pay the in
creased overhead of representing all pointers as byte pointers, whether to use the larger 
format only for objects of type char * (and, in Standard C, void *), or whether to use a 
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full word to represent each character. Having a different size for character pointers will 
force C programmers to he more careful about pointer conversions. 

References array types 5.4; character types 5.1.3; function argument conversions 6.3.5; 
function prototypes 9.2; pointer types 5.3; storage units 6.1.1 

6.1.6 Type Representations 

The representation of a value of some type is the particular pattern of bits in the storage 
area that holds object of that type; this pattern distinguishes the value of the object from 
other possible values of that type. It is not necessary that the type's representation use all 
the bits within its objects; some bits may be "padding," whose value is undefined. For 
example, a short data type may use only 16 bits but be stored in a 32-bit word. The pad
ding bits are included in the size returned by sizeof. The terms range or precision are 
more correct when any padding is to be ignored. 

It can also be the case that the same value has more than one representation in a 
type. There might be a representation for both +0 and - 0 in integers, for example. Imple
mentations have the freedom to choose among such equivalent representations at any 
time. 

Representations belonging to one type may be incompatible with those of another 
type even if the types have the same size. If you were to access a long value as if it were 
of type float, then the result is undefined~it could even cause the program to halt. 

Using a C99 term, the effective type of an object is the type whose representation is 
currently being used in the object. Normally, a data object (e.g., a variable) is declared to 
be of a certain type and that is always its effective type so there is no problem. Sometimes, 
such as when using objects allocated by malloc, an object has no declared type. Then 
the effective type of the object is the type of the Ivalue expression that was last used to 
store a value into the object. Subsequent accesses of the object must use a type compatible 
with the effective type (or a qualified version of a compatible type) or else the result is un
defined. Copying a value into an object with no declared type (such as withmemcpy or by 
referencing the underlying char values of the storage object) causes the effective type of 
the source to be adopted by the destination. 

References lvalue 7.1; malloe 16.1; memcpy 14.3; qualified type 4.4 

6.2 CONVERSIONS 

The C language provides for values of one type to be converted to values of other types 
under several circumstances: 

• A cast expression may be used to explicitly convert a value to another type. 

• An operand may be implicitly converted to another type in preparation for perform
ing some arithmetic or logical operation. 

• An object of one type may be assigned to a location (lvalue) of another type, causing 
an implicit type conversion. 
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• An actual argument to a function may be implicitly converted to another type prior 
to the function call. 

• A return value from a function may be implicitly converted to another type prior to 
the function return. 

There are restrictions as to what types a given object may be converted. Furthermore, the 
set of conversions that are possible on assignment, for instance, is not the same as the set 
of conversions that are possible with type casts. 

In the following sections, we discuss the set of possible conversions and then dis
cuss which of these conversions are actually performed in each of the circumstances listed 
before. 

6.2.1 Representation Changes 

A conversion of a value from one type to another mayor may not involve a representation 
change. For instance, whenever the two types have different sizes, a representation change 
has to be made. When integers are converted to a floating·point representation, a represen· 
tation change is made even if the integer and floating-point type have the same sizes. 
However, when a value of type int is converted to type unsigned int, a representa
tion change may not be necessary. 

Some representation changes are very simple, involving merely discarding of excess 
bits or padding with extra 0 bits. Other changes may be more complicated, such as conver
sions between integer and floating-point representations. For each of the conversions dis
cussed in the following sections, we describe the possible representation changes that may 
be required. 

6.2.2 Trivial Conversions 

It is always possible to convert a value from a type to another type that is the same as (or 
compatible with) the first type. See Section 5.11 for a discussion of when types are the 
same or compatible. No representation change needs to occur in this case. 

Most implementations refuse to convert structure or union types to themselves be
cause no conversions to structure or union types are normally permitted. 

6.2.3 Conversions to Integer Types 

Scalar types (arithmetic types and pointers) may be converted to integers. 

Boolean conversions In C99, conversions inVOlving type Bool arc slightly dif
ferent than those involving only the other integer types. When converting an arithmetic 
value to type _Bool , the converted value is 0 if the original value is zero; otherwise it is 
1. When converting a pointer type to type Bool , null pointers are converted to 0 and all 
other pointer values are converted to 1. When converting from type _ Bool to an arith
metic type, the result is either 0 or I, converted to the destination type. The rest of this sec
tion assumes the integer types are not Bool unless otherwise stated. 
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From integer types Except for the type _ Bool , the general rule for converting 
from one integer type to another is that the mathematical value of the result should equal 
the original mathematical val ue if that is possible. For example. if an unsigned integer has 
the value 15 and this value is to be converted to a signed type, the resulting signed value 
should be 15 also. 

If it is not possible to represent the original value of an object of the new type, then 
there are two cases. If the result type is a signed type, then the conversion is considered to 
have overflowed and the result value is technically not defined. If the result type is an un
signed type, then the result must be that unique value of the result type that is equal (con
gruent) mod 2n to the original value, where n is equal to the number of bits used in the 
representation of the result type. If signed integers are represented usingtwos-complement 
notation, then no change of representation is necessary when converting between signed 
and unsigned integers of the same size. However, if signed integers are represented in 
some other way, such as with ones-complement or sign-magnitude representation, then a 
change of representation will be necessary. 

When an unsigned integer is converted to a signed integer of the same size, the con
version is considered to overflow if the original value is too large to represent exactly in 
the signed representation (i.e., if the high-order bit of the unsigned number is 1). However, 
many programmers and programs depend on the conversion being performed quietly and 
with no change of representation to produce a negative number. 

If the destination type is longer than the source type, then the only case in which the 
source value will not be representable in the result type is when a negative signed value is 
converted to a longer, unsigned type. In that case, the conversion must necessari ly behave 
as if the source value were first converted to a longer signed type of the same size as the 
destination type and then con verted to the destination type. 

Example 

Since the constant expression -1 has type int: 

«unsigned long) -1) "'''' «unsigned long) «long) -1») 

If the destination type is shorter than the source type and both the original and desti
nation types are unsigned, then the conversion can be performed simply by discarding ex
cess high-order bits from the original value. The bit pattern of the result representation 
will be equal to the n low-order bits of the original representation, where n is the number 
of bits in the destination type. This same rule of discarding works for converting signed in
tegers in twos-complement form to a shorter unsigned type. The discarding rule is also one 
of several acceptable methods for converting signed or unsigned integers to a shorter 
signed type when signed integers are in twos-complement form. Note that this rule will 
not preserve the sign of the value in case of overflow, but the action on overflow is not de
fined in any case. When signed integers are not represented in twos-complement form, the 
conversions are more complicated. Although the C language does not require the twos
complement representation for signed integers, it certainly favors that representation. 

When the destination type is _Boo1, all nonzero source values are mapped to 1. 
Only the source value zero converts to O. 
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From floating-point types The conversion of a floating·point value to an integral 
value should produce a result that is (if possible) equal in value to the value of the old 
object. If the floating-point value has a nonzero fractional part, that fraction should be dis
carded-that is, conversion nonnally involves truncation of the floating-point value. 

The behavior of the conversion is undefined if the floating-point value cannot be 
represented even approximately in the new type- for example, if its magnitude is much 
too large or if a negative floating-point value is converted to an unsigned integer type. The 
handling of overflow and underflow is left to the discretion of the implementor. 

From pointer types When the source value is a pointer and the destination type is 
not _ Bool , the pointer is treated as if it were an unsigned integer of a size equal to the size 
of the pointer. Then the unsigned integer is converted to the destination type using the rules 
listed before. If null pointers are not represented as the value 0, then they must be explicitly 
converted to 0 when converting the null pointer to an integer. 

C programmers used to assume that pointers could be converted to type long and 
back without loss of infonnation. Although this was almost always true, it is not required 
by the language definition. In C99, the types intptr_t and uintptr_t, if defined in 
s tdint • h , are signed and unsigned integer types capable of holding pointers. The prob
lem is that some computers may have pointer representations that are longer than the larg
est integer type. 

References _ Bool type 5.1.5; character types 5. 1.3; floating-point types 5.2; integer types 
5.1; intptr_ t 21.5; overflow 7.2.2; pointer types 5.3; uintptr_ t 21.5; stdint . h Ch. 21; 
unsigned types 5.1.2; void * type 5.3.1 

6.2.4 Conversions to Floating-Point Types 

Only arithmetic types may be converted to floating-point types. 

When converting from float to double or from double to long double , 
the result should have the same value as the original value. This may be viewed as a re
striction on the choice of representations for the floating-point types. 

When converting from double to float or from long double to double, 
such that the original value is within the range of values representable in the new type, the 
result should be one of the two floating-point values closest to the original value. Whether 
the original value is rounded up or down is implementation-dependent. 

If the original value is outside the range of values representable in the destination 
type-as when the magnitude of a double number is too large or too small for the repre
sentation of float- the resulting value is undefined, as is the overflow or underflow be
havior of the program. 

When converting to floating-point types from integer types, if the integer value is ex
actly representable in the floating-point type, then the result is the equivalent floating-point 
value. If the integer value is not exactly representable, but is within the range of values rep
resentable in the floating-point type, then one of the two closest floating-point values 
should be chosen as the result. If the integer value is outside the range of values represent
able in the floating-point type, the result is undefined. 
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Complex floating-point types (C99) When converting from a complex type to 
another complex type, the real and imaginary floating-point components are each convert
ed according to the rules for (real) floating-point conversions. 

When converting a real type (integer or floating-point) to a complex type, the imag
inary part of the complex value is set to zero (+0.0 if available). The conversion of the real 
type to the real part of the complex type follows the normal rules for converting values to 
(real) floating-point types. 

When converting a complex type to a real type (floating-point or integer), the imag
inary part is discarded and the real part is converted by the nonnal rules for converting 
from (real) floating-point types. 

The _Imaginary types, if present, are complex types whose real part is always 
zero. Converting from a real type to an imaginary type, or vice versa, always results in 
zero-that is the only value they have in common. Converting from a_Complex type to 
an _Imaginary type discards the real part. Converting from an _Imaginary type to a 

Compl ex type sets the real part of the result to zero. 

References complex types 5.2.1 ; floating types 5.2; integer types 5.1; overflow 7.2.2 

6.2.5 Conversions to Structure and Union Types 

No conversions between different structure types or union types are permitted. 

References structure types 5.6; union types 5.7 

6.2.6 Conversions to Enumeration Types 

The rules are the same as for conversions to integral types. Some permissible conversions, 
such as between enumeration and floating-point types, may be symptoms of a poor pro
gramming style. 

References enumeration types 5.5 

6.2.7 Conversions to Pointer Types 

In general, pointers and integers may be converted to pointer types. There are special cir
cumstances under which an array or a function will be converted to a pointer. 

A null pointer of any type may be converted to any other pointer type, and it will 
still be recognized as a null pointer. The representation may change in the conversion. 

A value of type "pointer to S" may be converted to type "pointer to D" for any types 
Sand D. In Standard C, object pointers may not be converted to function pointers or vice 
versa. However, the behavior of the resulting pointer may be affected by representation 
changes or any alignment restrictions in the implementation. 

The integer constant 0, or any integer constant whose value is zero, or any such con
stant cast to type void * , is a null pointer constant and may always be converted to any 
pointer type. The result of such a conversion is a null pointer that is different from any 
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valid pointer. Null pointers of different pointer types may have different internal represen
tations. Null pointers do not necessarily have all their bits equal to zero. 

Integers other than the constant 0 may be converted to pointer type, hut the result is 
nonportable. The intent is that the pointer be considered an unsigned integer (of the same 
size as the pointer) and the standard integer conversions then be applied to take the source 
type to the destination type. 

An expression of type "array of T" is converted to a value of type "pointer to T" by 
substituting a pointer to the first element of the array. This occurs as part of the usual una
ry conversions (Section 6.3.3), 

An expression of type "function returning T " (i.e., a function designator) is convert
ed to a value of type "pointer to function returning T" by substituting a pointer to the func

tion. This occurs as part of the usual unary conversions (Section 6.3.3). 

References alignment restrictions 6.1.3; array types SA; function call s 7 A.3; function des
ignator 7. 1; integer types 5.1; pointer types 5.3; sizeof operator 7.5.2; usual unary conversions 
6.3.3 

6.2.8 Conversions to Array and Function Types 

No conversions to array or function types are possible. 

Example 

In particular, it is not permissible to convert between array types or between function types: 

extern int f () 1 

double di 
d = « double () ) f) (), 

d = (double) f () , 

d = (* (double (*) (» f) (), 

/* Invalid! */ 
/* OK */ 

/ * Valid, but will have unexpected results */ 

In the last statement, the address of f is converted to a pointer to a function returning type 
double; that pointer is then dereferenced and the function called. This is valid, but the re
sulting value stored in d will probably be garbage unless f was really defmed (contrary to the 
external declaration before) to return a value of type double. 

6.2.9 Conversions to the Void Type 

Any value may be converted to type void. Of course, the result of such a conversion can

not be used for anything. Such a conversion may occur only in a context where an expres
sion value will be discarded, such as in an expression statement. 

Example 

The most common use of casting an expression to void is to ignore the result of a function 
call . For example, printf is called to write information to the standard output stream. It 
returns an error indication, but that indication is often ignored. It is not necessary to cast the 
result to void, but it does tell the reader that the programmer is ignoring the result on purpose. 
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(void) printf("Goodbye. \ n" ); 

References discarded expressions 7.13; expression statements 8.2; void type 5.9 

6.3 THE USUAL CONVERSIONS 

6.3.1 The Casting Conversions 

Any of the conversions discussed earlier in this chapter may be explicitly performed with 
a type cast without error. Table 6-2 summarizes the permissible casts. Note that Standard 
C does not permit a function pointer to be cast directly to an object pointer or vice versa, 
although a conversion via a suitable integer type would be poss ible. This restriction re
flects the possibility that object and function pointers could have significantly different 
representations. 

Table 6-2 Permitted casting conversions 

Destination (cast) type 

any arithmetic type 

any integer type 

pointer to (object) T, or 
(void * ) 

pointer to (function) T 

slIUcture or union 

array ofT, or 
function returning T 

void 

a Not permitted in Standard C. 

Permitted source types 

any arithmetic typc 

any pointer type 

(a) any integer type 
(b) (void *) 

(c) pointer to (object) Q, for any Q 
(d) pointer to (function) Q, for any Q3 

(a) any integer type 
(b) pointer to (function) Q, for any Q 
(c) pointer to (object) Q, for any (/ 

none; not a permitted cast 

none; not a permitted cast 

any type 

The presence or absence of type qualifiers does not affect the validity of the casting 
conversions, and some conversions could be used to circumvent the qualifiers. The allow
able assignment conversions are more restrictive. 

Standard C guarantees that an object pointer converted to void * and back to the 
original type wi ll retain its original value. This is likely to be true for conversions through 
char * in other C implementations. 

References assignment conversions 6.3.2; casts 7.5. 1; type qualifiers 4.4.3; void * 5.3. 1 
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6.3.2 The Assignment Conversions 

In a simple assignment expression, the types of the expressions on the left and right sides 
of the assignment operator should be the same. If they are not, an attempt will be made to 
convert the value on the right side of the assignment to the type on the left side. The con
versions that are valid-a subset of the casting conversions-are listed in Table 6-3. 
Unless otherwise indicated, the presence of ISO type qualifiers does not affect the validity 
of the conversion, although a cons t -qualified Iva lue can Dot be used on the left s ide of the 
ass ignment. 

Table 6-3 Allowable assignment conversions 

Left side type 

any arithmetic type 

~Bool (C99) , 
a structure or union type 

b 
(void *) 

pointer to (object) T I b.c 

pointer to (function) Fib 

Permitted right side types 

any arithmetic type 

any pointer type 

a compatible structure or union type 

(a) the constant 0 c 
(b) pointer to (object) T I 
(c) (void *) 

(a) the constant 0 
(b) pointer to T2• where TJ and T2 are compatible 
(c) (void *) 

(a) the constant 0 
(b) pointer to F2• where FI and F2 are compatible 

a Some older C compilers do not support assigning structures or unions. 
b The referenced type on the left must have all the qualifiers of the referenced type on 
the right. 
C T J may be an incomplete type if the other pointer has type void * (Standard C). 

Attempting any other conversion without an explicit cast will be rejected by ISO
conforming implementations, but traditional C compilers almost always permit the 
assignment of mixed pointer types and often permit any types that would be allowed in a 
casting convers ion. 

The rules governing pointer assignment impose conditions on type qualifiers be
cause the assignment could be used to circumvent the qualification. Assigning a pointer to 
type _ Bool assigns 0 if the pointer is null and otherwise assigns I . 

References assignment operator 1.9. 1; casting conversions 6.3.1; compatible types 5. 11 

6.3.3 The Usual Unary Conversions 

The usual unary conversions determine whether and how a single operand is converted be
fore an operation is performed. Their purpose is to reduce the large number of arithmetic 
types to a smaller number that must be handled by the operators. The conversions are 
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applied automatically to operands of the unary I, -, +, -, and * operators, and separately 
to each of the operands of the binary« and» operators. 

Conversion rank With the additional standard integer types in e99, including the 
possibility that implementations will extend the set of types, it becomes difficult to de
scribe these implicit conversions precisely yet simply. The e99 standard introduced the 
concept of conversion rank to help explain the conversions. We use it here. For e89, sim
ply ignore the long long. _Bool, and extended integer types. For traditional C, see the 
discussion later in this section. 

The conversion rank is a numeric value assigned to each integer type to specify its 
conversion order. Table 6-4 lists a possible assignment of ranks to the standard integer 
types. Enumeration types are not shown, but they have the same rank as their underlying 
integer type. 

Table 6-4 Conversion rank 

Rank Types of that rank 

60 long long int, unsigned long long int (C99) 

50 long int, unsigned long int 

40 int, unsigned int 

30 short, unsigned short 

20 char, unsigned char, signed char 

IO Bool 

The specific numbers used for ranking do not matter, but the standard types must be 
in the relative numeric order shown. Consecutive numbers were not chosen because C im
plementations may insert their own extended integer types into this table, with rank num
bers between those of the standard types. Extended type ranks must follow these rules: 
they must be ranked below types of greater precision and below any standard types of the 
same precision; no two different signed integer types may have the same rank; and un
signed types must have the same rank as the signed types with the same representation. 

Given conversion ranks such as the preceding, the usual unary conversions are 
shown in Table 6-5. The first conversion in the table that applies is performed; if none ap
plies, then no conversion is performed. The unary conversions applying to integers are 
called the integer promotions. The conversions of array and function types are sometimes 
suppressed; see Section 6.2. 7for the exceptions. 

Example 

If S is a variable of type unsigned short in Standard C and its value is 1, then the expres
sion (- S) has type int and value - 1 if the range of short is smaller than the range ofint , 
but the same expression has type unsigned and a large positive value if the range of short 
is the same as the range of into This is because in the first instance S is promoted to type int 
prior to the application of the unary minus operator, whereas in the second caseS is promoted 
to type unsigned. 
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Table 6-S Usual unary conversions (choose first that applies) 

!fthc operand has type Standard C converts it to 

float (no conversion) 

Array ofT Pointer to T 

Function returning T Pointer to function returning T 

An integer type of rank greater or (no conversion) 
equal to ine 

A signed type of rank less than lnt int 

An unsigned type of rank less than lnt 
in t , all of whose values can be 

represented in type lnt 

An unsigned type of rank less than unsigned lnt 
int, all of whose values cannot be 
represented in type int 

Traditional C converts it to 

double 

(same as Standard C) 

(same as Standard C) 

(same as Standard C) 

(same as Standard C) 

unsigned lnt 

(same as Standard C) 
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a Bit fields of type int , signed int, or unsigned lnt are assumed to have a conversion rank less than 
int, which means their converted type depends on whether all their values can be represented in typeint. 

In the case of bit fields of type int, signed int , or unsigned int, the bit field 
is assumed to have a conversion rank less than into 

Traditional C implementations performed these conversions differently. First, all un
signed types of lower conversion rank were converted to uns igned in t , thus preserving 
the signedness of the operand if not its value. (The programmer should be cautious of the 
Standard C conversions since the signedness of the result of promotion is implementation
dependent and can affect the meaning of the surrounding expression.) Second, type fIca t 
was converted to type double, reducing the number of floating-point library functions 
needed at the possible expense of performance. This trade-off is no longer mandated, 
although implementations are free to continue to do the promotion. 

Conversion of arrays and functions The usual unary conversions specify that a 
value of array type is converted to a pointer to the first element of the array unless: 

1. the array is an argument to the sizeof or address (&) operators 

2. a character string literal is used to initialize a character array 

3. a wide string literal is used to initialize an array of type wchar _ t 

In C99, this conversion occurs on any value of array type. Prior to C99, the conversion 
was performed only on lvalues of array type. 

Example 

char a[] : "abed"; /* No conversion */ 
char *b = "abed"; /* Array converted to pointer *j 
int i = sizeof(a)i /* No conversion; size of whole array */ 
b = a + 1; /* Array converted to pofnter. * 
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The usual unary conversions specify that a function designator is converted to a 
pointer to the function unless the designator is the operand of the sizeof or address (&) 
operators. (If it is the operand of sizeof , it is also invalid.) 

Example 

extern tnt f () ; 

int (*fp) (); 

tnt ii 
fp = f; 

£p '" &£ i 

i = sizeof(fp); 
i = sizeof(f); 

/* OK, f is converted to &£ */ 
/* OK, implicit conversion suppressed */ 
/* OK, result is the size of the pointer */ 
/* Invalid */ 

References bitwise negation operator - 7.5.5; extended integer types 5.1.4; function calls 
7.4.3; function designator 7.1; indirection operator · 7.5.7; initializers 4.6; logical negation operator 
1 7.5.4; Ivalue 7.1 ; shift operators « and »7.6.3; sizeof 7.5.2; unary minus operator - 7.5. 3; 
wide strings 2.7.4 

6.3.4 The Usual Binary Conversions 

When two values must be operated on in combination, they are first converted according 
to the usual binary conversions to a single common type, which is also typically the type 
of the result. The conversions are applied to the operands of most binary operators and to 
the second and third operands in a conditional expression. Together, the usual unary con
versions and the usual binary conversions are called the usual arithmetic conversions. 

An operator that performs the usual binary conversions on its two operands will first 
perform the usual unary conversions on each of the operands independently to widen short 
values and convert arrays and functions to pointers. Afterward, if either operand is not of 
an arithmetic type or if both have the same arithmetic type, then no further conversions are 
performed. Otherwise, the first applicable conversion from Table 6-6 is petfonned on 
both operands. This table assumes neither operand is complex; see the following discus
sion for handling complex operands. 

Example 

The Standard C rules differ from traditional rules when a long operand and an unsigned 
operand come together (and the long type is strictly larger than unsigned). Here is a pro
gram that detennines which conversion occurs: 

unsigned int UI : -11 
long int LI : 0; 
int main () 
{ 

} 

if (UI < LI) printf("long+unsigned::long\n"); 
else printf("long+unsigned::unsigned\n"); 
return 0; 
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Table 6--6 Usual binary conversions (choose first that applies) 

If either operand And the other opcr- Standard C converts Traditional C con-
has Iypea and has typca both 10 verts both to 

long double any real type long double not applicable 

double any rcaltypc double (same as Standard C) 

float any real type float double 

any unsigned type any unsigned type the unsigned type with (same as Standard C) 
the greater rank 

any signed type any signed type the signed type with the (same as Standard C) 

greater rank 

any unsigned type a signed type of less or the unsigned type (same as Standard C) 
equal rank 

any unsigned type a signed type of greater the signed type the unsigned version of 
rank that can represent the signed type 
all values of the 

unsigned type 

any unsigned type a signed type of greater the unsigned version of (same as Standard C) 
rank that eannot rcprc- the signed type 
sent all values of the 

unsigned type 

any other typeb any other type (no conversion) (same as Standard C) 

a The rules assume that the usual unary conversions have already been applied to each operand. 
b Complex operands are discussed in the text. 

Complex types and the usual binary conversions In e99, complex types must 
be taken into account in the usual binary conversions. In mixed real/complex operations, 
the operand of real type is not converted to a complex type for performance reasons; how· 
ever, conversions are performed to bring both operands to an equivalent floating·point 
precision. The operation then handles mixed real/complex operands typically as if the real 
operand were converted to the complex type. (Of course, an implementation could actual
ly perform the as if conversion if it wished to.) The result type of the operation is the type 
of the complex operand after the conversions. 

Specifically, if both operands are complex, then the shorter operand is converted to 

the type of the longer, and that is the type of the result. This corresponds to what is done 
when combining two real floating-point operands. 

When one operand is complex and the other is an integer, the integer operand is con· 
verted to the real floating-point type corresponding to the complex type. For example, if 
the complex operand were of type fIca t Complex, then the integer would be convert
ed to float . The result is the complex type. 

When one operand is complex and the other is a real floating-point type, the less 
precise type is converted, within its real or complex domain, to the precision of the other 
type. For example, when combining a float with a double Complex, the float 
operand is promoted to double. When combining a long double with a double 
_ Complex, the double _ Complex is promoted to long double _ Complex. 
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6.3.5 The Default Function Argument Conversions 

If an expression appears as an argument in a function call that is not governed by a proto
type, or when the expression appears as an argument in the" ... " part of a prototype ar
gument list, then the value of the expression is converted before being passed to the 
function. This default function argument conversion is the same as the usual unary conver
sion, except that arguments of type float are always promoted to type double, even in 
Standard C. 

If the called function is governed by a prototype, then the arguments do not (neces
sarily) undergo the usual integer promotions, and arguments of type float are not (nec
essarily) promoted to double. An implementation is free to perform these conversions if 
it wishes to, but these rules allow the implementation to optimize the calling sequence. 
The conversions of arrays and functions to pointers do occur. 

In C99 prototypes, if a formal parameter of array type has a list L of type qualifiers 
within the brackets [and] , then the actual array argument is converted to an L-qualified 
pointer to the element type. This is discussed further in Section 9.3. 

The float-lo-double argument conversion helped previous versions of tradition
al and Standard C to control the number of library functions since it made it unnecessary 
to have versions for both types float and double. C99 specifies a full set of math func
tions for types float and long double as well as double. 

References array-qualifier-lis! 4.5.3; function calls 7.4.3; math functions Ch. 17; prolo
lypes 9.2; usual unary conversions 6.3.3 

6.3.6 Other Function Conversions 

The declared types of the formal parameters of a function and the type of its return value 
are subject to certain adjustments that parallel the function argument conversions. They 
are discussed in Section 9.4. 

6.4 C++ CaMPA TlBILITY 

6.4.1 Assignment Conversions 

In C++, a cast must be used to convert a pointer of type void * to another kind of pointer. 
You can also use the cast in C, but it is not required in an assignment. 

Example 

The malloe function returns a void * pointer to a newly allocated area of memory. 

#include <std1ib.h> 
char * cp; 
const int SIZE: 10 * sizeof(ehar); 

cp : ma11oc(SIZE) i 

cp: (char *) ma11oc(SIZE)i 
/* OK in C, not c++ */ 
/* OK in both */ 
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Also, only a pointer to an unqualified (not const or volatile) object may be 
converted to a pointer of type void * without a cast. 

Example 

char * CPi 
const char * const_cPi 
void ." vp; 

vp = cp; 
vp = const CPi 

vp = (void * ) const _ CPi 

/ * 
/ * 
/ * 

References assignment conversions 6.3.2 

6.5 EXERCISES 

valid in both C and c++ */ 
valid in C, not in c++ * / 
valid in both C and c++ */ 

1. The fo llowing table lists pairs of source and destinalion Lypes [0 be used in casting con
versions. Which of the conversions are allowable in Standard C? Which in traditional C? (For 
traditional C, replace void wi th char.) 

Destination type 

(a) char 

(b) char * 
(e) int (. f) () 

(d) double * 
(e) void * 
(f) int * 

Source type 

int 

int ." 

int ." 

int 

int (*f) () 

t." (where: typedef tnt t ) 

2. In the table in Exercise 1, which pairs are al lowable assignment conversions in Standard C? 
Which in traditional C? (The destination type is the left-side type; the source type is the right
side type.) 

3. What is the resulting type when the usual binary conversions of traditional C are appl ied to the 
following pairs of types? In which cases is the result different under Standard C? 

(a) char and unsigned (d) char and long double 

(b) unsigned and long (e) int [J and int * 
(c) float and double (t) short () and short () 

4. Is it allowable to have a C implementation in which type char can represent values ranging 
from - 2.147,483.648 through 2,147,483,647? If so, what would be sizeof (char ) under 
that implementation? What would be the smallest and largest ranges of type in t? 

5. What relationship must hold between sizeof (long double ) and sizeof (int)? 

6. Suppose computers A and B are both byte-addressable and have a word size of 32 bits (four 
bytes), but computer A is a big-endian and B is a little-endian. The integer 128 is stored in a 
word of computer A and is then transferred to a word in computer B by moving the first byte of 
the word in A to the first byte of the word in B, and so on. What is the integer value stored in 
the word of computer B when the transfer is complete? If A were the little-endian and B the 
big-endian. what would be the result? 
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Expressions 

The C language has an unusually rich set of operators that provide access to most of the 
operations provided by the underlying hardware. This chapter presents the syntax of ex
pressions and describes the function of each operator. 

7.1 OBJECTS. LVALUES. AND DESIGNATORS 

An object is a region of memory that can be examined and stored into. An [value (pro
nounced "ell-value") is an expression that refers to an object in such a way that the object 
may be examined or altered. Only an lvalue expression may be used on the left-hand side 
of an assignment. An expression that is not an Ivalue is sometimes called an rvalue (pro
nounced "are-value") because it can he used only on the right-hand side of an assignment. 
An lvalue can have an object or incomplete type, but not void. 

As Standard C uses the term, an lvalue does not necessarily permit modification of 
the object it designates. This is true if the lvalue has an array type, an incomplete type, a 
cons t-qualified type, or if it has a structure or union type one of whose members (recur
sively applied to nested structures and unions) has a cons t-qualified type. The term mod
ifiable lvalue is used to emphasize that the lvalue does permit modification of the 
designated object. 

A/unction designator is a value of function type. It is neither an object nor an lval
ue. The name of a function is a function designator, as is the result of dereferencing a 
function pointer. Functions and objects are often treated differently in C, and we try to be 
careful to distinguish between "function types" and "object types," "Ivalues" and "func
tion designators," and "function pointers" and "object pointers." The phrase "Ivalue desig
nating an object" is redundant, but we use it when appropriate to emphasize the exclusion 
of function designators. 

203 
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The C expressions that can be Ivalues are listed in Table 7- 1, along with any special 
conditions that must apply for the expression to be an Ivalue. No other form of expression 
can produce an Ivalue, and none of the listed expressions except string literals can be Ival
ues if their type is "array of.. .. " Expressions that cannot be Ivalues include: array names, 
functions, enumeration constants, assignment expressions, casts, and function calls. 

Table 7-1 Nonarray expressions thal can be Ivalucs 

Expression Additional requirements 

name name must be a variable 

e [ k ] none 

(e) e must be an Ivalue 

e . name e must be an Ivalue 

€->name none 

' e none 

string-constant none 

The operators listed in Table 7-2 require certain operands to be Ivalues. 

Table 7-2 Operators requiring lvalue operands 

Operator 

&: (unary) 

...... --

- += -: *: /: %-

Requirement 

operand must be an Ivalue or a function name 

operand must be an lvalue (postfix and prefi x 
forms) 

left operand must be an lvalue 

References address operator 7.5.6; assignment expressions 7.9; cast expression 7.5.1; com
ponent selection 7.4.2; decrement expression 7.4.4, 7.5.8; enumerations 5.5; function calls 7.4.3; 
increment expression 7.4.4, 7.5.8; indirection expression 7.5.7; literals 2.7, 7.3.2; names 7.3.1; string 
constant 2.7.4; subscripting 7.4.1 

7.2 EXPRESSIONS AND PRECEDENCE 

The grammar for expressions presented in this chapter completely specifies the prece
dence of operators in C. To summarize the information, Table 7-3 contains a concise list 
of the C operators in order from the highest to the lowest precedence, along with their as
sociativity, 



Sec. 7.2 Expressions and Precedence 205 

Table 7-3 C operators in ordcr of precedence 

Tokens Operator Class Precedence Associates 

names, literals simple tokens primary 16 n/, 

alk] subscripting postfix 16 le ft-to-right 

j( ... ) function call postfix 16 left-to-right 

direct selection postfix 16 left-to-right 

-> indirect selection posdix 16 left-to-right 

++ increment, decrement postfix 16 lcft-to- right 

(type name} {ini,} compound literal (C99) postfix 16 left-Io-right 

•• -- increment, decrement prefix 15 right-to-Ieft 

sizeof size unary 15 right-la-left 

bitwise not unary 15 righHo-left 

logical not unary 15 right-la-left 

- • arithmetic negation, plus unary 15 right-la-left 

• address of un"", 15 right-ta-left 

+ indirection unary 15 right-to-lcft 

( type name) casts unary 14 right-to-lcft 

+ t 0 multiplicative binary 13 left-to-right 

• - additive binary 12 left-to-right 

« » left and right shift binary 11 left-to-right 

< > < . > - relational binary 10 left-to-right 

""" 
,. equali ty/inequali ty binary 9 left-to-right 

& bitwise and binary 8 left-to-right 
A bitwise xor binary 7 left-to-right 

bitwise or binary 6 left-to-right 

&& logical and binary 5 left-to-right 

II logical or binary 4 left-to-right 

? conditional tcrnary 3 right-to-left 

- .- -. + - assignmem binary 2 right-to-left 

t - o- «- » ", .- A I· -
sequential evaluation binary left-to-right 

7.2.1 Precedence and Associativity of Operators 

Each expression operator in C has a precedence level and a ru le of associativity. Where 
parentheses do not explicitly indicate the grouping of operands with operators, the oper
ands are grouped with the operator having higher precedence. If two operators have the 
same precedence, then the operands are grouped with the left or right operator according 
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to whether the operators are left-associative or right-associative. All operators having the 
same precedence level always have the same associativity. 

The rules of precedence and associativity determine what an express ion means, but 
they do not specify the order in which subexpressions within a larger expression or state
ment are evaluated at run time. The order of evaluation is discussed in Section 7.12. 

Example 

Here are some examples of the precedence and associativity rules: 

Original expression Equivalent expression Reason for equivalence 

&*b+c (a*b)+c * has higher precedence than + 

&+=b l =c &+= (bl =cl += and I = are right-associative 

a-b+c (a-b) +c - and ... are left-associative 

sheef ( int) *p (siuof (int) ) *p sinof has higher precedence 
than cast 

*p->q • (p->q) - > has higher precedence than· 

To summarize the associativity rules, the binary operators are left-associative except 
for the assignment operators, which are right-associative-as is the conditional operator. 
The unary and postfix operators are sometimes described as being right-associative, but 
this is needed only to express the idea that an expression such as *x++ is interpreted as 
* (x++) rather than (*x) ++. We prefer simply to state that the postfix operators have 
higher precedence than the (prefix) unary operators. 

References assignment operators 7.9; binary operators 7.6; concatenation of strings 2.7.4; 
conditional operator 7.8; postfix operators 7.4.4; unary + 7.5.3 

7.2.2 Overflow and Other Arithmetic Exceptions 

For certain operations in C, such as addition and multiplication, it may be that the true 
mathematical result of the operation cannot be represented as a value of the expected re
sult type (as determined by the usual conversion rules). This condition is cal led overflow 
or, in some cases, underflow. 

In general, the C language does not specify the consequences of overflow. One pos
sibility is that an incorrect value (of the correct type) is produced. Another possibility is that 
program execution is terminated. A third possibility is that some sort of machine-dependent 
trap or exception occurs that may be detected by the program in some implementation
dependent manner. 

For certain operations, the C language explicitly specifies that the effects are un
predictable for certain operand values or (more stringently) that a value is always produced, 
but the value is unpredictable for certain operand values. If the right-hand operand of the 
division operator, /, or the remainder operator, %, is zero, then the effects are unpredictable. 
If the right-hand operand of a shift operator, < < or », is too large or negative, then an un
predictable value is produced. 
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Traditionally, all implementations of C have ignored the question of signed integer 
overflow, in the sense that the result is whatever value is produced by the machine instruc
tion used to implement the operation. (Many computers that use a twos-complement 
representation for signed integers handle overflow of addition and subtraction simply by 
producing the low-order bits of the true twos-complement result. No doubt many existing 
C programs depend on this fact, but such code is technically not portable.) Floating-point 
overflow and underflow are usually handled in whatever convenient way is supported by 
the machine; if the machine architecture provides more than one way to handle exceptional 
floating-point conditions, a library function may be provided to give the C programmer ac
cess to such options. 

For unsigned integers the C language is quite specific on the question of overflow: 
Every operation on unsigned integers always produces a result value that is congruent 
modulo 2n to the true mathematical resu lt of the operation (where n is the number of bits 
used to represent the unsigned result). This amounts to computing the correct n low-order 
bits of the true result (of the true twos-complement result if the true result is negative, as 
when subtracting a big unsigned integer from a small one). 

Example 

As an example, suppose that objects of type unsigned are represented using 16 bits; then sub
tracting the unsigned value 7 from the unsigned value 4 would produce the unsigned value 
65,533 (216_3) because this value is congruent modulo 216 to the true mathematical result -3. 

An important consequence of this rule is that operations on unsigned integers are 
guaranteed to be completely portable between two implementations if those implementa
tions use representations having the same number of bits. It is easy to simulate the unsigned 
arithmetic of another implementation using some smaller number of bi ts. 

References division operator /7.6.1; floating-poin t types 5.2; remainder operator % 7.6.1; 
shift operators «and »7.6.3; signed types 5.1.1; unsigned types 5.1.2 

7.3 PRIMARY EXPRESSIONS 

There are three kinds of primary expressions: names (identifiers), literal constants , and pa
renthesized express ions: 

primary-expression : 
identifier 
constant 
parenthesized-expression 

Function calls, subscript expressions, and component selection expressions were 
traditionally listed as primary expressions in C, but we have included them in the next sec
tion with the postfix expressions. 
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7.3.1 Names 

The value of a name depends on its type. The type of a name is detennined by the declara
tion of that name (if any), as discussed in Chapter 4. 

The name of a variable declared to be of arithmetic, pointer, enumeration, structure, 
or union type evaluates to an object of that type; the name is an Ivalue expression. An enu
meration constant name evaluates to the associated integer value; it is not an Ivalue. 

Example 

In the following example , the four color names are enumeration constants. The swi tch 
statement (described in Section 8.7) selects one of four statements to execute based on the 
value of the parameter color: 

typede£ enum { red, blue, green } colortypei 

colortype next_ color(colortype color) 
{ 

switch (color) { 
case red return blue; 
case blue return green; 
case green return red; 

} 
} 

The name of an array evaluates to that array; it is an lvalue, but not modifiable. Un
less the array is the argument to sizeof, the argument to the address operator (&), or is a 
character array being initialized by a string constant, the array value is converted to a 
pointer to the first object in the array as part of the usual unary conversions. 

Example 

The conversion of an array name to a pointer does not occur when the array is the argument to 
sizeof, so the result is the size of the array and not the size of a pointer. 

extern void PrintMatrix(); 
int Matrix[10] [10], total length, row_ length; 

total length : sizeof Matrix; 
row_ length: sizeof Matrix{O]; 
PrintMatrix(Matrix); /* pointer to first 

element is passed */ 

The name of a function evaluates to that function; it is not an lvalue. Unless the func
tion name is the argument of the address operator (&) or the argument to sizeof , the name 
is converted to a pointer to the function as part of the usual unary conversions. The result 
of &f is a pointer to f , not a pointer to a pointer to f , and sizeof (f) is invalid. 

Example 

This example shows a function name used as an argument to another function: 
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extern void PlotFunction(double (*f) (double), 
double xC, double xl); 

double fn(double x) { return x * x - Xi } 

int main (void) 
{ 
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PlotFunction(fn, 0.01, 100.0); /* fn converts to &fn */ 

} 

It is not possible for a name, as an expression, to refer to a label, typede£ name, 
structure component name, union component name, structure tag, union tag, or enumera
tion tag. Names used for those purposes reside in name spaces separate from the names 
that can be referred to by a name in an expression. Some of these names may be referred to 
within expressions by means of special constructs. For example, structure and union com
ponent names may be referred to using the • or - > operators, and typede f names may 
be used in casts and as an argument to the sizeof operator. 

References array types 5.4; casts 7.5.1; enumeration types 5.5; function calls 7.4.3; func
tion types 5.8; Ivalue 7.1; name space 4.2; selection operators • and - > 7.4.2; sizeof operator 
7.5.2; typedef names 5.10; usual unary conversions 6.3.3 

7.3.2 Literals 

A literal (lexical constant) is a numeric constant and, when evaluated as an expression, 
yields that constant as its value. Except for string constants, a literal expression is never an 
lvalue. See Section 2.7 for a discussion of literals and their types and values. 

7.3.3 Parenthesized Expressions 

A parenthesized expression consists of a left parenthesis, any expression, and then a right 
parenthesis: 

parenthesized-expression: 
( expression ) 

The type of a parenthesized expression is identical to the type of the enclosed ex
pression; no conversions are perfonned. The value of a parenthesized expression is the 
value of the enclosed expression and will be an lvalue if and only if the enclosed expres
sion is an lvalue. Parentheses do not necessarily force a particular evaluation order (see 
Section 7.12). 

The purpose of the parenthesized expression is simply to delimit the enclosed ex
pression for grouping purposes, either to defeat the default precedence of operators or 
make code more readable. 
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Example 

xl = (-b + discriminant} / (2.0 * a) 

References Ivalue 7.1 

7.4 POSTFIX EXPRESSIONS 

There are six kinds of postfix expressions: subscripting expressions, two forms of com
ponent selection (direct and indirect), function calls, and postfix increment and decrement 
express ions. 

postfix-expression: 
primary-expression 
subsc ri pI -expre 55 ion 
component-selection -exp res sf on 
function-call 
pos/increment-expression 
postdecrement-expression 
compound-literal (C99) 

Function calis, subscript expressions, and component selection expressions were 
traditionally listed as primary expressions. but their syntax is more closely related to the 
postfix expressions. 

7.4.1 Subscripting Expressions 

A subscripting expression consists of a postfix express ion, a left bracket, an arbitrary ex
pression, and a right bracket. This construction is used for array subscripting, where the 
postfix expression (commonly an array name) evaluates to a pointer to the beginning of 
the array and the other expression to an integer offset: 

subscript-expression: 
postfix-expression [ expression ] 

In C, the expression e ) [ e2 ] is by definition precisely equivalent to the expression 
* ( ( ej) + ( e2) ) . The usual binary conversions are applied to the two operands, and the re
sult is always an lvalue. The indirection (* ) operator must have a }X>inter as its operand, 
and the only way that the result of the + operator can be a pointer is for one of its operands 
to be a pointer and the other an integer. Therefore, it follows that for e l[e2] one operand 
must be a pointer and the other an integer. Conventionally, el is the name of an array and 
e2 is an integer expression, but e) could alternative ly be a pointer or the order of the oper
ands could be reversed. A consequence of the definition of subscripting is that arrays use 
O-origin indexing. 

Multidimensional array references are formed by composing subscripting operators. 
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Example 

Postfix Expressions 

char buffer[lOOl, *hptr : buffer; 
inti=99i 

buffer [0] = ' \ 0 '; 
bptr[i-l] :bptr[O]; 
i [bptr] = I \0 I ; 

/ * subscripting an array */ 
/* subscripting a pointer */ 
/ * unconventional subscripting */ 

211 

The first element allocated for the tOO-element array buffer is referred to as buffer [01 
and the last element as bu f f er [9 9] . The names buf f er and bptr both point to the same 
place- namely, buffer [0] - the first element of the buffer array, and they can be used 
in identical ways within subscripting expressions. However, bptr is a variable (an Ivalue), 
and thus can be made to point to some other place: 

bptr = &buffer[6]; 

after which the expression bptr [-4] refers to the same place as the expression 
buffer [2] . (This illustrates the fact that negative subscripts make sense in certain circum
stances.) An assignment can also makebptr point to no place at all: 

bptr = NULL; / * Store a null pointer into bptr. * / 

However, the array name buffer is not an lvalue and cannot be modified. Considered as a 
pointer, it always points to the same fixed place, as if it were declared 

char * const buffer; 

Example 

The following code stores 1.0 in the diagonal elements of a 10-by-1O array, matrix, and 
stores 0.0 in the other elements: 

int matrix{10] {10]; 

for (i = 0; i < 10; i++) 
for (j = 0; j < 10; j++) 

matrix[i] [j] - «i - = j) ? 1.0 , 0.0); 

It is poor programming style to use a comma expression within the subscripting 
brackets because it might mislead a reader familiar with other programming languages to 
think that it means subscripting of a multidimensional array. 

Example 

The expression 

commands [k=n+1, 2*k] 

might appear to be a reference to an element of a two-dimensional array named commands 
with subscript expressions k=n+l and 2*k, whereas its actual interpretation in C is as a ref
erence to a one-dimensional array named commands with subscript 2 *k after k has been 
assigned n+l . If a comma expression is really needed (and it is hard for us to think of a plau
sible example), enclose it in parentheses to indicate that it is something unusual: 

commands [(k=n+l, 2*k)] 
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It is possible to use pointers and casts to refer to a multidimensional array as if it 
were a one-dimensional array. This may be desirable for reasons of efficiency. It must be 
kept in mind that arrays in C are stored in row-major order. 

Example 

The following code sets up an identity matrix-a matrix whose diagonal elements are 1 and 
whose other elements are zero. This method is tricky, but fas t. It treats the two-dimensional 
matrix as if it were a one-dimensional vector with the same number of elements, which sim
plifies subscripting and eliminates the need for nested loops. 

#define SIZE 10 
double matrix [SIZE] [SIZE] ; 

int i; 
for (1 = 0; i < SIZE*SIZE; i++) 

«double *)matrix) [i] '" 0 . 0; 

for (1 = 0; i < SIZE*SIZE; i += 
«double *) matrix) [i] = 1. OJ 

/ * zero all elements */ 
(SIZE + 1» 

/ * set diagonals to 1 */ 

References addition operator + 7.6.2; array types 5.4; comma expressions 7.10; indirection 
operator * 7.5.7; integral types 5.1 ; Ivalue 7.1; pointer types 5.3 

7.4.2 Component Selection 

Component selection operators are used to access fields (components) of structure and 
union types: 

component-selection -expression: 
di ree t -eompone nt -se leet ion 
indirect-component-selection 

direct-eomponent-selection: 
postfix-expression . identifier 

indireCl-component-selection : 
postfix-expression - > identifier 

A direct component selection expression consists of a postfix expression, a period 
(. ), and an identifier. The postfix expression must have a structure or union type, and the 
identifier must be the name of a component of that type. The result of the selection expres
sion is the named member of the structure or union. 

The result of the direct component selection expression is an Ivalue if the structure 
or union expression is an Ivalue. (The only structure and union values that are not Ivalues 
are those returned by a function.) The result is modifiable if it is an Ivalue and if the select
ed component is not an array. 
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Example 

Postfix Expressions 

struct S {int a,b;} Xi 

extern struct S f(); / * structure-returning function */ 
int ii 

x=f()i 
i_t().a; 
t().a-i; 

/* OK */ 
/ * OK */ 
1* Invalid; f () is not an lvalue */ 

213 

(The last assignment, even if valid, would be nonsensical. The function f would return a copy 
of some structure, which would then have one of its components modified-just before the 
entire copy was discarded at the end of the statement.) 

(Some non-Standard C implementations do not allow functions to return structures 
at all. Of those that allow it, a few do not allow a function call to have a selection operator 
applied to it; they would conside r f () . a to be an error.) 

If the expression before the period has type qualifiers, or if the member does, then 
the result has the union of both se ts of qualifiers. 

Example 

The fo llowing assignment is invalid because x.a has type const int, the const having 
been inherited from x: 

const struct {int a,b;} Xi 

x.a = 5; / * Invalid * / 

An indirect component selection expression consists of a postfix expression, the op
erator - >, and a name. The value of the postfix expression must be a pointer to a structure 
or union type, and the name must be the name of a component of that structure or union 
type. The result is the named member of the union or structure and is an Ivalue; it is modi
fiable unless the member is an array. The expression e- >name is by definition precisely 
equivalent to the expression (* e ) . name. 

Example 

In the following code, both components of structure Point are set to 0.0 in a roundabout 
fashion to demonstrate this equivalence: 

struct {float X, y; } Point, *Point_ ptr; 

Point.x = 0 . 0; / * Sets X to 0 . 0 * / 
Point_ ptr = &POinti 

/ * Sets y to 0 . 0 * / 

If the expression before the - > has type qualifiers, or if the member does, then the 
result has the union of both sets of qualifiers. 

Some C implementations permit the null pointer to be used on the left of the indirect 
selection operator. Applying the address operator & to the result and casting that result to 
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an integer type yields the offset in bytes of a component within the structure. This is not 
explicitly permitted or prohibited by the Standard, but it often works. 

Example 

#define OFFSET(type,field) \ 
«size_t)&«type *)O)->field) 

This OFFSET macro is similar to theoffsetof macro that appears in stdde£. h. 

References address operator &: 7.5.6; indirection operator * 7.5.7; Ivalue 7. 1; offsetof 
macro 1 L 1; size _ t 13. 1; structure types 5.6; type qualifiers 4.4.3; union types 5.7 

7.4.3 Function Calls 

A function call consists of a postfix expression (the function expression), a left paren
thesis, a possibly empty sequence of expressions (the argument expressions) separated by 
commas, and then a right parenthesis: 

function-call : 
postfix-expression ( expression-!islopt ) 

expression -list: 
assignment-expression 
expression-list I assignment-expression 

The type of the function expression, after the usual unary conversions, must be 
"pointer to function returning T" for some type T. The result of the function call has type T 
and is never an lvalue. If Tis void, then the function call produces no result and may not 
be used in a context that requires the call to yield a result. T may not be an array type. 

In pre-Standard compilers, the function expression is required to have type "func
tion returning T," and therefore function pointers have to be explicitly dereferenced. That 
is, if fp is a function pointer, the function to which it points can be called only by writing 
(* fp) ( ... ). An exception is sometimes made if fp is a formal parameter; you can write 
fp (. .. ) in that case. 

To perform the function call, the function and argument expressions are first evalu
ated; the order of evaluation is not specified. 

Next, if the function call is governed by a Standard C prototype (Section 9.2), then 
the values of the argument expressions are converted to the types of the corresponding for
mal parameters as specified in the prototype. If such conversions are not possible, the call 
is in error. If the function has a variable number of arguments, then the extra arguments 
are converted according to the usual argument conversions (Section 6.3.5) and no further 
checks on the extra arguments are made. 

If the function call is not governed by a prototype, the argument expressions are 
only converted according to the usual argument conversions and no further checks are re
quired of the compiler. This is because, lacking a prototype, the compiler may not have 
any information about the formal parameters of external functions. 
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After the actual arguments have been evaluated and converted, they are copied into 
the formal parameters of the called function; thus, all arguments arc passed by value. 
Within the called function the names of formal parameters are iva iues, but assigning to a 
fannal parameter changes only the copied value in the fennal parameter and has no effect 
on any actual argument that may happen to be an Ivalue. 

Example 

Consider the following function, square, which returns the square of its argument: 

double square(double y) {y = y*y; return y; } 

Suppose x is a variable of type double with value 4.0, and we perform the function call 
square (xl . The function will return the value 16.0, but the value of x wi ll remain 4.0. The 
assignment to y within square changes only a copy of the actual argument. 

Called functions can change the caller's data only if the data are independently visi· 
ble to the function (say, in a global variable) or if the caller passes a pointer to the data as 
an argument to the function. When a pointer is passed, the pointer is copied, but the object 
pointed to is not copied. Therefore, changes made indirectly through the pointer can be 
seen by the caller. 

Example 

The function swap below exchanges the values of two integer objects when pointers to those 
objects are supplied as parameters: 

void swap(int *xp, int *yp ) 
{ 

} 

int t "" *xp; 
*xp "" *yp; 
*yp "" t; 

If a is an integer array all of whose elements are 0, and i is an integer variable with the value 
4, then after the call swap (&a [i) I &i) , i wi ll have the value 0 and a [4] will have the 
value 4. 

Formal and actual arguments of array types are always converted to pointers by C. 
Therefore, changes to an array fonnal parameter in a function will affect the actual argu· 
ment, although it might not seem obvious that this is so. 

Example 

Consider the fo llowing function f which has an array parameter: 

void feint a[10]) 
{ 

a[4] "" 12; / * changes caller's array */ 
} 

Ifvec is an integer array, then calling f (vee) will set vee [4] to 12. The dimension 10 in 
the array parameter has no significance; a could have been declared int a [] . 
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If a function whose return type is not void is called in a context where the value of 
the function would be discarded, a compiler could issue a warning to that effect. However, 
it is common for non-void functions like printf to have their return values discarded. 
and so many programmers think that such warnings are a nuisance. 

Example 

The intent to discard the result of the function call may be made explicit by using a cast, as in 
this call to strcat: 

(void) strcat(word, suffix); 

Comma expressions may be arguments to functions if they are enclosed in parenthe
ses so that their parts are not interpreted as separate arguments. 

Example 

Suppose you wish to trace all calls to a function f in your C program. If f takes a single argu
ment, then the following macro will insert calls to tracef before each cal l to f . 

#define f (x) (tracef ( FILE LINE ). f «x» ) 
If a call to f appears as a function argument, as in 9 (f (y) ), then the argument to 9 is a 
comma expression. 

References agreement of argument and parameters 9.6; comma operator 7.10; discarded 
expressions 7.13; function types 5.8; function prototypes 9.2; indirection operator * 7.5.7; Ivalue 
7.1; macro expansion 3.3.3; pointer types 5.3; printf 15.11 ; strcat 13.1; usual argwnent con
versions 6.3.5; void type 5.9 

7.4.4 Postfix Increment and Decrement Operators 

The postfix operators ++ and - - are , respectively, used to increment and decrement their 
operands while producing the original value as a result. They are side effect-producing 
operators: 

postincrement-expression : 
postfu-expression ++ 

postdecrement-expression : 
postfix-expression --

The operand of both operators must be a modifiable lvalue and may be of any real 
arithmetic or pointer type. The constant 1 is added to the operand in the case of ++ or sub
tracted from the operand in the case of - - , modifying the operand. The result is the old 
value of the operand before it was incremented or decremented. The result is not an Ivalue. 
The usual binary conversions are performed on the operand and the constant I before the 
addition or subtraction is performed, and the usual assignment conversions are performed 
when storing the modified value back into the operand. The type of the result is that of the 
Ivalue operand before conversion. 
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Example 

If i and j are integer variables, the statement i= j - - i may be rewritten as the two state
ments 

i = j; 
j = j-l; 

These operations may produce unpredictable effects if overflow occurs and the op
erand is a signed integer or floating-point number. The result of incrementing the largest 
representable value of an unsigned type is 0, and the result of decrementing the value 0 of 
an unsigned integer type is the largest representable value of that type. 

If the operand is a pointer, say of type "pointer to T" for some type T, the effect of 
++ is to move the pointer fOIWard beyond the object pointed to, as if to move the pointer 
to the next element within an array of objects of type T. (On a byte-addressed computer, 
this means advancing the pointer by s izeof (T) bytes.) Similarly, the effect of - - is to 
move the pointer backward as if to the previous element within an array of objects of type 
T. In both cases, the value of the expression is the pointer before modification. 

Example 

It is very common to use the POStflX increment operator when scanning the elements of an ar
ray or string, as in this example of counting the number of characters in a string: 

int string_ length(const char *cp) 
{ 

} 

int count = 0 i 
while (*cp++) count++; 
return count1 

References addition 7.6.2; array types 5.4; assignment conversions 6.3.2; floating-poim 
types 5.2; integer types 5.1; lvalue 7.1; overflow 7.2.2; pointer types 5.3; scalar types Ch. 5; signed 
types 5.1.1; subtraction 7.6.2; unsigned types 5.1.2; usual binary conversions 6.3.4 

7.4.5 Compound Literals 

C99 introduces compound literals as a way to express unnamed constants of aggregate 
type. A compound literal consists of a parenthesized type name followed by an initializer 
list contained in braces. There may be an optional trailing comma after the initializer list. 

compound-literal: 
( type-name ) {initializer-list , opt } (e99) 

A compound literal creates an unnamed object of the designated type and returns an 
lvalue to that object. The type name may specify any object type or an array type with un
known size. Variable length array types may not be used in compound literals since they 
may not be initialized. Structure, union, array, and enumeration types would seem to be 
most useful in a compound literal. The format and meaning of the initializer list is the 
same as would be permitted in the initializer on a declaration of an object of the same type 
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and extent. In particular, this means that uninitialized components of the compound literal 
are initialized to zero (see Section 4.6). 

The const type qualifier may be used in a compound literal's type name to create a 
read-only literal; otherwise the literal is modifiable. If two read-only compound literals 
have the same type and value, then an implementation is free to reuse the same storage for 
them. That is, their addresses might not be different, as is the case for duplicate string lit
erals. 

Example 

Make Templ point to a modifiable string, and makeTemp2 point to a read-only string: 

char *Templ = (char []){"/temp/XXXXXXXX"}i 
char *Temp2 _ "/temp/XXXXXXXX"; 

Function Pow2 computes small powers of two by a table lookup: 

inline int POW2 (int n) 
{ 

assert( n >: 0 && n <: 7 ); 
return (const int []>{l, 2, 4, 8, 16, 32, 64, 128}[n]; 

} 

DrawTo takes a point structure passed by value, whereas DrawLine is passed the addresses 
of two points. 

DrawTo( (atruct Point){.x:12, . y=n+3} ); 
DrawLine( &(struct Point){x,y}, &(struct Point) {-x,-y} ); 

If a compound literal appears at the top level of a file, then the unnamed object has 
static extent-it exists throughout program execution. The initializer li st in that case can 
contain only constant values. If the compound literal appears in a function, then it has au
tomatic extent and scope consisting of the innermost enclosing block. The lifetime of a 
compound literal is important when its address is taken; the programmer must be sure that 
the address is not used after leaving the literal' s scope. 

A compound literal is allocated each time its containing block is entered, but repeat
ed execution of the compound literal without leaving the scope merely reinitializes the 
storage if necessary. Such a repeated execution can only happen when a loop is construct
ed with a goto statement because in any iterative statement the compound literal would 
be in the scope of the iteration body, and that scope is reentered on each iteration. 

Example 

The fo llowing loop fills ptrs with pointers to a single array, and· (ptrs [i] ) == 4. 

int * ptrs[5]; int i = 0; 
again: 

ptr. [i1 • (int [11) {i}, 
if (++i<5) goto again; 

The fo llowing code fills ptrs with pointers to different arrays, and * (ptr [i) ) == 1. 
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int * ptrs [5] ; int i = 0; 
ptrs(i] = (int [1] ){ i++}; ) 
ptrs [1] = (int [1]) {i++ } ; } 
ptrs (i] - ( int [1] ){ i++ } ; ) 
ptr s (1] = ( int [1] ){ i++ } ; ) 
ptrs [iJ = ( int [1]) {i++}; } 

The following loop fi lls p t rs with undefined (dangling) pointers because each literal array 
was deallocated at the end of its loop iteration. 

int *pt rs [ 5 ] ; 

f o r(int i= O; i< 5 ; i++l { ptrs[i] _ ( int [l] l {i ), } 

References initializer 4.6; variable length array 5.4.5 

7.5 UNARY EXPRESSIONS 

There are several kinds of unary expressions discussed in the following sections. 

cast-expression: 
unary-expression 
( type-name ) cast-expression 

unary-expression: 
postfix-expression 
sizeoj-expression 
unary-minus-expression 
unary-plus-expression 
logical-negatIon-expression 
birwise-negation-expression 
address-expression 
indirection-expression 
preincrement-express;on 
predec reme nt -exp res sion 

The unary operators have precedence lower than the postfix expressions but higher 
than all binary and ternary operators. For example, the expression *x++ is interpreted as 
* (x++ ), not as (*x) ++ . 

References binary expressions 7.6; postfix expressions 7.4; precedence 7.2. 1; unary plus 
operator 7.5.3 

7.5.1 Casts 

A cast expression consists of a left parenthesis, a type name, a right parenthesis, and an 
operand expression. The syntax is shown earlier, with that for unary-expression. 
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The cast causes the operand value to be converted to the type named within the pa
rentheses. Any permissible conversion (Section 6.3.1) may be invoked by a cast expression. 
The result is not an Ivalue. 

Example 

extern char *alloc()i 
struct S *p; 

P = (struct S *) alloc(sizeof(struct S»i 

Some implementations of C incorrectly ignore certain casts whose only effect is to 
make a value "narrower" than nonnal. 

Example 

Suppose that type unsigned short is represented in 16 bits and type unsigned is repre
sented in 32 bits. Then the value of the expression 

(unsigned) (unsigned short)OxFFFFFF 

should be OxFFPF because the cast (unsigned short) should cause truncation of the val
ue OxFFFFFF to 16 bits. and then the cast (unsigned) should widen that value back to 32 
bits. Deficient compi lers fail to implement this truncation effec t and generate code that passes 
the value OxFFFFFF through unchanged. Similarly, for the expression 

(double) (float) 3.1415926535897932384 

deficient compilers do not produce code to reduce the precision of the approximation of 1t to 

that of a floa t , but pass through the double-precision value unchanged. 

For maximum portability using non-Standard compilers, programmers should trun
cate values by storing them into variables or, in the case of integers, performing explicit 
masking operations (such as with the binary bitwise AND operator &) rather than relying 
on narrowing casts. 

References bitwise AND operator 7.6.6; type conversions Ch. 6; type names 5.12 

7.5.2 Sizeof Operator 

The sizeof operator is used to obtain the size of a type or data object: 

sizeo/-expression : 
sizeof ( type-name ) 
si zeof u.nary-expression 

The sizeof expression has two fonns: the operator sizeof followed by a paren
thesized type name, or the operator sizeof followed by an operand expression. The result 
is a constant integer value and is never an lvalue. In Standard C, the result of sizeof has 
the unsigned integer type size _ t defined in the header file s tdde f . h. Traditional C 
implementations often use int or long as the result type. Following the C precedence 
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rules, sizeof (long) -2 is interpreted as (sizeof (long» -2 rather than as 
sizeof ((long) (-2)) . 

Applying the sizeof operator to a parenthesized type name yields the size of an 
object of the specified type-that is, the amount of memory (measured in storage units) 
that would be occupied by an object of that type, including any internal or trailing pad
ding. By definition, sizeof applied to any of the character types yields 1. The type name 
may not name an incomplete array type (one with no explicit length) , a function type, or 
the type void. 

Applying the sizeof operator to an expression yields the same result as if it had 
been applied to the name of the type of the expression. The s i zeof operator does not cause 
any of the usual conversions to be applied to the expression in determining its type; this al
lows sizeof to be used to obtain the total size of an array without the array name being 
converted to a pointer. However, if the expression contains operators that do perform usual 
conversions, then those conversions are considered when determining the type. The oper
and of sizeof may not have an incomplete array type or function type, except that if the 
sizeof operator is applied to the name of a formal parameter declared to have array or 
function type, then the value returned is the size of the pointer type obtained by the normal 
rules for converting formal parameters of those types. In Standard C, the operand of sizeof 

may not be an lvalue that designates a bit field in a structure or union object, but some non
Standard implementations allow this and return the size of the declared type of the 
component (ignoring the bit-field designation). 

Example 

Following are some examples of the application of sizeof. Assume that objects of 
type short occupy 2 bytes and objects of type int occupy 4 bytes. 

Expression 

sheof (char) 

sheof (int) 

short s I ... sizeof (s) 

short Sl ... sizeof (s+O) 

4 

2 

Value 

4 (resull of + has type int) 

short sa [10] ; ... sizeof (sa) 20 

extern int ia []; ... sizeof (ia) invalid {type is incomplete) 

When sizeof is applied to an expression, the expression is analyzed at compile 
time to determine its type, but the expression is not evaluated. When the argument to 
s i z eo f is a type name, it is possi ble to declare a type as a side effect. 

If a variable length array type name appears in a sizeof expression and the value 
of the array size affects the value of the s i z eo f expression, then the array size expres
sion is always fully evaluated, including side effects. If the value of the array size does not 
affect the result of sizeof, then it is undefined whether the size expression is evaluated. 
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Example 

In the fo llowing statements, j is not incremented , but n is. The function call f (n) mayor 
may nol be perfonned; it does not have to be because the sizeof expression is only comput
iog the size of a pointer to a variable length array, which does not depend on the array's 
length. 

size t z = sizeof(j++) ; 
size t x _ sizeof (tnt [n++l); 
size t y: sizeof(int (*) [fen)]), 

The effect of 

sizeof(struct S {int a,bi }> 

is to create a new type in Standard C, although it would seem to be bad style to do so. The 
type can be referenced later in the source fi le. (This is invalid in C++.) 

References array types 5.4; C++ compatibility 7. 15; function types 5.8; size _ t 11 .1; stor
age units 6.1.1 ; type names 5.12; unsigned types 5.1.2; usual binary conversions 6.3.4; variable 
length arrays 5.4.5; void type 5.9 

7.5.3 Unary Minus and Plus 

The unary minus operator computes the arithmetic negation of its operand. The unary plus 
operator (introduced with Standard C) simply yields the value of its operand: 

unary-min us-expression : 
- cast-expression 

unary-plus-expression: 
+ cast-expression 

(C89) 

The operands to both operators may be of any arithmetic type and the usual unary 
conversions are performed. The result has the promoted type and is not an Ivalue. 

The unary minus expression - e is a shorthand notation for 0 - (e) ; the two expres
sions perform the same computation. This computation may produce unpredictable effects 
if the operand is a signed integer or floating-point number and overflow occurs. For an un
signed integer operand k, the result is always unsigned and equal to 2n_k, where n is the 
number of bits used to represent the result. Because the result is unsigned, it can never be 
negative. This may seem strange, but note that (-x)+x is equal to 0 for any unsigned inte
ger x and for any signed integer x for which -x is well defined. 

The unary plus expression +e is a shorthand notation for 0+ (e). 

References Iloating-point types 5.2; integer types 5.1; Ivalue 7.1; overflow 7.2.2; subtrac
tion operator - 7.6.2; unsigned types 5.1.2; usual unary conversions 6.3 .3 

7.5.4 Logical Negation 

The unary operator! computes the logical negation of its operand. The operand may be of 
any scalar type: 
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logical-negation-expression: 
I cast-expression 

The usual unary conversions are performed on the operand. The result of the I oper
ator is of type in t ; the result is 1 if the operand is zero (null in the case of pointers, 0.0 in 
the case of floating-point values) and 0 if the operand is not zero (or null or 0.0), The re
sult is not an Ivalue. The expression! (x) is identical in meaning to (x) ==0 . 

Example 

#define assert(x,s} if (! (x» assertion_ failure(s) 

assert(num_ cases > 0, "No test cases.") i 
average: total-po!nts/num_cases; 

The use of the assert macro anticipates a problem- division by zero- that might other
wise be difficult to locate. assertion_ failure is assumed to be a function that accepts a 
string and reports it as a message to the user. A similar assert macro appears in the stan
dard header file assert . 11. 

References assert 19.1 ; equality operator •• 7.6.5; floating-point types 5.2; integer 
types 5.1; lvalue 7.1; pointertypes 5.3; scalar types Ch. 5; usual unary conversions 6.3.3 

7.5.5 Bitwise Negation 

The unary operator - computes the bitwise negation (NOT) of its operand: 

birwise-negation-expression : 
- cast-expression 

The usual unary conversions are performed on the operand, which may be of any in
tegral type. Every bit in the binary representation of -e is the inverse of what it was in the 
(converted) operand e. The result is not an Ivalue. 

Example 

If i is a 16-bit integer with the value OxFOFO (111100001 11100002), then -i has the value 
OxOFOF (OOOOll 1100001 Ill ,). 

Because different implementations may use different representations for signed in
tegers, the result of applying the bitwise NOT operator - to signed operands may not be 
portable. We recommend using - only on unsigned operands for portable code. For an un
signed operand e, - e has the value UINT MAX - e if the converted type of e is uns igned, 

or ULONG_ MAX- e if the converted type of e is unsigned long. The values 
UINT MAX and ULONG MAX are defined in the Standard C header file limits. h . 

References integer types 5.1; limits. h 5. 1.1; Ivalue 7. 1; signed types 5.1.1; unsigned 
types 5.1.2; usual unary conversions 6.3.3 
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7.5.6 Address Operator 

The unary operator &: returns a pointer to its operand: 

address-expression: 
& cast-expression 

The operand of &: must be either a function designator or an Ivalue designating an 
object. If it is an ivaiue, the object cannot be declared with storage class register or be 

a bit field. If the type of the operand for & is "T," then the type of the result is "pointer to 
T." The usual conversions are not applied to the operand of the & operator, and its result is 
never an Ivalue. 

The address operator applied to a function designator yields a pointer to the func
tion. Since a function designator is converted to a pointer under the usual conversion rules, 
the &: operator is seldom needed for functions. In fact, some pre-Standard C imple
mentations may not allow it. 

Example 

extern int f () ; 
int (*fp) () 1 

fp '" &;f; 
fp '" f; 

/* OK; &; yields a pointer to f */ 
/* OK; usual conversions yield a pointer to f */ 

A function pointer generated by the address operator is valid throughout the execu
tion of the C program. An object pointer generated by the address operator is valid as long 
as the object's storage remains allocated. If the operand of & is an Ivalue designating a 
variable with static extent, the pointer is valid throughout program execution. If the oper
and designates an automatic variable, the pointer is valid as long as the block containing 
the declaration of the variable is active. If the operand designates a dynamically allocated 
Object (e.g., by malloe), the pointer is valid until that memory is explicitly freed. 

The effect of the address operator in Standard C differs from its effect in traditional 
C in one respect. In Standard C, the address operator applied to an lvalue of type "array of 
T" yields a value of type "pointer to array of T," whereas many pre-Standard compilers 
treat &a the same as a - that is, as a pointer to the first element of a. These two interpreta
tions are inconsistent with each other, but the Standard rule is more consistent with the in
terpretation of &. 

Example 

In the following Standard C program fragment, all the assignments to p are equivalent and all 
the assignments to i are equivalent: 
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int a[101. 'P. i, 

P • &:a [0] ; p • a, p • *&a; 

i - a [0] , i • *a;! -**&a, 

References array type 5.4; function designator 7.1; function type 5.8; Ivalue 7 .1 ; pointer 
type 5.3; register storage class 4.3 

7.5.7 Indirection 

The unary operator It performs indirection through a pointer. The & and it operators are 
each the inverse of the other: [f x is a variable. the expression * &x is the same as x. 

indirection -expression: 
* cast-expression 

The operand must be a pointer; if its type is "pointer to T," for some possibly quali
fied type T, then the type of the result is simply " T" (with the same qualifications). If the 
pointer points to an object, then the result is an Ivalue referring to the object. If the pointer 
points to a function, then the result is a function designator. 

Example 

tnt i,*Pi 
cons tint ·pc; 

p • &:i; / ' p now points to variable i ' / 
'p • lOi / , sets value of i to 10 ' / 
pc • &i; /, pc now points to i. too ' / 
'pc = 10, /, invalid, 'pc has type 'const int' ' / 

The usual unary conversions are performed on the operand to the indirection oper
ator. The only relevant convers ions are from arrays and function designators to pointers. 
Therefore, if f is a function designator, the expressions * &f and * f are equi valent ; in the 
latter case, f is converted to &f by the usual conversions. 

The effect of applying the * operator to inva lid or null pointers is undefined. In 
some implementations, dereferencing the null pointer will cause the program to terminate; 
in others, it is as if the null pointer designated a block of memory with unpredictable con
tents. 

References array types 5.4; function designators 7.1; function types 5.8; Ivalue 7.1; pointer 
types 5.3; usual unary conversions 6.3.3 

7.5.8 Prefix Increment and Decrement Operators 

The unary operators ++ and - - are, respectively, used to increment and decrement their 
operands while producing the modified values of the operands as a result. These are side
effect-producing operations. (There are also postfix forms of these operators.) 
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pre increment-expression : 
++ unary-expression 

predecrement-expression : 
- - unary-expression 

Expressions Chap. 7 

The operands of both operators must be modifiable Ivalues and may be of any real 
arithmetic or pointer type. The constant 1 is added to the operand in the case of ++ and 
subtracted from the operand in the case of - - . In both cases, the result is stored back in the 
lvalue and the result is the new value of the operand. The result is not an Ivalue. The usual 
binary conversions are performed on the operand and the constant 1 before the addition or 
subtraction is performed, and the usual assignment conversions are performed when stor
ing the new value. The type of the result is that of the Ivalue operand before conversion. 

If the operand is a pointer, say of type "pointer to T" for some type T, then the effect 
of ++ is to move the pointer forward beyond the object pointed to, as if to move the point
er to the next object within an array of objects of type T. (On a byte-addressed computer, 
this means advancing the pointer by sizeof(7) bytes.) The effect of - - is to move the 
pointer back to the previous e lement within an array of objects of type T. 

Example 

The following strrev function copies into its second argument a reversed copy of its first 
argument: 

int strrev( const char *sl, char *s2 ) 
{ 

} 

canst char *p : a1; 
while (*p++); /* Locate end of first string. */ 
--Pi /* OVershot: back up to the null. */ 
/* Now copy the characters in reverse order. */ 
while (p > sl) 

*a2++ : ._-p; 
*a2: 1\0 1 ; /* Terminate the result string. */ 

These operations may produce unpredictable effects if overflow occurs and the op
erand is a signed integer or floating-point number. The result of incrementing the largest 
representable value of an unsigned type is O. The result of decrementing the value 0 of an 
unsigned integer type is the largest representable value of that type. 

The expression ++e is identical in meaning to e+=l, and -- e is identical to e-=l. 
When the value produced by the increment and decrement operators is not used, the prefix 
and postfix forms have the same effect. That is, the statement e++; is identical to ++e;. 
and e- -; is identical to - - e;. 

References addition 7.6.2; array types 5.4; assignment conversions 6.3.2; compound as
signment 7.9.2; expression statements 8.2; floating-point types 5.2; integer types 5.1; Ivalue 7.1; 
overflow 7.2.2; pointer types 5.3; postfix increment and decrement expressions 7.4.4; scalar types 
ch. 5; signed types 5.1.1; subtraction 7.6.2; unsigned types 5.1.2; usual binary conversions 6.3.4 
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7.6 BINARY OPERA TOR EXPRESSIONS 

A binary operator expression consists of two expressions separated by a binary operator. 
The tenn binary here simply means that there are two operands; it does not have anything 
to do with the binary number system. The kinds of binary expressions and their operand 
types are listed in order of decreasing precedence in Table 7-4. All the operators are left
associative. 

Table 7-4 Binary operator expressions 

Expression kind Operators Operands Result . / arithmetic arithmetic 

• integer integer 
multiplicative-expression 

arithmetic arithmetic 

+ pointer + integer or pointer 
integer + pointer 

additive-expression 
arithmetic arithmetic 

pointer - integer pointer 

pointer - pointer integer 

shift-expression « >:> integer integer 

rei atiorwl-exp ression < <= :>= :> arithmetic or pointer Oor I 

equali ty-expres sion """ J = arithmetic or pointer Oor I 

bitwise-and·expression • integer integer 

bitwise-xor-expression integer integer 

bitwise-or-exp ression integer integer 

For each of the binary operators described in this section, both operands are fully 
evaluated (but in no particular order) before the operation is performed. 

References order of evaluation 7.12; precedence 7.2.1 

7.6.1 Multiplicative Operators 

The three multiplicative operators, * (multiplication), / (division), and % (remainder), 
have the same precedence and are left-associative: 

multiplicative-expression: 
cast-expression 
multiplicative-expression mult-op cast-expression 

mult-op one of 
• / % 

References precedence 7.2.1 
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Multiplication The binary operator * indicates mUltiplication. Each operand may 
be of any arithmetic type. The usual binary conversions are performed on the operands, and 
the type of the result is that of the converted operands. The result is not an Ivalue. For 
integral operands, integer mul tiplication is perfonned; for floating-point operands, floating
point multiplication is performed. 

The multiplication operator may produce unpredictable effects if overflow occurs 
and the operands (after conversion) are signed integers or floating-point numbers. If the 
operands are unsigned integers, the result is congruent mod 2n to the true mathematical re
sult of the operation (where n is the number of bits used to represent the unsigned result). 

References arithmetic types Ch. 5; floating types 5.2; integer types 5.1; Ivalue 7.1; order of 
evaluation 7.12; overflow 7.2.2; signed types 5.1.1; unsigned types 5.1.2; usuak:onversions 6.3.4 

Division The binary operator / indicates division. Each operand may be of any 
arithmetic type. The usual binary conversions are performed on the operands, and the type 
of the result is that of the converted operands. The result is not an lvalue. 

For floating-point operands, floating-point division is perfonned. For integral oper
ands, if the mathematical quotient of the operands is not an exact integer, then the frac
tional part is discarded (truncation toward zero). Prior to C99, C implementations could 
choose to truncate toward or away from zero if either of the operands were negative. The 
di v and Idi v library functions were always well defined for negative operands. 

The division operator may produce unpredictable effects if overflow occurs and the 
operands (after conversion) are signed integers or floating-point numbers. Note that 
overflow can occur for signed integers represented in twos-complement fonn if the most 
negative representable integer is divided by - 1; the mathematical result is a positive integer 
that cannot be represented. Overflow cannOt occur if the operands are unsigned integers. 

The consequences of di vision by zero-integer or floating-poi nt-are undefined. 

References arithmetic types Ch. 5; div 17. 1; floating types 5.2; integer types 5.1; Idiv 
17.1; lvalue 7.1; overflow 7.2.2; signed types 5.1.1; unsigned types 5.1.2; usualconversions 6.3.4 

Remainder The binary operator % computes the remainder when the first operand 
is divided by the second. Each operand may be of any integral type. The usual binary con
versions are performed on the operands, and the type of the result is that of the converted 
operands. The result is not an lvalue. The library functions div, Idiv, and fmod also 
compute remainders of integers and floating-point values. 

It is always true that (a/b) *b + a%b is equal to a if a /b is representable, so the 
behavior of the remainder operation is coupled to that of integer division. As indicated in 
the previous section , prior to e99 the division operator's behavior was implementation
dependent when either operand was negative. This made the remainder operator similarly 
implementation-dependent. 

Example 

The fo llowing ged function computes the greatest common divisor by Euclid's algorithm. 
The result is the largest integer that evenly dividesx and y: 
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unsigned gcd(unsigned x, unsigned y) 

{ 

} 

while ( y 1= 0 ) { 
unsigned temp = Yi 

Y = x % Yi 
x = temp; 

} 
return Xi 
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The remainder operator may produce unpredictable effects if performing division on 
the two operands would produce overflow. Note that overflow can occur for signed integers 
represented in twos-complement fonn if the most negative representable integer is divided 
by -1; the mathematical result of the division is a positive integer that cannot be represent
ed, and therefore the results are unpredictable, even though the remainder (zero) is 
representable. Overflow cannot occur if the operands are unsigned integers. 

The effect of taking a remainder with a second operand of zero is undefined. 

References div, Idiv 17.1; fmod 17.3; integer types 5.1; Ivalue 7 .1 ; overflow 7.2.2; 
signed types 5.1.1; unsigned types 5.1.2; usual binary conversions 6.3.4 

7.6.2 Additive Operators 

The two additive operators, + (addition) and - (subtraction), have the same precedence 
and are left-associative: 

additive-expression: 
mu.lriplicarive·expression 
additive-expression add-op multiplicative-expression 

add-op : one of 
+ -

Addition The binary operator + indicates addition. The usual binary conversions 
are performed on the operands. The operands may both be arithmetic, or one may be an 
object pointer and the other an integer. No other operand types are allowed. The result is 
not an lvalue. 

When the operands are arithmetic, the type of the result is that of the converted oper
ands. For integral operands, integer addition is performed; for floating-point operands, 
floating-point addition is performed. 

When adding a pointer p and an integer k, it is assumed that the object that p points 
to lies within an array of such objects or is one object beyond the last object in the array, 
and the result is a pointer to that object within (or j ust after) the presumed array that lies k 
objects away from the one p points to. For example, p+ I points to the object just after the 
one p points to, and p+(-l) points to the objectjusl before. If the pointers par p+k do not 
lie within (or just after) the array, then the behavior is undefined. It is invalid for p to be a 
function pointer or to have type void *. 
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Example 

Suppose we are on a computer that is byte-addressable and on which the type int is allocated 
4 bytes . Let a be an array of 10 integers that begins at addressOxlOOOOO. Let ip be a point
er to an integer, and assign to it the address of the first element of array a. Finally, let i be an 
integer variable currently holding the value 6. We now have the following situation: 

int *ip, i, a(l.O] j 

ip;;: &a[O]; 

i = 6; 

What is the value of ip+i? Because integers are 4 bytes long. the expression ip+i becomes 
OxlOOOOO+4*6 , or OxlQ0018. (2410 is 1816,) 

Example 

Pointers to multidimensional and variable length arrays (e99) work similarly. 

int n = 3; int m = 5; 
double reet [n] em] ; 
double (*p) [m1; 

p = recti /* same as p = &rect(O]; */ 
p++; /* now p == &rect(l] */ 

The identifier p points to an object of type double [m] , an array of 5 double-precision 
floating-point numbers, the same as a row of the matrixrect. The expression p++ advances 
p to the next row ofrect, advancing it 5*sizeof (double) storage units. 

The addition operator may produce unpredictable effects if overflow occurs and the 
operands (after conversion) are signed integers or floating-point numbers, or if either op
erand is a pointer. If the operands are both unsigned integers, then the result is congruent 
mod 2n to the true mathematical result of the operation (where n is the number of bits used 
to represent the unsigned result). 

References array types 5.4; floating-point types 5.2; integer types 5.1; Ivalue 7.1; multidi
mensional arrays 5.4.2; order of evaluation 7.12; overflow 7.2.2; pointer representations 5.3.2; 
pointer types 5.3; scalar types ch. 5; signed types 5.1.1; unsigned types 5.1.2; usual binary conver
sions 6.3.4; variable length arrays 5.4.5 

Subtraction The binary operator - indicates subtraction. The usual binary con
versions are performed on the operands. The operands may both be arithmetic or may both 
be pointers to compatible object types (ignoring any type qualifiers), or the left operand 
may be a pointer and the other an integer. The result is not an lvalue. 

If the operands are both arithmetic, the type of the result is that of the converted op
erands. For integral operands, integer subtraction is performed; for floating-point operands. 
floating-point subtraction is performed. 

Example 

The result of subtracting one unsigned integer from another is always unsigned and therefore 
cannot be negative. However. unsigned numbers always obey such identities as 

(a+{b-a» == b 
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and 

(a- (a-b» == b 

Subtraction of an integer from a pointer is analogous to addition of an integer to a 
pointer. When subtracting an integer k from a pointer P. it is assumed that the object that p 
points to lies within an array of such objects or is one object past the last object, and the 
result is a pointer to that object within (or just after) the presumed array that lies -k objects 
away from the one p points to. For example, p-l points to the object just before the one p 
points to, and p-{ -I ) points to the object just after. If the pointers p or p-k do not lie within 
(or just after) the array, then the behavior is undefined . It is invalid for p to be a function 
pointer or to have type void *. 

Given two pointers p and q of the same type, the difference p-q is an integer k such 
that adding k to q yields p. The type of the difference is the signed integer type 
ptrdiff_ t defined in stddef . h. (In pre-Standard C. the type could be either int or 
long depending on the implementation.) The result is well defined and portable only if 
the two pointers point to objects in the same array or point to one past the last object of the 
array. The difference k is the difference in the subscripts of the two objects pointed to. If 
the pointers p or p-q lie outside the array, the behavior is undefined. It is invalid for either 
p or q to be a function pointer or to have type void *. 

The subtraction operator may produce unpredictable effects if overflow occurs and 
the operands (after conversion) are signed integers or floating-point numbers, or if either 
operand is a pointer. If the operands are both unsigned integers, the result is congruent 
mod 2n to the true mathematical result of the operation (where n is the number of bits used 
to represent the unsigned result). 

References array types 5.4; floating-point types 5.2; integer types 5.1; lvalue 7.1; overflow 
7.2.2; pointer representations 5.3.2; pointer types 5.3; ptrdi ff _ t 11.1; scalar types Ch. 5; signed 
types 5.1.1; type compatibility 5.11; type qualifiers 4.4.3; unsigned types 5.1.2; usual binary con
versions 6.3.4 

7.6.3 Shift Operators 

The binary operator « indicates shifting to the left and the binary operator » indicates 
shifting to the right. Both have the same precedence and are left-associative: 

shift-expression : 
additive-expression 
shift-expression shift-op additive-expression 

shifl-OP : one of 
« » 

Each operand must be of integral type. The usual unary conversions are perfonned 
separately on each operand, and the type of the result is that of the converted left operand. 
(Pre-Standard C performed the usual binary conversions on both operands.) The result is 
not an lvalue. 



232 Expressions Chap. 7 

The first operand is a quantity to he shifted. and the second operand specifies the num
ber of bit positions by which the first operand is to be shifted. The direction of the shift 
operation is controlled by the operator used. The operator < < shifts the value of the left op
erand to the left; excess bits shifted off to the left are discarded, and O-hits are shifted in 
from the right. The operator » shifts the value of the left operand to the right; excess bits 
shifted off to the right are discarded. The bits shifted in from the left for> > depend on the 
type of the converted left operand: If it is unsigned (or signed and non-negative), then O
bits are shifted in from the left; but if it is signed and negative, then at the implementor's 
option either O-hits or copies of the leftmost bit of the left operand are shifted in from the 
left. Therefore, applying the shift operator» is not portable when the left operand is a 
negative, signed value and the right operand is nonzero. 

The result value of the shift operators is undefined if the value of the right operand is 
negative, so specifying a negative shift distance does not (necessarily) cause « to shift to 
the right or »to shift to the left. The result value is also undefined ifthe value of the right 
operand is greater than or equal to the width (in bits) of the value of the converted left op
erand. The right operand may be 0, in which case no shift occurs and the result vah!e is 
identical to the value of the converted left operand . 

Example 

One can exploit the precedence and associativity of the operators to write expressions that are 
visually pleasing but semantically confusing: 

b « 4 » 8 

If b is a 16-bit unsigned value, then this expression eX£racts the middle 8 bits. As always, it is 
better to use parentheses when there is any possibility of confusion: 

(b « 4) » 8 

Example 

Here is how unsigned shift operations may be used to compute the greatest common divisor of 
two integers by the binary algorithm. This method is more complicated than the Euclidean al· 

gorithm, but it may be faster because in some implementations of C the remainder operation 
is slow, especially for unsigned operands. 

unsigned binary_ 9cd(unsigned x, unsigned y) 
{ 

unsigned temp i 
unsigned common_power of two = 0; 
if (x == 0) return y; j* Special cases */ 
if (y == 0) return Xi 

/* Find the largest power of two 
that divides both x and y . */ 

while « (x I y) • 1) :: 0) { 

} 

x = x » 1i /* or: "x »= lin */ 
y = y » li 
++common-power_ of_ twoi 
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while «x & 1) == 0) x = x » 1i 

while (y) { 

/* x is odd and y is nonzero here. */ 
while «y & 1) == 0) Y = Y » 1; 
/* x and yare odd here. */ 
temp = Yi 
if (x > y) y = x Yi 
else y = Y - Xi 

x = tempi 
/* Now x has the old value of y, which is odd. 
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Y is even, because it is the difference of two odd 
numbers; therefore it will be right-shifted 
at least once on the next iteration. */ 

} 
return {x « common-power_of_ two)j 

} 

References integer types 5.1; lvalue 7.1; precedence 7.2.1; signed types 5.1.1; unsigned 
types 5.1 .2; usual unary COil versions 6.3.3 

7.6.4 Relational Operators 

The binary operators <, <=, >, and >= are used to compare their operands: 

relational-expression: 
shift-expression 
relational-expression relational-op shift-expression 

relational-op : one of 

< <= > >= 

The usual binary conversions are performed on the operands. The operands may 
both be of real (not complex) arithmetic types, may both be pointers to compatible types, 
or may both be pointers to compatible incomplete types. The presence of any type qualifi 
ers on the pointer types does not affect the comparison. The result is always of type int 
and has the value 0 or 1. The result is not an Ivalue. 

The operator < tests for the relationship "is less than", the operator < = tests "is less 
than or equal to", the operator> tests "is greater than", and the operator >= tests "is greater 
than or equal to ." The result is 1 if the stated relationship holds for the particular operand 
values and 0 if the stated relationship does not hold. 

Implementations of floating-point arithmetic in Standard C may include values such 
as NaNs that are unordered. Using these values in relational expressions may raise an "in
valid" exception, and the value of the relationship will be false. Section 17.16 discusses 
functions that are better behaved in such circumstances than are the built-in operators. 

For integral operands, integer comparison is performed (signed or unsigned as appro
priate). For floating-point operands. floating-point comparison is perfonned. For pointer 
operands, the result depends on the relative locations within the address space of the two 
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objects pointed to; the result is defined only if the objects pointed to lie within the same 
array or structure, in which case "greater than" means "having a higher index" for arrays or 
"declared later in the list of components" for structures. As a special case for arrays, the 
pointer to the object one beyond the end of the array is well defined and compares greater 
than all pointers to objects strictly within the array. All pointers to members of the same 
union argument compare equaL 

Example 

You can write an expression such as 3<xc::7. This does not have the meaning it has in usual 
mathematical notation, however; by left-associativity it is interpreted as (3<x) <7. Because 
the result of (3 <x) is 0 or 1, either of which is less than 7, the result of 3 <xc? is always 1. 
You can express the meaning of the usual mathematical notation by using a logical AND op
erator,as in3<x && x<7. 

Example 

You should exercise care when using relational operators on mixed types. A particularly con
fusing case is this expression: 

-1 < (unsigned) 0 

One might think that this expression would always produce 1 (true) because -1 is less than O. 
However, the usual binary conversions cause the value - 1 to be converted to a (large) unsigned 
value before the comparison, and such an unsigned value cannot be less than O. Therefore, the 
expression always produces 0 (false). 

Some older implementations permit relational comparisons between pointers and 
integers, which is actually disallowed. These older implementations may treat the compar
isons as signed or unsigned. 

References arithmetic types Ch. 5; array types 5.4; bitwise AND operator & 7.6.6; compat
ible types 5.1 1; floating-point types 5.2; incomplete types 5.4, 5.6.1; integer types 5.1; logical AND 
operator && 7.7; Ivalue 7. 1; NaN 5.2; pointer t)pes 5.3; precedence 7.2.1; signed types 5.1.1; type 
qualifiers 4.4.3; unsigned types 5.1.2; usual binary conversions 6.3.4 

7.6.5 Equality Operators 

The binary operators == and! = are used to compare their operands for equality: 

equality-expression: 
re la t ional-exp res si on 
equality-expression equality-op relational-expression 

equality-op : one of 
:: I: 

Several kinds of operands are permitted: 

1. Both operands may be arithmetic types, including complex. 

2. Both operands may be pointers to compatible types, or both may be void * types. 
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3. One operand may be a pointer to an object or incomplete type and the other may 
have type void *. The first operand will be converted to the void * type. 

4. One of the operands may be a pointer and the other a null pointer constant (the inte
ger constant 0). 

In the case of pointer operands, the presence or absence of type qualifiers on the type 
pointed to does not affect whether the comparison is allowed or the result of the compari
son. The usual binary conversions are performed on the arithmetic operands. The result is 
always of type int and has the value 0 or 1. The result is not an Ivalue. 

For integral operands, integer comparison is perfonned. For floating-point operands, 
floating-point comparison is performed. Pointer operands compare equal if and only if one 
of the following conditions is met 

1. Both pointers point to the same object or function. 

2. Both pointers are null pointers. 

3. Both pointers point one past the last element of the same array object. 

The operator == tests for the relationship "is equal to"; I _ tests "is not equal to." 
The result is 1 if the stated relationship holds for the particular operand values and 0 if the 
stated relationship does not hold. 

For complex operands (e99), both real and imaginary parts must compare equal for 
the complex operands to be equal. If one operand is real and the other complex, then the 
comparison is performed as if the real operand were first converted to the complex type. 
The usual binary conversions bring both operands to the same precision. 

Structures or unions cannot be compared for equality, even though assignment of 
these types is allowed. The gaps in structures and unions caused by alignment restrictions 
could contain arbitrary values, and compensating for this would impose an unacceptable 
overhead on the equality comparison or on all operations that modified structure and 
union types. 

The binary equality operators both have the same precedence (but lower precedence 
than <, <=, >, and >=) and are left-associative. 

Example 

The expression x==y==7 does not have the meaning it has in usual mathematical notation. 
By left-associativity, it is interpreted as (x:= =y) = =7. Because the result of (x- -y) is 0 or I , 
neither of which is equal to 7, the result of x _ =y==7 is always O. You can express the mean
ing of the usual mathematical notation by using a logical AND operator, as in 

x=:=y &:&: y=:=7 

Example 

There is a bitwise XOR operator as well as bitwise AND and OR operators, but there is no log
ical XOR operator to go along with the logical AND and OR operators. The I = operator selVes 
the purpose of a logical XOR operator: One may write a<b 1= c<d for an expression that 
yields 1 if exactly one of a<b and c<d yields 1 and 0 otherwise. If either of the operands 
might have a value other than 0 or 1, then the unary! operator can be applied to both operands: 
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1 x 1 = I Y yields 1 if exactly one of x and y is nonzero and yields 0 otherwise. In a similar 
manner, := serves as a logical equivalence (EQV) operator. 

Example 

A common C programming error is to write the = operator (assignment) where the == operator 
(comparison) was intended. Several other programming languages use = for equality compar
ison. As a maUer of style, if it is necessary to use an assignment expression in a context that 
will test the value of the expression against zero, it is best to write"! = 0" explicitly to make 
the intent clear. For example, it is unclear whether the following loop is correct or whether it 
contains a typographical error: 

while (x = next item(» { 
/* Should this be ·x==next item()- ?? */ 

} 

If the original form was correct, then the intent can be made clear in this manner: 

while ((x - next_ item(» I . 0) { 

} 

References alignment restrictions 5.6.4, 6.1.3; bitwise operators 7.6.6; compatible types 
5.11; logical operators 7.5.4, 7.7; Ivalue 7.1; null pointer 5.3.2; pointer types 5.3; precedence 7.2.1; 
assignment operator", 7.9.1; type qualifiers 4.4.3; usual binary conversions 6.3.4; void "* 5.3.1 

7.6.6 Bitwise Operators 

The binary operators &, .... , and I designate the bitwise "and," "exclusive-or," and "or" 
functions, respectively. Individually, they are left-associative; together their different pre
cedences determine the expression evaluation order. Their operands must be integral and 
are subject to the usual binary conversions. The type of the result is that of the converted 
operands; the result is not an lvalue: 

bitwise-or-expression : 
bitwise-xor-expression 
bitwise-or-expression bitwise-xor-expression 

bitwise-xor-expression : 
bitwise-and-expression 
bitwise-xor-expression .... bitwise-and-expression 

bitwise-and-expression : 
equality-expression 
bitwise-and-expression « equality-expression 

Each bit of the result of these operators is equal to a boolean function of the two corre
sponding bits of the two (converted) operands: 
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• The & (and) function yields a I -bit if both arguments are I-bits and otherwise a O
bit. 

• The A (exclusive-or) function yields a I-bit if one argument is a I-bit and the other is 
a O-bit, and yields a O-bit if both arguments are I-bits or both are O-bits. 

• The I (or) function yields a I-bit if either argument is a I-bil and otherwise a O-bit. 

This behavior is summarized next: 

• b a&b . ' b a l b 

0 0 0 0 0 

0 0 

0 0 

0 

Each of the bitwise operators is commutative and associative, and the compiler is 
pennitted to rearrange an expression containing the operators subject to the restrictions 
discussed in Section 7. 12. 

For portable code, we recommend using the bitwise operators only on unsigned op
erands. Signed operands will cause no problems among the majority of computers that use 
the twos-complement representation for signed integers, but they may cause fai lures on 
other computers. 

Programmers should be careful not to accidentally use the bitwise operators & and 1 

in place of the logical AND and OR operators, && and 1 I. The bitwise operators give the 
same result as the corresponding logical operators only if the arguments have no side ef
feets and are known to be boolean (0 or I) . Also, the bitwise operators always evaluate 
both their operands, whereas the logical operators do not evaluate their right-hand operand 
if the value of the left operand is sufficient to determine the final resu lt of the expression. 

Example 

If a is 2 and b is 4, then a&b is 0 (false) whereas a&&b is I (true). 

7.6.7 Set of Integers Example 

The following pages show the use, declaration, and definition, respectively, of a "set of in
tegers" package. It uses the bitwise operators to implement sets as bit vectors. The exam
ple includes a sample program ( testset . c ), the test program's output, the package 
header file (set. h ), and the implementation of the functions in the package (set. c ). 

References integer types 5.1; logical operators && and I I 7.7; Ivalue 7.1; order of evaluation 
7.12; relational operators 7.6.4; signed types 5.1.1; unsigned types 5.1.2; usual binary conversions 
6.3.4 
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#include nset.hn 
lnt main(vo!d) 
{ 

} 

print_ k_ of_ n{O, 4); 
print_ k_ of_ n(l, 4); 
print_ k_ of_ n{2, 4); 
print_k_of_ n(3, 4); 
print_ k_ of_ n(4, 4) ; 
print_ k_ of_n(3, 5 )1 
print_ k_ of_ n(3, 6); 
return 0 i 

Expressions 

Sample usage of the SET package: file testset. c 

All the size-O subsets of {O, 1, 2, 3} , 
{} 
The total number of such subsets is 1. 

All the size-l subsets or {o, 1, 2, 3}, 
{e} {1} {2} {3} 
The total number of such subsets is 4. 

All the size-2 subsets of {O , 1 , 2, 3}, 
{e, 1} {e, 2} {1, 2} { e, 3} {1, 3} {2, 3} 
The total number of such subsets is 6. 

All the size-3 subsets of {O, 1, 2, 3}, 
{e, 1, 2} {e, 1, 3} {e, 2, 3} {1, 2, 3} 
The total number of such subsets is 4. 

All the size-4 subsets of {O, 1, 2, 3}, 
{e, 1, 2, 3} 
The total number of such subsets is l. 

All the size-3 subsets of {e, 1, 2, 3, 4} , 
{e, 1, 2} {e, 1, 3} {e, 2, 3} {1, 2, 3} 
{e, 1, 4} {e, 2, 4} {1, 2, 4} {e, 3, 4} 
{1, 3, 4} {2, 3, 4} 
The total number of such subsets is 10. 

All the size-3 subsets of {e, 1, 2, 3, 4, 5} : 
{e, 1, 2} {e, 1, 3} {e, 2, 3} {1, 2, 3} 
{e, 1, 4} {e, 2, 4} {1, 2, 4} {e, 3, 4} 
{1, 3, 4} {2, 3, 4} { e, 1, 5} {e, 2, 5} 
{1, 2, 5} {e, 3, 5} {1, 3, 5} {2, 3, 5} 
{e, 4, 5} {1, 4, 5} {2, 4, 5} {3, 4, 5} 

The total number of such subsets is 2 0. 

The SET package: output from file testset. c 

Chap. 7 
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/ * set.h 
A set package, suitable for sets of small integers in the 
range 0 to N-l, where N is the number of bits in an unsigned 
int type. Each integer is represented by a bit position; bit 
i is 1 if and only if i is in the set . The low-order bit is 
bit O. * / 

#include <limits.h> / * defines CHAR_BIT */ 

/ * Type SET is used to represent sets . * / 

typede£ unsigned int SET; 

/ * SET_ BITS: Maximum bits per set. */ 

#define SET BITS (sizeof(SET)*CHAR BIT ) 

/ * check(!): True if i can be a set element. */ 

#define check(!) « (unsigned) (1» < SET_ BITS } 

/ * emptyset: A set with no elements. */ 

#define emptyset «SET) O} 

/ * add(s,!): Add a single integer to a set. */ 

#define add(set,i) «set) I singleset (i » 

/ * singleset(i ) : Return a set with one element in it. */ 

#define singleset (i) « (SET) 1) « (i» 

/ * intersect: Return intersection of two sets. * / 

#define intersect (set1, set2 ) «setl) " (set2» 

/ * union: Return the union of two sets . * / 

#define union(setl,set2 ) «setl) (set2» 

/ * setdiff: Return a set of those elements in setl or set2, 
but not both. * / 

#define setdiff(setl,set2 ) «setl) A (set2» 

/ * element: True if i is in set. * / 

#define element(i,set ) (singleset «i» & (set» 

The SET package: file set. h (1 of 2 ) 
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j * forallelements : Perform the following statement once for 
every element of the set 8, with the variable j set to 
that element. To print all the elements in s, just write 
int j; 
forallelements(j, s} 

printf (" %d n, j); 

* f 

#define forallelements(j,s} \ 
for «j)",O ; (j)<SET_ BITSi ++(j» if (element«j),(s») 

j * first set_ of_ n _ elements(n): Produce a set of size n whose 
elements are the integers from 0 through n-l. This 
exploits the properties of unsigned subtractions. */ 

#define first set of_ n_ elements(n)(SET) «l« (n»-l) 

/ * next_ set of_n_elements(s): Given a set of n elements, 
produce a new set of n elements . If you start with the 
result of first_set of_n_elements(k), and then at each 
step apply next_ set_ of_n _ elements to the previous result. 
and keep going until a set is obtained containing m as a 
member. you will have obtained a set representing all 
possible ways of choosing k things from m things. * / 

extern SET next_ set_ of_ n _ elements PARMS«SET x»; 

/ * printset(s): Print a set in the form "{I. 2. 3. 4}". * / 

extern void printset(SET z); 

/ * cardinality(s) : Return the number of elements in s. */ 

extern int cardinality(SET x); 

/ * print_ k _ of_ n(k.n}: Print all the sets of size k having 
elements less than n. Try to print as many as will fit 
on each line of the output. Also print the total number 
of such sets; it should equal nl / (kl (n-k) I) 
where n! '" 1*2* ... *n. */ 

The SET package: file set. h (2 of 2 ) 
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#include <stdio.h> 
#include "set . hn 

int cardinality(SET x) 

{ 
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j * The following loop body is executed once for every 1-bit 
in the set x. Each iteration , the smallest remaining 
element is removed and counted. The expression (x &. -x) 
is a set containing only the smallest element in x, in 
twos-complement arithmetic. */ 

} 

int count", 0; 
while (x ! _ emptyset ) { 

x A= (x &. -xl i 

++count; 

} 
return count; 

SET next set of_n_elements(SET x) 
{ 

/ * This code exploits many unusual properties of unsigned 

} 

arithmetic. As an illustration: 
if x == 001011001111000, then 
smallest == 000000000001000 
ripple :: 001011010000000 
new smallest := 00000 0010000000 
ones == 000000000000111 
the returned value == 001011010000111 

The overall idea is that you find the rightmost 
contiguous group of 1-bits . Of that group, you slide the 
leftmost I-bit to the left one place, and slide all the 
others back to the extreme right. 
(This code was adapted from HAKMEM .) */ 

SET smallest, ripple, new_ smallest, oneSi 
if (x == emptyset) return Xi 
smallest = (x & -x) ; 
ripple = x + smallest j 
new smallest = (ripple & -ripple); 
ones = «new_ smallest / smallest ) » 1) - 1 ; 
return (ripple I ones); 

The SET package: file set. c (1 of 2 ) 
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7.7 LOGICAL OPERATOR EXPRESSIONS 

A logical operator expression consists of two expressions separated by one of the logical 
operators && or I I . These operators are sometimes called "conditional AND" and "condi
tional OR" in other languages because their second operand is not evaluated if the value of 
the first operand provides suffic ient information to determine the value of the expression: 

logical-or-expression : 
logical-and-expression 
logical-or-expression II logical-and-expression 

logical-and-expression : 
bitwise-or-expression 
logical-and-expression && bitwise-or-expression 

The logical operators accept operands of any scalar type. There is no connection be
tween the types of the two operands--each is independently suhject to the usual unary 
conversions. The result, of type in t , has the value 0 or I and is not an lvalue. 

AND The left operand of && is fully evaluated first. If the left operand is equal to 
zero (in the sense of the == operator), then the right operand is not evaluated and the result 
value is O. If the left operand is not equal to zero, then the right operand is evaluated. The 
result value is 0 if the right operand is equal to zero, and is 1 otherwise. 

OR The left operand of I I is fully evaluated first. If the value of the left operand 
is not equal to zero (in the sense of the ! = operator), then the right operand is not evaluat
ed and the result value is I . If the left operand is equal to zero, then the right operand is 
evaluated. The result value is I if the right operand is not equal to zero, and is 0 otherwise. 

Example 

The assignment r - a && b is equivalent to 

if (a == 0) r = 0; 
else { 

} 

if {b == O} r = 0; 
else r = 1; 

The assignment r = a I I b is equivalent to 

if (a 1= 0) r = 1; 

else { 

} 

if (b ! = 0) r = 1; 

else r = 0; 
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void printset(SET z) 
{ 

} 

lnt first = 1i 

int ej 

forallelements(e. z) { 
if (first) printf("{"); 
else printf (.. II) i 

print£("'d". eli 
first = 0; 

} 
if (first) printf("{">; 
printf("}") i 

'* Take care of emptyset */ 
/ * Trailing punctuation */ 

#define LINE WIDTH 54 

void print_k_ of_n(int k. int n) 
{ 

} 

int count ., 0; 

lnt printed_set_width = k * «n > 10) ? 4 : 3) + 3; 
int sets-per_ line = LINE_ WIDTH / printed_ set_ width; 
SET z _ first_set_ of_ n_ elements(k); 

printf{" \ nAll the size- %d subsets of n, k)i 

printset (first set_ of_ n_ elements(n»i 
printf{": \ n")i 
do { / * Enumerate all the sets . */ 

printset(z}; 
if «++count) % sets-per_ line) printf (n "); 

else printf(n\n"); 
z ~ next_set_ of_ n_ elements(z) i 

}while «z 1", emptyset) && lelement(n, z»; 
if «count) % sets-per_ line) printf (" \ n"); 
printf("The total number of such subsets is %d. \ n", 

count) i 

The SET package: liIe set. c (2 of 2 ) 
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Example 

Here are some examples of the logical operators: 

• b a &&.b Is b evaluated" a II b Is b evaluated'? 

1 0 0 ye, 1 no 

0 34.5 0 no 1 ye, 

1 "Hello\n" 1 yes 1 no 

'\0' 0 0 no 0 yes 

&x y",2 1 yes 1 no 

Both of the logical operators are described as being syntactically left-associative, al
though this does not matter much to the programmer because the operators happen to be 
fully associative semantically and no other operators have the same levels of precedence. 
The operator && has higher precedence than I I, although it often makes programs more 
readable to use parentheses liberally around logical expressions. 

Example 

The expression 

a<b I I b <c && c<d I I d<e 

is the same as (and is more clearly written 35): 

a<b II (b<c && c<d) II d<e 

References bitwise operators & and I 7.6.6; equality operators "'''' and t "" 7.6.5; Ivalue 7.1; 
pointer types 5.3; precedence 7.2.1; scalar types Ch. 5; usual unary conversions 6.3.3 

7.B CONDITIONAL EXPRESSIONS 

The ? and : operators introduce a conditional expression, which has lower precedence 
than the binary expressions and differs from them in being right-associative: 

conditional-expression : 
logical-or-expression 
logical-or-expression ? expression : conditional-expression 

A conditional expression has three operands. The first operand must be of a scalar type. 
The second and third operands can be of various types and they are subject to the usual 
unary conversions-if they are evaluated at all. The type of the result depends on the types 
of the second and third operands. Table 7- 5 shows the pennissible operand types for tradi
tional C, and Table 7-fJ shows the permissible operand types for Standard C. Conditional 
expressions are right-associative with respect to their first and third operands. The result is 
not an lvalue, although some pre-Standard C compilers did make the result an Ivalue. 



Sec. 7.8 Conditional Expressions 245 

Table 7-5 Conditional expression 2nd and 3rd operands (pre-Standard) 

One operand type The other operand type Resull type 

arithmetic 

structure or union8 

arithmetic 

the same structure or union 

type after usual binary convers ions 

the structure or union type 

pointer the same pointer type, or 0 the pointer type 

a These operand types may not be pennitted in somepre-Standard compilers. 

Table 7-fl Conditional expression 2nd and 3rd operands (Standard C) 

One operand type 

arithmetic 

structure or union 

void 

pointer to qualified or 
unqualified version of 
typeT1 

pointer to type T' 
any pointer type 

The other operand type 

arilhmetic 

compatible sU'ucture or union 

void 

pointer to qualified or unqualified 
version of type T 2- if types T [ and T2 

are compatible 

qualified or unqualified void * 

null pointer constant 

Result type 

type after usual binary conversions 

the structure or union type 

void 

composite pointer typeD 

the pointer typeS 

a The type pointed to by the result has all the qualifiers of the types pointed to by both operands. 
b T must be an object or incomplete type. 

The execution of the conditional expression proceeds as follows: 

1. The first operand is fully evaluated and tested against zero. 

2. If the first operand is not equal to zero, then the second operand is evaluated and its 
value, converted to the result type, becomes the value of the conditional expression. 
The third operand is not evaluated. 

3. If the first operand is equal to zero, then the third operand is evaluated and its value, 
converted to the result type, becomes the value of the conditional expression. The 
second operand is not evaluated. 

Example 

The expression r=a?b: c is equivalent to 

if (a 1= 0) r = bi 

else r = C; 

The expression 

a ? b : c ? d e ? f 

is interpreted as 

a ? b : (c ? d (e ? f 

g 

g» 
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Example 

In this example, the nesting of conditional expressions seems useful-the signum function, 
which returns 1, - 1. or 0 depending on whether its argument is positive, negative, 0 rzero: 

int signum(int x) { return (x > O) ? 1 : (x < 0) ? -1 : Oi } 

Anything more complicated than this is probab ly better done with one or more if statements. 
As a matter of style, it is a good idea to enclose the first operand of a conditional expression in 
parentheses, but this is not required. 

References arithmetic types Ch. 5; array types 5.4; floating-point types 5.2; integer types 
5.1; Ivalue 7.1; pointer lypes 5.3; precedence 7.2.1; scalar types Ch. 5; signed types 5. 1.1; structure 
types 5.6; union types 5.7; unsigned types 5.1.2; usual binary conversions 6.3.4; usual unary conver
sions 6.3.3; void type 5.9 

7.9 ASSIGNMENT EXPRESSIONS 

Assignment expressions consist of two expressions separated by an assignment operator; 
they are right-associative. The operator. is called the simple assignment operator; all the 
others are compound assignment operators: 

assignment-expression: 
conditional-expression 
unary-expression assignment-op assignment-expression 

assignment-op : one of 
= += -= *= /= %= «= » = &:= = 1-

Assignment operators are all of the same level of precedence and are right-associative 
(all other operators in C that take two operands are left-associative). 

Example 

For example, the expression x* =y=z is treated as x* = (y=z) , not as (x*=y) =Z ; similarly. 
the expression x=y*=z is treated as x= (y*=z) , not as (x:=y) *:=z. 

The right-associativity of assignment operators allows multiple assignment expressions to 
have the "obvious" interpretation. That is, the expression a=b-d+7 is interpreted as 
a= {b= (d+7) , and therefore assigns the va lu e of d+7 tob and then loa. 

Every assignment operator requires a modifiable lvalue as its left operand and mod
ifies that Ivalue by storing a new value into it . The operators are distinguished by how they 
compute the new value. The result of an assignment expression is never an Ivalue. 

References modifiable Ivalue 7.1; precedence 7.2.1 



Sec. 7.9 Assignment Expressions 247 

7.9.1 Simple Assignment 

The single equal sign, =, indicates simple assignment. The value of the right operand is 
converted to the type of the left operand and is stored into that operand. The permitted op
erand types are given in Table 7-7. 

Table 7-7 Assignment operands 

Left operand type 

arithmetic 

structure or union 

pointer to T 

void * 

pointer to ra 
any pointer 

Right operand type 

arithmetic 

compatible structure or union 

pointer to T', where T and T' are compatible 

pointer to-r« 

void It 

null pointer constant 

a In Standard C, T must be an object or incomplete type. 

The original definition of C did not permit the assignment of structures and unions. 
A few older compilers may still have this restriction. 

In Standard C, there are additional restrictions on the operands having to do with 
type qualifiers. First, the left operand can never have a const-qualified type. In addition: 

1. If the operands are arithmetic, they can be qualified or unqualified. 

2. If the operands are structures or unions, they must be qualified or unqualified ver
sions of compatible types. This means, for example, that their members must be 
identically qualified. 

3. If the operands are both object or function pointers, they must be qualified or 
unqualified versions of pointers to compatible types, and the type pointed to by the 
left operand must have all the qualifiers of the type pointed to by the right operand. 
This prevents a const int * pointer from being assigned to an int * pointer, af
ter which the constant integer could be modified. 

4. If one operand is a qualified or unqualified version of void * , the other must be a 
pointer to an object or incomplete type. The type pointed to by the left operand must 
have all the qualifiers of the type pointed to by the right operand. The reason is the 
same as for the previous case. 

The type of the result of the assignment operator is equal to the (unconverted and 
unqualified) type of the left operand, The result is the value stored into the left operand. 
The result is not an Ivalue. When the two operands are of arithmetic types, the usual as
signment conversions are used to convert the right operand to the type of the left operand 
before assignment. 

The simple assignment operator cannot be used to copy the entire contents of one ar
ray into another. The name of an array is not a modifiable lvalue and so cannot appear on 
the left-hand side of an assignment. Also, the name of an array appearing on the right-hand 
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side of an assignment is converted (by the usual conversions) to be a pointer to the first el· 
ernent, and so the assignment would copy the pointer, not the contents of the array. 

Example 

The = operator can be used to copy the address of an array into a pointer variable: 

int a[20] I ·Pi 

In this example, a is an array of integers and p is of type "pointer to integer." The assignment 
causes p to point to (the fus t element 00 the array a . 

It is possible to get the effect of copying an entire array by embedding the army within a struc
ture or unlon because simple assignment can copy an entire structure or union: 

struct matrix {double contents [10] [10] i }i 
struct matrix a, bi 

{ 

} 

/* Clear the diagonal elements . */ 
for (j = 0; j < 10; j++) 

b .contents [j1 [j) _ 0; 
/* Copy whole 10xlO array from b to a . */ 
a = b; 

The implementation of the simple assignment operator assumes that the right-hand 
value and the left-hand object do not overlap in memory (unless they exactly overlap, as in 
the assignment x-x). If overlap does occur, the behavior of the assignment is undefined. 

References arithmetic types 5.1- 2; array types 5.4; usual assignment conversions 6.3.2; 
Ivalue 7. 1; null pointer 5.3.2; pointer types 5.3; structure types 5.6; type compatibility 5.11; union 
types 5.7 

7.9.2 Compound Assignment 

The compound assignment operators may be infonnally understood by taking the expres
sion "a 0P= b" to be equivalent to "a = a op b," with the proviso that the expression a is 
evaluated only once. The permitted types of the operands depend on the operator being 
used. The possibilities are listed in Table 7-8 . 

More precisely, the left and right operands of 0P= are evaluated, and the left oper
and must be a modifiable Ivalue. The operation indicated by the operator op is then 
applied to the two operand values, including any "usual conversions" perfonned by the 
operator. The resulting value is then stored into the object designated by the left operand 
after perfonning the usual ass ignment conversions. 

For the compound assignment operators, as for the simple assignment operator, the 
type of the result is equal to the (unconverted) type of the left operand. The result is the value 
stored into the left operand and is not an lvalue. 
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Table 7-8 Operand types for compound assignment expressions 

Assignment operator Left operand Right operand 

'= 1= arithmetic arithmetic 

. = integer integer 

+= -. arithmetic arithmetic 

+= pointer integer 

«= »= integer integer 

.= integer integer 

- integer integer • 

1= integer integer 

In the earliest versions of C, the compound assignment operators were written in the 
reverse form, with the equal sign preceding the operation. This led to syntactic ambiguities; 
x= -1 could be interpreted as either x= ( -1) or x= - (1) . The newer form eliminates these 
difficulties. Some non-Standard C compilers continue to support the older forms for the 
sake of compatibility and will mistake x= -1 as x= - (1) unless a blank appears between 
the equal and minus signs. 

References arithmetic types Ch. 5; assignment conversions 6.3.2; floating-point types 5.2; 
integer types 5.1; pointer types 5.3; signed types 5.1.1 ; unsigned types 5.1.2; usual binary conver
sions 6.3.4; usual unary conversions 6.3.3 

7.10 SEQUENTIAL EXPRESSIONS 

A comma expression consists of two expressions separated by a comma. The comma op
erator is described here as being syntactically left-associative, although this does not matter 
much to the programmer because the operator happens to be fully associative semantically. 
Note that the comma-expression is at the top of the C expression syntax tree: 

comma-expression: 
assignment-expression 
comma-expression , assignment-expression 

expression: 
comma-expression 

The left operand of the comma operator is fully evaluated first. It need not produce 
any value; if it does produce a value, that value is discarded. The right operand is then 
evaluated. The type and value of the result of the comma expression are equal to the type 
and value of the right operand, after the usual unary conversions. The result is not an lval
ue. Thus, the statement " r= (a, b, ... , c) ; " (notice that the parentheses are required) is 
equivalent to "a; b i ... r=c i ". The difference is that the comma operator may be used in 
expression contexts, such as in loop control expressions. 
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Example 

In the for statement the comma operator aUows several assignment expressions to be com
bined into a single expression for the purpose of initializing or stepping several variables in a 
single loop: 

for( x=O, y=Ni x <N && y>Oi X++, y--) ... 

The comma operator is associative, and one may write a single expression consist
ing of any number of expressions separated by commas; the subexpressions will be evalu
ated in order, and the value of the last one will become the value of the entire expression. 

Example 

The overuse of the comma operator can be confusing, and in certain places it conflicts with 
other uses of the comma. For example, the expression 

f(a, b=5,2"'b, c) 

is always treated as a call to the function f with four arguments. Any comma expressions in 
the argument list must be surrounded by parentheses: 

f(a, (b=5,2*b), c) 

Other contexts where the comma operator may not be used without parentheses in
clude field-length expressions in structure and union declarator lists, enumeration value 
expressions in enumeration declarator lists, and initialization expressions in declarations 
and initializers. The comma is also used as a separator in preprocessor macro calls. 

While the comma operator guarantees that its operands will be evaluated in left-to
right order, other uses of the comma character do not make this guarantee. For example, 
the argument expressions in a function invocation need not be evaluated left to right. 

References discarded expressions 7.13; enumeration types 5.5; for statement 8.6.3; func
tion calls 7.4.3; initializers 4.6; Ivalue 7.1; macro calls 3.3; structure types 5.6; union types 5.7 

7.11 CONSTANT EXPRESSIONS 

In several contexts, the C language permits an expression to be written that must evaluate 
to a constant at compile time. Each context imposes slightly different restrictions on what 
forms of expression are permitted. There are three classes of constant expressions: 

1. preprocessor constant expressions, which are used as the tested value in the #if 
and #elif preprocessor control statements 

2. integral constant expressions, which are used for array bounds, the length of a bit 
field in a structure, explicit enumerator values, and the values in case labels in 
swi tch statements 

3. initializer constant expressions, which are used as the initializers for static and ex
ternal variables and (prior to C99) for automatic variables of aggregate types 
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No constant expression may contain assignment, increment, decrement, function call, or 
comma expressions unless they are contained within the operand of a sizeof operator. 
Otherwise any literal or operator can appear subject to the additional restrictions discussed 
in the following sections for each expression class. These restrictions are imposed in Stan
dard C; traditional implementations may have somewhat looser requirements in individual 
cases. 

7.11.1 Preprocessor Constant Expressions 

Preprocessor constant expressions must be evaluated at compile time and are subject to 
some relatively strict constraints. Such expressions must have integral type and can involve 
only integer constants, character constants , and the special de fined operator. In C99, all 
arithmetic is done using host types equivalent to the target types intmax t or 
uin tmax t as appropriate to the signedness of the operands. These types are defined in 
s tdin t . h and are at least 64 bits long. Prior to C99, Standard C only required all 
arithmetic to be done using the host's own types long or unsigned long, which is prob
lematic when the host and target computers are significantly different. 

Preprocessor expressions must not perform any environmental inquiries except by 
reference to macros defined in float. h , limi ts. h , stdint. h , and so on. Casts are 
not pennitted, nor is the s i z eo f operator. No program variables are visible to the prepro
cessor even if declared with the cons t qualifier. 

Example 

This code incorrectly attempts to see if type int on the target computer is larger than 16 bits: 

#if 1«16 
/* Target integer has more than 16 bits (NOTI)*/ 

#endif 

In fact, the code is only testing the representation of type long on the host computer (in C89) 
or the representation of type intmax _t on the target computer (in C99). Here is the correct 
way to test the sizes of target types. 

#inc1ude <1imits.h> 

#if UINT MAX > 65535 
/* target integer has more than 16 bits */ 

#endif 

The preprocessor must recognize escape sequences in character constants, but is al
lowed to use either the source or target character sets in converting character constants to 
integers. This means that the expressions 1 \n I or I z I - 1 a I might have different values 
in a preprocessor expression than they would appearing in, say. an if statement. Pro
grammers using cross-compilers in which the host and target character sets are different 
should beware of this license. 
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After macro expansion, if the preprocessor constant expression contains any remain
ing identifiers, they are each replaced by the constant O. This is probably a bad rule because 
the presence of such identifiers is almost certainly a programming error. A better way to 
test whether a name is defined in the preprocessor is to use the defined operator or 
#ifdef and #ifndef commands. 

Compilers are free to accept additional forms of preprocessor constant expressions, 
but programs making use of these extensions are not portable. 

References cast expressions 7.5. 1; character constants 2.7.3; character sets 2.1; defined 
operator 3.5.5; enumeration constants 5.5; escape characters 2.7.5; float . h 5.2; #ifde£ and 
#ifnde£ 3.5.3; intmax_ t 21.5; limits. h 5.1; sizeof operator 7.5.2; stdint. h Ch.21 

7.11.2 Integral Constant Expressions 

An integral constant expression is used for alTay bounds, the length of a bit field in a struc
ture, explicit enumerator values, and the values in case labels in swi tch statements. An 
integral constant expression must have an integral type and can include integer constants, 
character constants, and enumeration constants. The sizeaf operator can he used and 
can have any operand. Cast expressions may be used, but only to convert arithmetic types 
to integer types (unless they are part of the operand to s i z eaf). A floating-point constant 
is permitted only if it is the immediate operand of a cast or is part of the operand of 
sizeof . 

Constant expressions not appearing in preprocessor commands should be evaluated 
as they would be on the target computer. including the values of character constants. 

Compilers are free to accept additional forms of integral constant expressions. in
cluding more general floating-point expressions that are converted to an integer type, but 
programs making use of these extensions are not portable. Some pre-Standard compilers 
do not permit casts of any kind in constant expressions. Programmers concerned with 
portability to these compilers might be wise to avoid casts in constant expressions. 

References bit fields 5.6.5; cast expressions 7.5.1; enumeration types 5.5; floating-point 
constants 2.7.2; sizeof operator 7.5.2; switch statement 8.7 

7.11.3 Initializer Constant Expressions 

The constant expression in an initializer can include arithmetic constant expressions and 
address constant expressions. 

Arithmetic constant expressions include the integral constant expressions, but can 
also include floating-point constants generally (not just those cast to integers or in sizeaf) 
and casts to any arithmetic type (including the floating-point types). If a floating-point ex
pression is evaluated at compile time in a constant expression, the implementation may use 
a representation that provides more precision or a greater range than the target environment. 
Therefore, the value of a floating-point expression may be slightly different at compile time 
than it would be if evaluated during program execution. This rule reflects the difficulty of 
exactly simulating a foreign floating-point implementation. Other than this case, the expres
sions should be evaluated just as they would be on the target computer. 
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An address constant expression can be the null pointer constant- for example. 
(void *) O-or the address of a static or external object or function , or the address of a 
static or external object plus or minus an integer constant expression. In forming addresses, 
the address (&), indirection (*) , subscript ([]), and the component selection operators (. 
and - » may be used, but no attempt must be made to access the value of any object. Casts 
to pointer types may also be used. 

Compilers are free to accept additional forms of initializer constant expressions, 
such as more complicated addressing expressions involving several addresses, but pro
grams making use of these extensions are not portable. 

Standard C states that an implementation is free to perfonn initializations at run 
time, and so could avoid floating-point arithmetic at compile time. However, it might be 
difficult to do this initialization before executing any code that accesses the initialized 
variable. 

Example 

Examples of address constant expressions are shown below in the initializers fo ip and pf: 

static int a(10]; 
static struct { int f1, f2; } S; 
extern int f () ; 

int i = 3; 

int *p[] = { &i, a, &a[01. 
(int *) «char *)&a[O] +sizeof(a», 
Os.f2 }, 

int (·pf) () = &f; 

References address operator & 7.5.6; array types 5.4; initializers 4.6; sizeof operator 
7.5.2; structure types 5.6 

7.12 ORDER OF EVALUA TlON 

In general, the compiler can rearrange the order in which an expression is evaluated. The 
rearrangement may consist of evaluating the arguments of a function call, or the two oper
ands of a binary operator, in some particular order other than the obvious left-to-right order. 
The binary operators +, . , &, A , and I are assumed to be completely associative and com
mutative, and a compiler is permitted to exploit this assumption. The compiler is free, for 
example, to evaluate (a+b) + (c+d) as if it were written (a+d) + (b+c) (assuming all 
variables have the same arithmetic type). 

Thc assumption of commutativity and associativity is always true for &, A, and I on 
unsigned operands. It may not be true for &, A, and I on signed operands depending on the 
representation of signed integer types. It may not be true for * and + because of the possi
bility that the order indicated by the expression as written might avoid overflow but another 
order might not. Nevertheless, the compiler IS allowed to exploit the assumption. Any 
rearrangement of expressions involving these operators must not alter the implicit type con
versions of the operands. 
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Example 

To control the order of evaluations, the programmer can use assignments to temporary vari· 
abies. However, a good optimizing compiler might even rearrange computations such as this: 

Example 

int templ, temp2; 

/* Compute q:(a+b)+(c+d), exactly that way . */ 
templ = &+bj 

temp2 = c+d; 
q = templ + temp2; 

In the following example, the two expressions are not equivalent, and the compiler is not free 
to substitute one for the other despite the fact that one is obtained from the other "merely by 
rearranging the additions": 

(1.0 + -3) + (unsigned) 1; /* Result is -1.0 */ 
1.0 + (-3 + (unsigned) 1); /* Result is large */ 

The first assignment is straightfOlward and produces the expected result. The second produces 
a large result because the usual binary conversions cause the signed value - 3 to be converted 
to a large unsigned value 2n_3, where n is the number of bits used to represent an unsigned 
integer. This is then added to the unsigned value I , the result converted to floating-point repre
sentation and added to 1.0, resulting in the value 2n_1 in a floating-point representation. Now 
this result mayor may not be what the programmer intended, but the compiler must not confuse 
the issue further by capriciously rearranging the additions. 

According to the language definition, the compiler has equal freedom to rearrange 
floating-point expressions. However, the order in which a floating-point expression is 
evaluated can have a significant impact on the accuracy of the result depending on the par
ticular values of the operands. Since the compiler cannot predict the operand values, 
numerical analysts prefer that compilers always evaluate floating-point expressions exactly 
as written. That way, the programmer can control the order of evaluation. 

When evaluating the actual arguments in a function call, the order in which the argu
ments and the function expression are evaluated is not specified; but the effect will be as if 
it chose one argument, evaluated it fully, then chose another argument, evaluated it fully, 
and so on until all arguments were evaluated. A similar freedom and restriction holds for 
each operand to a binary expression operator and for a and i in the expression a [i] . 

Example 

In this example, the variable x is an array of pointers to characters and is to be regarded as an 
array of strings. The variable p is a pointer to a pointer to a character and is to be regarded as 
a pointer to a string. The purpose of the if statement is to detennine whether the string point
ed to by p (call it 81) and the next string after that one (call it 82) are equal (and, in passing, 
to step the pointerp beyond those two strings in the array). 

char *x[lO], **p=x; 

if ( 8trcmp (*p++, *p++) ;;:'" 0 ) printf (WSame.") i 
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It is, of course, bad programming sty le to have two side effects on the same variable in the 
same expression because the order of the side effects is not defined; but this all-too-clever 
programmer has reasoned that the order of the side effects does not matter because the two 
strings in question may be given to strcmp in either order. 

7.12.1 Sequence Points 

In Standard C, if a single object is modified more than once between successive sequence 
points, the result is undefined. A sequence point is a point in the program's execution se
quence at which all previous side effects of execution are to have taken place and at which 
no subsequent side effects will have occurred. Sequence points occur: 

• at the end of a full expression-that is, an initializer, an expression statement, the 
expression in a return statement, and the control expressions in a conditional, 
iterative, or swi tch statement (including each expression in a for statement) 

• after the first operand of a &&, 1 I, ? : , or comma operator 

• after the evaluation of the arguments and function expression in a function call 

According to this rule, the value of the expression ++i*++i is undefined as is the prior 
strcmp example. 

References addition operator + 7.6.2; binary operators 7.6; bitwise AND operator & 7.6.6; 
bitwise OR operator I 7.6.8; bitwise XOR operator A 7.6.7; comma operator 7.10; conditional ex
pression?: 7.8; conditional statement 8.5; expression statement 8.2; function calls 7.4.3; initializers 
4.6; iterative statements 8.6; logical and && and or I 7.7; multiplication operator * 7.6. 1; return 
statement 8.9; s trcmp function 13.2; usual binary conversions 6.3.4 

7.13 DISCARDED VALUES 

There are three contexts in which an expression can appear but its value is not used: 

1. an expression statement 

2. the first operand of a comma expression 

3. the initialization and increment expressions in a for statement 

In these contexts, we say that the expression's value is discarded. 

When the value of an expression without side effects is discarded, the compiler may 
presume that a programming error has been made and issue a warning. Side effect
producing operations include assignment and function call s. The compiler may also issue 
a warning message if the main operator of a di scarded expression has no side effect. 
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Example 

extern void f () i 

f{x); /* These expressions do not */ 
i++; /* justify any warning about */ 
a = bi /* discarded values. */ 

These statements, although valid, may elicit warning messages: 

extern int 9 () ; 

g(x); /* The result of 9 is discarded. */ 
x + 7; /* Addition has no defined side effects. */ 
x + (a *= 2)/* The result of the last operation to be 

performed, "+". is discarded. */ 

The progranuner can avoid warnings about discarded values by using a cast to type void to 
indicate that the value is purposely being discarded: 

extern int 9 () i 

(void) g(x); /* Returned value is purposely discarded */ 
(void) (x + 7); /* This is pretty silly, but presumably 

the programmer has a purpose. */ 

C compilers typically do not issue warnings when the value of a function call is dis
carded because traditionally functions that returned no result had to be declared of type 
"function returning int." Although Standard C gives compilers more information, ven
dors try to be compatible with old code. 

If a compiler detennines that the main operator of a discarded expression has no side 
effect, it may choose not to generate code for that operator (whereupon its operands be
come discarded values and may be recursively subjected to the same treatment). 

References assignments 7.9; casts 7.5.1; comma operator 7.10; for statement 8.6.3; func
tion calls 7.4.3; expressions statements 8.2 ;void type 5.9 

7.14 OPTIMIZA TlON OF MEMORY ACCESSES 

As a general rule, a compiler is free to generate any code equivalent in computational 
behavior to the program as written. The compiler is explicitly granted certain freedoms to 
rearrange code, as described in Section 7.12. It may also generate no code for an expression 
when the expression has no side effects and its value is discarded, as described in 
Section 7.13. 

Example 

Some compilers may also reorganize the code in such a way that it does not always refer to 
memory as many times, or in the same order, as specified in the program. For example, if a 
certain array element is referred to more than once, the compiler may cleverly arrange to fetch 
it only once to gain speed; in effect, it might rewrite this code: 
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int x,a[lO] i 

x = a[j] * a[j] • a(j]i /* Cube the table entry. */ 

causing it to be executed as if it had been written like this: 

int x,arlO]; 
register int temp; 

temp=a[j]i 

x _ temp· temp· tempi /* Cube the table entry. */ 
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For most applications, including nearly all portable applications, such optimization 
techniques are a very good thing because the speed of a program may be improved by a 
factor of two or better without altering its effective computational behavior. However, this 
may be a problem when writing interrupt handlers and certain other machine-dependent 
programs in C. In this case, the programmer should use the Standard C type qualifier 
volatile to control some memory accesses. 

References volatile 4.4.5 

7.15 C++ COMPATIBILITY 

7.15.1 Changes In slzeo' Expressions 

In C++, it is invalid to declare types in expressions, such as casts or sizeof. Also, the 
values of some sizeof expressions can be different in C and C++ for reasons of scoping 
changes and the type of character literals. 

Example 

i :::: sizeof (struct S { ... }}; /* OK in C, not in C++ • / 

Example 

The value of sizeof (T) could be different in some cases in which T is redefined. 

The value of sizeof ( I a I ) will be s izeof (int) in C, but it will be sizeof (char) in 

c++. 

The value of sizeof (e), for an enumeration constant e, will be sizeof (int) in C, but 

it may be different in C++. 

References character literals 2.8.5; enumeration types 5.13.1; seoping differences 4.9.2; 
sizeof 7.5.2 



258 Expressions Chap. 7 

7.16 EXERCISES 

1. Which of the following expressions are valid in traditional C? For the ones that are valid, what 
type does the expression have? Assume that f is of type float , i is of type int, cp is of 
type char" , and ip is of type int *. 
(a) cp+Ox23 (1) f··O 

(b) i+f (g) lip 

(e) ++f (h) cp && cp 

(d) ip [i] (i) £\2 

(e) cp?i:f 0) f+=i 

2. Assume pI and p2 have type char". Rewrite the following two statements without using the 
increment or decrement operators. 

(a) *++pl=*++p2; 

(b) ·pl--=*p2--j 

3. A "bit mask" is an integer consisting of a specified sequence of binary zeroes and ones. Write 
macros that produce the fo llowing bit masks. If the macro arguments are constants, the result 
should also be a constant. You can assume a twos-complement representation for integers, but 
your macros should not depend on how many bits are in an integer or whether the computer is 
a big-endian or little-endian. 

(a) low_ zeroes (n) , a word in which the low-order n bits are zeroes and all other bits are 
ones. 

(b) low_ ones (n) , a word whose low-order n bits are ones and all other bits are zeroes. 

(c) mid zeroes (width, offset ), a word whose low-order offset bits are ones, whose 
next higher width bits are zeroes, and al l other bits are ones. 

(d) mid ones (width, offset) , a word whose low-order offset bits are zeroes, whose 
next higher width bits are ones, and all other bits are zeroes 

4. Is j ++"''''++j a valid expression? What about j ++&:&:++j ? If j begins with the value 0, what 
is the result of each of the expressions? 

5. The following table lists pairs of types of the left- and right-hand sides of a simple assignment 
expression. Which of the combinations are allowable in Standard C? 

Left-side type 

(.) short 

(b) char * 

(c) int (. ) [5] 

(d) short 

(e) int (*) () 

(0 int * 

Right-side type 

signed short 

const char * 

int ( * ) [) 

const short 

signed ( * ) (int x , fl oat d) 

t * (where: typedef int 

t ) 

6. If the variable x has the type struct{int f I} and the variable y has a separately defined 
type struc t{ in t f; }, is x",y valid in Standard C? 
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Statements 

The C language provides the usual assortment of statements found in most algebraic pro
gramming languages, including conditional statements, loops, and the ubiquitous "goto." 
We describe each in turn after some general comments about syntax: 

statement: 
exp re ssion -$ ta 1 emen t 
labeled-statement 
compound-statement 
cond iti onal-sra t e men! 
iterative-statement 
switch-statement 
break-statement 
continue-statement 
return-statement 
gOlo-statement 

null-statement 

conditional-statement : 
if-statement 
If-else-statement 

iterative-statement: 
do-statement 
while-statement 
jor-statement 

259 
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B.1 GENERAL SYNTACTIC RULES FOR STATEMENTS 

Although C statements wi ll be familiar to programmers used to ALGOL-like languages, 
there are a few syntactic differences that often cause confusion and errors . 

As in Pascal or Ada, semicolons typically appear between consecutive statements in 
C. However, in C, the semicolon is not a statement separator, but rather simply a part of 
the syntax of certain statements. The only C statement that does not require a terminating 
semicolon is the compound statement (or block), which is delimited by braces ({} ) in
stead of begin and end keywords; 

a = b; 
{ b = c; d = e; } 

x = y; 

Another rule for C statements is that "control" expressions appearing in conditional 
and iterative statements must be enclosed in parentheses. There is no special keyword fol
lowing control expressions, such as "then," "loop," or "do"; the remainder of the state
ment immediately follows the expression: 

if (a<b) x=y; 
while (n<1 0) n++i 

Finally, the assignment statement in other languages is an assignment expression in 
C. It can appear as part of more complicated expressions or can be followed by a semico
lon allowing it to stand by itself: 

if «x=y»3) a=b; 

References assignment expression 7.9; compound statement 8.4; conditional statements 
8.5; iterative statements 8.6 

B.2 EXPRESSION STATEMENTS 

Any expression can be treated as a statement by writing the expression followed by a 
semicolon: 

expression-statement: 
expression, 

The statement is executed by evaluating the expression and then discarding the resulting 
value if any. 

An expression statement is useful only if evaluation of the expression involves a 
side effect, such as assigning a value to a variable or perfonning input or output. Usually 
the expression is an assignment, an increment or decrement operation, or a function call . 
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Example 

Labeled Statements 

speed = distance / time; 
++event_ count; 
printf{nAgain?"); 
pattern &:= mask; 

j* assign a quotient */ 
/* Add 1 to event_ count.*/ 
/* Call the function printf.*/ 
/* Remove bits from pattern */ 
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(x<y) ? ++x : ++Yi /* Increment smaller of x and y */ 

The last statement, although valid, might be written more clearly with an i f statement: 

if (x < y) ++X; 

else ++Yi 

The compiler is not obligated to evaluate an expression, or a portion of an expres
sion, that has no side effects and whose result is discarded (see Section 7.13). 

References assignment expressions 7.9; discarded expressions 7.13; expressions Ch. 7; 
function call 7.4.3; increment expressions 7.5.8, 7.4.4 

8.3 LABELED STATEMENTS 

A label can be used to mark any statement so that control may be transferred to the state
ment by a go to or swi tch statement. There are three kinds of labels. A named label 
may appear on any statement and is used in conjunction with the goto statement. A 
case label or default label may appear only on a statement within the body of a 
swi tch statement: 

labeled-statement : 

label: 

label : statement 

named-label 
case-label 
default-label 

A label cannot appear by itself, but must always be attached to a statement. If it is 
desired to place a label by itself (e.g., at the end of a compound statement), it may be 
attached to a null statement. In C99, which allows statements and declarations to be inter
mixed, the label cannot be applied directly to a declaration; it must be attached to a null 
statement before the declaration. 

Named labels are discussed further in the description of the goto statement. The 
case and defaul t labels are discussed with the swi tch statement. 

References goto statement 8. 10; null statement 8.11; swi tch statement 8.7 
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8.4 COMPOUND STATEMENTS 

A compound statement consists of a brace-enclosed list of zero or more declarations and 
statements. In C99, declarations and statements may be intermixed. In previous versions 
of C, declarations must precede statements. 

compound-statement : 
{ declaration-or-statement-lis(opt} 

declaration-or-statement-list : 
decla ration -0 r -sIal erne nt 

declaration-or-statement-list declaration-or-statement 

declaration-or-statement : 
declaration 
statement 

A compound statement may appear anywhere a statement does. It brings into exist
ence a new scope, or block, which affects allY declarations 01' compound literals appearing 
within it. A compound statement is normally executed by processing each declaration and 
statement in order one at a time. Execution ceases when the last declaration or statement 
has been executed. It is possible to jump out of a compound statement before its end by 
using a goto, return, continue, or break statement. It is also possible to enter a 
compound statement other than at its beginning by using a goto or swi tch statement to 
jump to a label within the compound statement. Jumping into or out of a compound state
ment may affect declarations within it; this is discussed in the next section. 

References auto storage class 4.3; break and continue statements 8.8; declarations 
Ch. 4; goto statement 8.10; register storage class 4.3; return statement 8.9; scope 4.2.1 

8.4.1 Declarations Within Compound Statements 

An identifier declared within a compound statement or other block is called a block-level 
identifier and the declaration is called a block- level declaration. A block-level identifier 
has a scope that extends from its declaration point to the end of the block. The identifier is 
visible throughout that scope except when hidden by a declaration of the same identifier in 
an inner block. Declaring identifiers in blocks is usually a good programming practice be
cause limiting the scope of variables makes programs easier to understand. 

An identifier declared in a block without a storage class specifier is assumed to have 
storage class extern if the identifier has a function type, and it is assumed to have stor
age class au to in all other cases. It is invalid for an identifier of function type to have any 
storage class except extern when it is declared in a block. 

If a variable or function is declared in a block with storage class extern, no stor
age is allocated and no initialization expression is permitted. The declaration refers to an 
external variable or function defined elsewhere, either in the same or different source file. 

If a variable other than a variable length array is declared in a block with storage 
class auto or register, the n it is allocated with an undefined value every time the 
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block is entered and is deallocated every time the block is exited. That is, the variable's 
lifetime extends over the entire block, not just from the declaration point. If there is an ini
tialization expression with the variable's declaration, then the initializer is evaluated and 
the variable initialized every time the declaration is encountered in the flow of execution. 
This normally happens only once, hut in e99 it might happen multiple times if a goto 
statement transfers control from within the compound statement backward to a place be
fore the declaration. If a goto or swi tch statement is used to jump into a compound 
statement to a place following the deciaration, then the initializer may not be evaluated 
and the variable's value may be left undefined. The value of an automatic block-level 
identifier does not carryover from one execution of the block to the next. 

In C99, a variable length array declared in a block is not allocated at block entry, as 
are other automatic variables. It is allocated when its declaration is encountered and its 
size expression is evaluated, and it is deallocated when control leaves the block. There
fore, its lifetime and scope are the same. Variable length arrays cannot be initialized. It is 
illegal to jump into the array's scope (Le., after the declaration) from outside the scope. It 
is permitted to jump from within the scope backward to a place before the declaration. In 
this case, the array is deallocated and reallocated, possibly with a new size. All variable 
length arrays in a block obey a last-allocated, first-deallocated discipline, so they can be 
allocated on the procedure call stack. 

If a variable is declared in a block with storage class s ta tic, then it is effectively 
allocated once, prior to program execution, just like any other static variable. If there is an 
initialization expression with the declaration, then the initializer (which must be constant) 
is evaluated only once, prior to program execution, and the variable retains its value from 
one execution of the compound statement to the next. In C99, the initializer must also be 
constant. 

Example 

The following code fragment is unlikely to work if the statement labeled L: is the target of a 
jump from outside the compound statement because the variable sum will not be initialized. 
Furthermore, it is not possible to tell if any such jump does occur without examining the en
tire body ofthe enclosing function: 

{ 

} 

Example 

L, 

extern int a[lOO]i 
int i, sum. = 0; 

for (i = Oi i < 100i i++) 
sum. += a {1] ; 

An unlabeled compound statement used as the body of a swi tch statement cannot be exe
cuted normally, but only through transfer of control to labeled statements within it. Therefore, 
initializations of au to and register variables at the beginning of such a compound 
statement never occur and their presence is a priori an error. 
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switch (i) { 

int sum = 0; /* ERROR I sum is NOT set to 0 */ 
case 1: return sum; 
default: return sum+li 
} 

Chap. 8 

References auto storage class 4.3; extern storage class 4.3; goto statement 8.10; 
initial values 4.2.8; initializers 4.6; register storage class 4.3; scope 4.2.1; static storage 
class 4.3; swi tch statement 8.7; variable length array 5.4.5; visibility 4.2.2 

8.5 CONDITIONAL STATEMENTS 

There are two forms of conditional statement: with and without an else clause. C does 
not use the keyword then as part of the syntax of its if statement: 

conditional-statement : 
if-statement 
if-eLse-statement 

if-statement : 
if (expression) statement 

If-else-statement : 
if (expression) statement e1 se statement 

For each fonn of if statement , the expression within parentheses is first evaluated. 
If this value is nonzero (Section 8.1), then the statement immediately following the paren
theses is executed. If the value of the control expression is zero and there is an else 
clause, then the statement following the keyword else is executed instead; but if the val
ue of the control expression is zero and there is no else clause, then execution continues 
immediately with the statement following the conditional statement. 

In e99, the entire if statement forms its own block scope, as do the substatements 
even if they are not compound statements. This serves to restrict the scope of objects and 
types that might be created as a side effect of using compound literals or type names. 

References compound literals 7.4.5 ; control expression 8.1; type names 5.12 

8.5.1 Multlway Conditional Statements 

A multiway decision can be expressed as a cascaded series of if-else statements, 
where each if statement but the last has another if statement in its else clause. Such a 
series looks like this: 
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Example 

Conditional Statements 

if (expressionl) 
statement! 

else if (expression2) 
statement2 

else if (expression) 
statement) 

else 
statementn 
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Here is a three-way decision: the function signum returns - 1 if its argument is less than ze
ro, 1 if its argument is greater than zero, and otherwise 0; 

int signum(int x) 
{ 

} 

if (x > 0) return 1; 
else if (x < 0) return -1i 
else return 0; 

Compare this with the version of signum that uses conditional express ions shown in 
Section 7.8. 

The swi tch statement handles the specific kind of multi way decision where the 
value of an expression is to be compared against a fixed set of constants. 

References switch statement &.7 

8.5.2 The Dangling-Else Problem 

An ambiguity arises because a conditional statement may contain another conditional 
statement. In some situations, it may not be apparent to which of several conditional state
ments an else might belong. The ambiguity is resolved in an arbitrary but customary 
way: An else part is always assumed to belong to the innermost if statement possible. 

Example 

To illustrate the ambiguity, the following example is indented in a misleading fashion: 

if «k >= 0) && (k < TABLE_ SIZE» 
if (table[k] >= 0) 

printf("Entry %d is %d \ n", k, table[k); 
else printf( "Error : index \d out of range .\n", k ); 

A casual reader might assume that the e1 se part was intended to be an alternative to the out
er if statement. That is, the error message should be printed when the test 

(k >= 0) && (k < TABLE_ SIZE) 

is fa lse. However, if we change the wording of the last error message to 

else printf("Error: entry \d is negative.\n", k); 
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then it might appear that the programmer intended the e l se part to be executed when the 
test table [k] > = 0 is false. The second interpretation of the prior code fragment will work 
as intended, whereas the fust will not. The first interpretation can be made to work by intro
ducing a compound statement: 

if ( k >= 0 •• k < TABLE SIZE) { -
if ( table [k] >= 0) 

pr i n t f (" En t ry %d i s 'td \ nn , k , tab l e [k ] ); 

} 
e l se printf ( "Erro r : index %d o ut o f r ange . \ n" , k ) i 

To reduce confusion, the second interpretation could also use a compound statement: 

i f (k >= 0 && k < TABLE SIZE ) { 
if ( tabl e [k] >= 0) 

printf (" Entry %d i s %d \ n ", k , t able [k1 ); 
e lse printf (" Error: entry \ d is n e gative .\n ", k ); 

} 

Confusion can be eliminated entirely if braces are always used to surround state
ments controlled by an if statement. However, this conservative rule can clutter a pro
gram with unnecessary braces. It seems to us that a good stylistic compromise between 
confusion and clutter is to use braces with an if statement whenever the statement con
trolled by the if is anything but an expression or null statement. 

References compound statement 8.4; expression statement 8.2; null statement 8.11 

8.6 ITERA TlVE STATEMENTS 

Three kinds of iterative statements are provided in C: 

iterative-statement : 
while-statement 
do-statement 
Jor-statement 

The while statement tests an exit condition before each execution of a statement. 
The do statement tests an exit condition after each execution of a statement. The for 
statement provides a special syntax that is convenient for initializing and updating one or 
more control variables as well as testing an exit condition. The statement embedded within 
an iteration statement is sometimes called the body of the iterative statement. 

In C99, each iterative statement fonos its own block scope, as do the substatements 
even if they are not compound statements. This serves to restrict the scope of objects and 
types that might be created as a side effect of using compound literals or type names. 

References compound literals 7.4.5; control expression 8.1; type names 5.12 
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8.6.1 While Statement 

C does not use the keyword do as part of the syntax of its while statement: 

while-statement: 
while ( expression ) statement 

The while statement is executed by first evaluating the control expression. If the 
result is true (not zero), then the statement is executed. The entire process is then repeated, 
alternately evaluating the expression and then, if the value is true, executing the statement. 
The value of the expression can change from time to time because of side effects in the 
statement or expression. 

The execution of the while statement is complete when the control expression 
evaluates to false (zero) or when control is transferred out of the body ofthewhile state
ment by a return, goto, or break statement. The continue statement can also 
modify the execution of a while statement. 

Example 

The following function uses a while loop to raise an integer base to the power specified 
by the non-negative integer exponen t (with no checking for overflow). The method used 
is that of repeated squaring of the base and decoding of the exponent in binary notation to de
tennine when to multiply the base into the result. 

To see why this works, note that the while loop maintains the invariant condition that the 
correct answer is resul t times base raised to the exponent power. When eventually 
exponent is 0, this condition degenerates to stating thatresul t has the correct value. 

Example 

int pow(int base, int exponent) 
{ 

} 

int result = 1; 
while (exponent > 0) { 

} 

if ( exponent % 2 ) result *= base; 
base *= base; 
exponent /= 2; 

return result; 

A while loop may usefully have a null statement fo r its body: 

while ( *char-pointer++ ); 

In this code, a chamcter pointer is advanced along by the++ operator until a null charac ter is 
fo und, and it is left pointing to the charac ter after the null. This is a compact idiom for 
locating the end of a string. (No tice that th e test exp ression is interpreted as 
* (char ~ointer++) , not as (*char_pointer) ++, which would increment the 
chamcter pointed to by char_ pointer.) 
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Example 

Another common idiom uses two pointers to copy a character string: 

while ( *dest-pointer++ : *source-pointer++ )i 

Characters are copied until the terminating null character is found (and also copied), Of 
course in writing this, the programmer should have reason to believe that the destination area 
will be large enough to contain all the characters to be copied. 

References break and continue statements 8.8; control expression 8.1; goto 
statement 8.10; null statement 8.11; return statement 8.9 

8.6.2 Do Statement 

The do statement differs from the while statement in that the do statement always exe
cutes the body at least once, whereas the while statement may never execute its body: 

do-statement: 
do statement whi 1e ( expression ) i 

The do statement is executed by first executing the embedded statement. Then the 
control expression is evaluated; if the value is true (not zero), then the entire process is re
peated, alternately executing the statement, evaluating the control expression, and then, if 
the value is true, repeating the process. 

The execution of the do statement is complete when the control expression evaluates 
to zero or when control is transferred out of the body of the do statement by a return, 
goto, or break statement. Also, the continue statement can modify the execution of 
a do statement. 

The e do statement is similar in function to the "repeat-until" statement in PascaL 
The e do statement is unusual in that it terminates execution when the control expression 
is false, whereas a Pascal repeat-until statement terminates if its control expression is true. 
e is more consistent in this regard: All iteration constructs in e (while, do, and for) 
terminate when the control expression is false. 

Example 

This program fragment reads and processes characters, halting after a newline character has 
been processed: 

int Chi 

do 
process ( ch - getchar()}; 

while (ch !: '\n'); 

The same effect could have been obtained by moving the computations into the control ex
pression of a whil e statement, but the intent would be less clear: 

int Chi 

while( ch : getchar(ch}, 
process (ch), 
ch !: '\n' } /*empty*/ 
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Example 

It is possible to write a do statement whose body is a null statement: 

do j while (expression); 

However, it is more common to write this loop using a whi Ie statement: 

while (expression); 

References break and continue statements 8.8; control expression 8.1; goto 
statement 8.10; null statement 8.11; return statement 8.9; whi 1e statement 8.6.1 

8.6.3 For Statement 

C's for statement is considerably more general than the "increment and test" statements 
found in most other languages. After explaining the execution of the for statement, we 
give several examples of how it can be used: 

Jor-sratement ; 
for jor-expressions statement 

Jor-expressions : 
(initial-clauseopt ; expressionopt ; expressionopt 

initial· clause: 
expression 
declaration (C99) 

A for statement consists of the keyword for , followed by three expressions sepa
rated by semicolons and enclosed in parentheses, followed by a statement. Each of the 
three expressions within the parentheses is optional and may be omitted, but the two semi
colons separating them and the parentheses surrounding them are mandatory. 

Typically, the first expression is used to initialize a loop variable, the second tests 
whether the loop should continue or terminate, and the third updates the loop variable 
(e.g., by incrementing it). However, in principle, the expressions may be used to perform 
any computation that is useful within the framework of the for control structure. The 
for statement is executed as follows: 

1. If the initial-clause is an expression, then it is evaluated and the value is discarded. 
If the initial-clause is a declaration (e99), then the declared variables are initialized. 
If the initial-clause is not present, then no action occurs. 

2. If present, the second expression is evaluated like a control expression. If the result 
is zero, then execution of the f or statement is complete. Otherwise (if the value is 
not zero or if the second expression was omitted), proceed to Step 3. 

3. The body of the for statement is executed. 

4. If present, the third expression is evaluated and the value is discarded. 

5. Return to Step 2. 
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The execution of a for statement is terminated when the second (control) expres
sion evaluates to zero or when control is transferred outside the for statement by a 
return, goto , or break statement. The execution of a continue statement within 
the body of the for statement has the effect of causing a jump to Step 4. 

In e99, the for statement forms its own block scope, as does the substatement even 
if it is not a compound statement. This serves to restrict the scope of objects and types that 
might be created as a side effect of using compound literals or type names. Also, the first 
expression in the for loop may be replaced by a declaration, which can declare and ini
tialize one or more loop control variables. The scope of such variables extends to the end 
of the for statement and includes the second and third expressions in the loop control. It 
is common when writing for loops to want such control variables, and restricting their 
scope allows the C compiler more optimization latitude. 

References break and continue statements 8.8; compound literals 7.4.5; control ex
pression 8. 1; discarded expressions 7.13; goto statement 8.10; return statement 8.9; type names 
5.12; while statement 8.6.1 

8.6.4 Using the for Statement 

Example 

Typicall y, the fIrst expression in a for statement is used to initialize a variable, the second 
expression to test the variable in some way, and the third to modify the variable toward some 
goal. For example, to print the integers from 0 to 9 and their squares, one might write 

int j; 

for (j = 0; j < 10; j++) 
printf(" %d %d \ n", j. j*j); 

Here the fIrst expression initializes j , the second expression tests whether it has reached 10 
yet (if it has, the loop is tenninated), and the third expression increments j . 

In C99, the variable j can be declared in the loop and its scope thereby limited to the loop: 

for (int j = 0; j < 10; j++) 
printf(" %d %d \ n", j, j*j); 

Example 

There are two common ways in C to write a loop that "never terminates" (sometimes known 
as a "do forever" loop): 

for (i;) statement 

while (1 ) statement 

The loops can be terminated by a break, goto, or return statement within the body. 

Example 

The pow function used earlier to illustrate the while statement can be rewritten using a 
for statement: 
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int pow(int base, int exponent) 
{ 

} 

int result '" 1; 
for (i exponent> OJ exponent /_ 2) { 

if ( exponent % 2 ) 
result * - base; 

base *", base; 

} 
return result; 
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This form stresses that the loop is controlled by the variable exponent as it progresses 
toward 0 by repeated divisions by 2. Note that the loop variable exponent still had to be 
declared outside the for statement. The for statement does not include the declaration of 
any variables. A common programming error is to forge l to declare a variable such as i or j 
used in a for statement, only to discover that some other variable named i or j elsewhere in 
the program is inadvertently modified by the loop. 

Example 

Here is a simple sorting routine that uses the insertion sort algorithm. 

void insertsort(int v(1, int n) 
{ 

} 

register int i, j, temp; 
for (i '" 1; i < ni i++) { 

temp '" v (i] ; 

} 

for (j '" i-1; j >= 0 &.&. v(j1 > tempi j--) 

v[j+l] - v[j]; 
v(j+1] _ tempi 

The outer for loop counts i up from I (inclusive) to n (exclusive). At each step, elements 
v {O] through v {i -1] have already been sorted, and elements v [i] through v [n -1] 
remain to be sorted. The inner loop counts j down from i -1 , moving elements of the array 
up one at a time until the righ t p lace to insert v [i] has been found. (That is why this is 
called insertion sort.) This algorithm is not a good method for very large unordered arrays, 
because in the worst case the time to perform the sort is proportional to n *n (i.e., it is O (n2». 

Example 

The insertion sort can be improved from O (n2) to O (nI.25) by simply wrapping a third loop 
around the first two and introducing gap in a few places where insert sort used the 
constant 1. The following sort function, using the shell sort algorithm, is similar to one called 
shell that appeared as an example in Kernighan and Ritchie's The C Programming Lan
guage, but we have modified it here in three ways, two of them suggested by Knuth and 
Sedgewick (see the Preface), to make it faster: 
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void shellsort(register int v[), int n) 
{ 

} 

register int gap, i, j, temp i 
gap = 1; 
do (gap", 3*gap + I); while (gap <= n)i 

for (gap / = 3; gap > 0; gap / = 3) 
for (i = gap; i < n; i++) { 

temp = v[i1; 

} 

for (j-i-gapi (j>=O)&&{v[j]>temp)i j-=gap) 
v[j+gap) = v[j]; 

v(j+gap] = tempi 

Chap. 8 

The improvements are: (l) In the original shell function, the value of gap started at n/2 
and was divided by two each time through the outer loop. In this version, gap is initialized by 
finding the smallest number in the series (1, 4, 13, 40,121, ... ) that is not greater than n , and 
gap is divided by three each time through the outer loop. This makes the sort run 20%-30% 
faster. (fhis choice of the initial value of gap has been shown to be superior to using n as the 
initial value.) (2) The assignments in the inner loop were reduced from three to one. (3) The 
register and void storage classes were added. In some implementations,register 
declarations can improve perfonnance dramatically (40% in one case). 

Example 

The for statement need not be used only for counting over integer values. Here is an exam
ple of scanning down a linked chain of structures where the loop variable is a pointer: 

struct intlist { 

}; 

struct intlist *link; 
int data; 

void print_ duplicates (struct intlist *p) 
{ 

} 

for (; p; p _ p->link) { 
struct intlist *q; 

} 

for (q = p- >linki qi q = q->link) 
if (q->data == p->data) { 

printf("Duplicate data %d", p->data)i 
breaki 

} 

The structure intlis t is used to implement a linked list of records, each record containing 
some data. Given such a linked list, the functionprin t duplica tea prints the data for 
every redundant record in the list. The fust for statement uses the formal parameterp as its 
loop variab le- it scans down the given list. The loop terminates when a null pointer is 
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encountered. For every record, all the records following it are examined by the inner for state
ment, which scans a pointer q along the list in the same fashion. 

References pointer types 5.3; register storage class 4.3; selection operator - > 7.4.2; 
structure types 5.6; void type 5.9 

8.6.5 Multiple Control Variables 

Sometimes it is convenient to have more than one variable controlling a for loop. In this 
connection, the comma operator is especially useful because it can be used to group sever
al assignment expressions into a single expression. 

Example 

The fo llowing function reverses a linked list by modifying the links: 

Example 

struct intlist { struct intlist *link; int data; }; 

struct intlist *reverse(struct i ntlist *p) 
{ 

} 

struct intlist *here, *previous, *next; 
for (here '" p, previous '" NULL i 

here I: NULL; 
next = here- >link, here- >link : previous, 

previous = here, here'" next) / *empty* / 
return previousi 

The fo llowing function s tring_ equal accepts two strings and returns I if they are equal 
and 0 otherwise. 

int string_ equal(const char *sl, const char *s2) 
{ 

} 

char *p1, *p2i 
for (p1",sl, p2",s2i *p1 && *p2i pl++, p2++) 

if (*p1 I: *p2 ) return 0; 

return *p1 :'" *p2; 

The for statement is used to scan two pointer variables in parallel down the two strings. The 
expression pl++, p2++ causes each of the two pointers to be advanced to the next character. 
If the strings are found to differ, the return statement is used to tenninate execution of the entire 
func tion and return O. If a null character is found in either string, as determined by the expres
sion *pl && *p2 , then the loop is tenninated nonnally, whereupon the second return 
statement detennines whether both strings ended with a null character in the same place. (The 
function would still work correctly if the expression *pl were used instead of *pl && *p2 . 
It would also be a bit faster, although not as pleasantly symmetrical.) 

References break and continue statements 8.8; comma operator 7.10; pointer types 
5.3; selection operator -> 7.4 .2; structure types 5.6 
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8.7 SWITCH STATEMENTS 

The swi tch statement is a multi way branch based on the value of a control expression. 
In use, it is similar to the "case" statement in Pascal or Ada, but it is implemented more 
like the FORTRAN "computed goto" statement: 

sWitch-statement : 
swi tch expression) statement 

case-label: 
case constant-expression 

default-label: 
default 

The control expression that follows the keyword swi tch must have an integral 
type and is subject to the usual unary conversions. The expression following the keyword 
case must be an integral constant expression (Section 7.11.2). The statement embedded 
within a swi tch statement is sometimes called the body of the swi tch statement; it is 
usually a compound statement, but need not be. 

A case label or defaul. t label is said to belong to the innennost swi tch state
ment that contains it. Any statement within the body of a swi tch statement-or the body 
itself- may be labeled with a case label or a defaul t label. In fact, the same statement 
may be labeled with several case labels and a defaul t label. A case or 
defaul t label is not permitted to appear other than within the body of a switch state
ment, and no two case labels belonging to the same swi tch statement may have con
stant expressions with the same value. At most one defaul t label may belong to any 
one swi tch statement. A swi tch statement is executed as follows: 

1. The control expression is evaluated. 

2. If the value of the control expression is equal to that of the constant expression in 
some case label belonging to the swi tch statement, then program control is 
transferred to the point indicated by that case label as if by a goto statement. 

3. If the value of the control expression is not equal to any case label , but there is a 
defaul t label that belongs to the swi tch statement, then program control is 
transferred to the point indicated by that defaul t label. 

4. If the value of the control expression is not equal to any case label and there is no 
defaul t label, no statement of the body of the swi tch statement is executed; 
program control is transferred to whatever follows the swi tch statement. 

When comparing the control expression and the case expressions, the case expressions 
are converted to the type of the control expression (after the usual unary conversions). 

The order in which the control expression is compared against each case expres
sion is not defined, and the way in which the comparisons are implemented may depend 
on the number and values of the case expressions. Programmers often assume that the 



Sec. 8.7 Switch Statements 275 

swi tch statement is implemented as a sequence of if statements in the same order as 
the case expressions, but this may not be true. 

When control is transferred to a case or default label, execution continues 
through successive statements, ignoring any additional case or defaul t labels that are 
encountered, until the end of the swi tch statement is reached or until control is transferred 
out of the swi tah statement by a goto, return, break, or continue statement. 

Although Standard C allows the control expression to be of any integer type, some 
older compilers do not permit it to be of type long or unsigned long. Standard C also 
pennits an implementation to limit the number of separate case labels in a swi tch 
statement. The limit is 257 in C89 and 1,023 in C99---more than enough to handle all val
ues of a typical (eight-bit) char type, for example. 

In C99, if any object of variably modified type is visible at any case or defaul t 
label, then that object's scope must cover the entire swi tch statement. That is, no object 
of variably modified type can have a scope that encompasses only part of the swi tch 
statement unless that scope is entirely contained within a case or default arm. Stated 
another way, you cannot "bury" a case or defaul t label in a block containing an ob
ject of a variably modified type. 

References break and continue statements 8.8; constant expressions 7.11; goto 
statement 8. 10; integer types 5.1; labeled statement 8.3; return statement 8.9; variably modified 
type 5.4.5 

8.7_1 Use of switch Statements 

Normally, the body of a swi tch statement is a compound statement whose inner, top
level statements have case andlor defaul t labels. It should be noted that case and 
de faul t labels do not alter the flow of program control; execution proceeds unimpeded 
by such labels. The break statement can be used within the body of a swi tch statement 
to terminate its execution. 

Example 

switch (x) { 
case 1, printf("*'f) ; 
case 2, printf{I'**II) ; 
case 3, printf("***") ; 
case 4, printf("****"); 

} 

In the prior swi tch statement, if the value ofx is 2, then nine asterisks will be printed. The 
reason for this is that the swi tch statement transfers control to the case label with the ex
pression 2. The call to print f with argument ""* * II is executed. Next the call to prin t f 
with argument 1'"*"*"*" is executed, and finally the call to pr intf with argument" "*"*"*"* " 
is executed. If it is desired to terminate execution of the swi tch body after a single call to 
printf in each case, then the break statement should be used: 
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switch (x) { 
case 1 , printf("* "); 

break; 
case 2 , printfC"**") ; 

break; 
case 3 , printfC"***") ; 

break; 
case 4 , printf("****"); 

break; 
} 

Although the last break statement in this example is logically unnecessary, it is a good 
thing to put in as a matter of style. It will help prevent program errors in the event that a fIfth 
case is later added to the awi tah statement. 

We recommend sticking to this simple rule of style for awi tch statements: The 
body should always be a compound statement, and all labels belonging to the awl tch 
statement should appear on top-level statements within that compound statement. (The 
same stylistic guidelines apply as for goto statements.) Furthermore, every case (or 
defaul t ) label but the first should be preceded by one of two things: either a break 
statement that terminates the code for the previous case or a comment noting that the 
previous code is intended to drop in. 

Although this is considered good sty le , the language definition does not require that 
the body be a compound statement, that case and default labels appear only at the 
"top level" of the compound statement, or that case and defaul t labels appear in any 
particular order or on different statements. 

Example 

In the following code fragment, the comment tells the reader that the lack of break state
ment after case fatal is intentionaL 

Example 

case fatal: 
printf("Fatal ")i 
/* Drops through. */ 

case error : 
printf("Error"); 
++error_ counti 
break; 

Here is an example of how good intentions can lead to chaos. The intent was to implement 
this simple program fragment as efficiently as possible: 

if (prime(x» process-prime(x); 
else process_ composite (x) ; 

The function pr ime returns 1 if its argument is a prime number and 0 if the argument is a 
composite number. Program measurements indicated that most of the calls to prime were 
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being made with small integers. To avoid the overhead of call s to prime, the code was 
changed to use a swi tch statement to handle the small integers, leaving the defaul t la
bel to handle larger numbers. By steadily compressing the code, the following was produced: 

awi tah (x) 

default: 
if (prime (x) ) 

case 2: case 3: case 5: case 7: 
process_ prime(x); 

else 
case 4: case 6: case 8: case 9: case 10: 

process composite(x); 

This is frankly the most bizarre awi tah statement we have ever seen that still has pretenses 
to being purposeful. 

8.8 BREAK AND CONTINUE STATEMENTS 

The break and continue statements are used to alter the flow of control inside loops 
and-in the case of break- in awi tch statements. It is stylistically better to use these 
statements than to use the goto statement to accomplish the same purpose: 

break-statement : 
break; 

continue-statement: 
continue; 

Execution of a break statement causes execution of the smallest enclosing whi Ie, 
do, for, or swi tch statement to be terminated. Program control is immediately trans
ferred to the point just beyond the terminated statement. It is an error for a break statement 
to appear where there is no enclosing iterative or swi tch statement. 

A continue statement terminates the execution of the body of the smallest enclos
ing while , do, or for statement. Program control is immediately transferred to the end 
of the body, and the execution of the affected iterative statement continues from that point 
with a reevaluation of the loop test (or the increment expression, in the case of the for 
statement). It is an error for a continue statement to appear where there is no enclosing 
iterative statement. 

The continue statement, unlike break, has no interaction with swi tch state
ments. A continue statement may appear within a swi tch statement, but it will only 
affect the smallest enclosing iterative statement, not the swi tch statement. 

Example 

The break and continue statements can be explained in terms of the goto statement. 
Consider the statements affected by abreak or con tinue statement: 
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whi 1 e ( expression ) statement 
do statement whi 1e ( expression ); 
for (expression}; expression2; expression3) statement 
awi t c h ( expression ) statement 

Statements 

Imagine that all such state ments were to be rewritten in this manner: 

{ while (expression) {statement e l i} B:; } 

{ do {statement c :; } while (expression ); B: ;} 

{ for (expression}; expression2; expression3) { statement c : ;} B :; } 

{ switch ( expression ) statement B : ; } 

Chap. 8 

where in each case B and C are labels that appear nowhere else in the enclosing function. 
Then any occurrence of a break statement within the body of any of these statements is 
equivalent to "gata B; " and any occurrence of a continue statement within the body 
of any of these statements (except switch, where it is not permitted) is equivalent to 
"go to C i". This assumes that the loop bodies do not contain yet another loop containing 
the break or continue. 

Example 

The break statement is frequently used in two important contexts: to terminate the process
ing of a particular case within a swi tch statement, and to terminate a loop prematurely. 
The first use is illustrated in conjunction with switch in Section 8.7. The second use is 
illustrated by this example of filling an array with input characters, stopping when the array is 
fu ll or when the input is exhausted: 

#include <stdio . h > 
stati c char array[l OO) ; 
int i, c ; 

for (1 = 0; 1 < 100; i++ ) { 
e = g e t c har() ; 
if (e == EOF ) break ; ,-Quit if e nd-of-file. 
array[i] = c i 

} ,-No w i i. the a c tual number of characters read. 

-, 
-, 

Note how break is used to handle the abnormal case. It is generally better style to handle 
the normal case in the loop test. 

Example 

Here is an example of the use of a break statement within a "do forever" loop. The idea is 
to find the smallest element in the array a (whose length is N) as efficiently as possible. It is 
asswned that the array may be modified temporari ly: 
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int temp: a[O] i 

register int smallest: a[O ) ; 
register int *ptr = &a[N]; /* just beyond end of a */ 

for (i;) { 

} 

while (*--ptr > smallest) 
if (ptr """ &a [0]) break; 
a[01 = smallest = *ptr; 

a [01 = tempi 
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The point is that most of the work is done by a tight whil e loop that scans the pointer ptr 
backward through the array, skipping elements that are larger than the smallest one found so 
far. (If the elements are in a random order, then once a reasonably small element has been 
found, most elements will be larger than that and so will be skipped.) The while loop can
not fall off the front of the array because lhe smallest element so far is also stored in the fust 
array element. When the while loop is done, if the scan has reached the front of the array, 
then the break statement terminates the outer loop. Otherwise smallest and a [0] are 
updated and the while loop is entered again. 

Example 

Compare the prior code with a simpler, more obvious approach: 

register tnt smallest = a[O li 
register int ji 

for (j = 1; j < N; ++j) 
if (a[jl < smallest) smallest = a[j]; 

This version is certainly easier to understand. However, on every iteration of the loop , an ex
plicit check ( j <n) must be made for falling off the end of the array, as opposed to the implicit 
check made by the more clever code. Under certain circumstances where efficiency is para
mount, the more complicated code may be justified; otherwise the s impler, c learer loop 
should be used. 

References do statement 8.6.2; for statement 8.6.3; goto statement 8.10; swi tch 
statement 8.7; while statement 8.6.1 

8.9 RETURN STATEMENTS 

A re turn statement is used to tenninate the current function, perhaps returning a value: 

return-statement: 
return expressionopt 

Execution of a return statement causes execution of the current function to be 
terminated; program control is transferred to the caller of the function at the point immedi
ately following the call. 
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If no expression appears in the return statement, then the return type of the func
tion must be void in e99 or else the statement is invalid. e89 permitted the expression to 
be omitted in non-void functions, but stated that the behavior was undefined if a value 
from the function call was expected. 

If an expression appears in the return statement, then the return type of the func
tion must not be void or else the statement is invalid. The return expression is converted 
as if by assignment to the return type of the function~ if such conversion is not possible, 
then the return statement is invalid. 

If program control reaches the end of a function body without encountering a 
return statement, then the effect is as if a return statement with no expression were 
executed. If the function has a non-void return type, then the behavior is undefined. 

Example 

Many programmers put parentheses around the expression in areturn statement, although 
this is not necessary. It is probably a habit developed after putting parentheses around the ex
press ions following awi tch, if , while, and so on. 

int twice(int x) { return (2*x); } 

References discarded values 7.13; function call 7.4.3; function definition 9.1; function re
turn type agreement 9.8 

B. 10 GOTO STA TEMENTS 

A goto statement may be used to transfer control to any statement within a function: 

gOlO-statement : 
go to named-label 

named-label: 
identifier 

The identifier following the keyword gete must be the same as a named label on 
some statement within the current function. Execution of the goto statement causes an 
immediate transfer of program control to the point in the function indicated by the label; 
the statement labeled by the indicated name is executed next. 

References labeled statement 8.3 

B.10.1 Using the goto Statement 

C permits a goto statement to transfer control to any other statement within a function, 
but certain kinds of branching can result in confusing programs, and the branching may 
hinder compiler optimizations. For these reasons, we recommend that you do not branch: 
into the "then" or "else" arm of an if statement from outside the if statement, from the 
"then" arm to the "else" arm or back, into the body of a awi tch or iteration statement 
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from outside the statement, or into a compound statement from outside. Such branches 
should be avoided not only when using the goto statement, but also when placing case 
and default labels in a switch statement Branching into the middle of a compound 
statement from outside bypasses the initialization of any variables declared at the top of 
the compound statement. It is good programming style to use the break, continue, 
and return statements in preference to goto whenever possible. 

Example 

Despite the cautions, the gete is useful at times. In the following example, a two-dimension 
array a is searched for a value v. If found, a gote is used to branch out of a doubly nested 
loop, preserving the values of the loop variables i and j . 

#include <stdio.h> 
int i. j. v. a[N] [M] i 

for (i=O; i++i i<N) 
for (j=Oi j++; j<M) 

if (a [1] [j] == v) goto found; 
printf("a does not contain %d\n". v); 

found: 
printf("a[%d1 [%d1==%d\n". i. j. v); 

References break and continue statements 8.8; control expression 8.1; if 
statement 8.5; labeled statement 8.3; return statement 8.9; switch statement 8.7 

8.11 NULL STATEMENTS 

The null statement consists simply of a semicolon: 

null· statement ." 
; 

The null statement is useful primarily in two situations. In the first case, a null body 
is used as the body of an iterative statement (while, do, or for). The second case is 
where a label is desired just before the right brace that tenninates a compound statement. 
A label cannot simply precede the right brace, but must always be attached to a statement. 

Example 

The following loop needs no body because the conU"ol expression does all the work: 

char .p; 

while ( .p++ )i /* find the end of the string ./ 
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Example 

The label L is placed on a null statement: 

if (e) { 

goto L; /* terminate this arm of the 'if' */ 

L,,} 
else ... 

Chap. 8 

References do statement 8.6.2; for statement 8.6.2; labeled statement 8.3; while 
statement 8.6. 1 

8.12 C++ COMPATIBILITY 

8.12.1 Compound Statements 

c++ does not allow jumping into a compound statement in a way that would skip declara
tions with initializers. 

Example 

goto L; /* Valid but unwise in Ci invalid in c++ */ 
{ 

int i = 10i 

} 

References jumping into compound statements 8.4.2 

8.12.2 Declarations In Loops 

e99 allows variables to he declared in the initial-clause of a for loop; their scope ends at 
the end of the loop body. This is consistent with Standard C++. Some earlier versions of 
C++ extended the scope of such variables past the end of the loop into the enclosing com
pound statement or function. 

8.13 EXERCISES 

1. Rewrite the following statements wi thout using for , while, or do statements. 

(a) for (n=Ai n<B i n++) sum+=ni 

~) while(a<b} a++i 

(c) do sum+=*Pi while (++P < q); 

2. What is the value of j at the end of the following program fragment? 
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{ int j ::: 1; 

goto L; 
{ 

static int i = 3; 
L, 

j = i; 
} 

} 

3. What is the value of sum after the following program fragment is executed? 

int i/sum = 0; 
for(i=O;i <lO;i++) { 

switch (i) { 

} 

case 0: case 1 : case 3: case 5: sum++; 
default: continue; 
case 4 : break; 
} 
break; 

283 
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Functions 

This chapter discusses the use of functions, and the details of declaring and defining 
functions, specifying formal parameters and return types, and calling functions. Some in
formation on functions appears previously in this book: Function decIarators are described 
in Section 4.5.4, and function types and declarations are discussed in Section 5.8. 

The description of functions has become more complicated since the original defini
tion of C. Standard C introduced a new (better) way of declaring function s using function 
prototypes that specify more information about a function's parameters. The operation of a 
function call when a prototype has appeared is different from its operation wi thout a proto
type. Although the prototype and non prototype forms are individually easy to understand, 
there are complicated rules for deciding what should happen when these two forms are 
mixed for the same function. (In Ct+, prototypes must be used.) 

The presence of a function prototype is determined by the syntax of a function de
clarator (Section 4.5.4). Briefly, in traditional C and when a prototype is not used: 

1. Function arguments undergo automatic promotions (the usual argument conver
sions) before a call. 

2. No checking of the type or number of arguments occurs. 

3. Any function can potentially take a variable number of arguments. 

In contrast to this, when prototypes are used: 

1. Function arguments are converted, as if by assignment, to the declared types of the 
fonnal parameters. 

2. The number and types of the arguments must match the declared types, or else the 
program is in error. 

3. Functions taking a variable number of arguments are designated explicitly, and the 
unspecified arguments undergo the default argument conversions. 

285 
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Whether to use prototypes in C programs is a tricky portability issue. To remain 
compatible with non-Standard implementations, you must avoid them. To remain compat
ible with C++, you must use them. You could write both fonns using conditional compila
tion directives to decide which to include, hut that is awkward too. The following sections 
discuss both prototype-form and nonprototype-form function declarations, and they also 
discuss some portability options. 

9.1 FUNCTION DEFINITIONS 

A function definition introduces a new function and provides the following information: 

1. the type of the value returned by the function, if any 

2. the type and number of the formal parameters 

3. the visibility of the function outside the file in which it is defined 

4. the code that is to be executed when the function is called 

The syntax for a function definition is shown next. Function definitions can appear only at 
the top level of a C source file or translation unit. 

translation-unit: 
top-level-declaration 
translation-unit top-level-declaration 

top-level-declaration: 
declaration 
f unction-definition 

function-definition: 
function-def-specifier compound-statement 

function-def-specifie r : 
declaration-specifiers opt declarator declararion-listopt 

declaration-list: 
declaration 
declaration-list declaration 

The syntax for other top-level declarations was discussed in Chapter 4. Prior to C99, if no 
type specifier appeared in the declaration-specijiersopt of a function definition, then int 
was assumed. In C99, a type specifier is required. 

Within a junction-def-specifier, the declarator must contain a junction-declarator 
that specifies the function identifier immediately before the left parenthesis. The syntax of 
a function declarator was shown in Section 4.5.4 and is repeated next for convenience: 
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junction-declarator: 
direct-declarator (parameter-type-lisr ) 
direct-declarator ( identifier-lis/apl) 

parameter-type-lisf : 

parameter-list 
parameter-list I 

parameter-list: 
parameter-declaration 
parameter-list, parameter-declaration 

parameter-declaration: 
declaration-specifiers declarator 
declaration-specifiers abstract-declarator opt 

identifier-list: 
identifier 
identifier-list. identifier 
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(C89) 

If the function declarator that names the defined function includes aparameter-type
list , then the function definition is said to be in prototype form; otherwise it is in nonprolo
type, or traditional, form. In prototype form, the parameter names and types are declared 
in the declarator, and the declaration-list following the declarator must be empty. All C 
function definitions should be written in prototype fonn as a matter of good style. 

In the pre-Standard traditional fonn, the parameter names are listed in the declarator 
and the types are specified (in any order) in the declaration-listopt following the declarator. 
All parameters should be declared in the declaration-list, but prior to C99 omitted param
eter declarations defaulted to type in t. C99 lists the traditional fonn of function definitions 
as an obsolescent feature, which means it may not be supported in the future. 

Example 

int flint i, long j) { ... } 
int f(i,j) int i, long j, { ... } 

/* prototype form */ 
/* traditional form */ 

There are several constraints on the fonn of the function-de/-specifier. The identifier 
declared in a function definition must have a function type, as indicated by the declarator 
portion of the definition. That is, the declarator must contain a Junction-declarator that 
specifies the function identifier immediately before the left parenthesis. It is not allowed 
for the identifier to inherit its "functionness" from a typedef name. 

The function return type cannot be an alTay or function type. 
The declarator must specify the function 's parameter names. If the declarator is in 

prototype fonn, the parameter-declarations must include a declarator as opposed to an 
abstract-declarator. If the declarator is not in prototype fonn , it must include identifier
list unless the function takes no arguments. To avoid an ambiguity between an identifier 
list and a parameter type list, it is invalid to have a parameter name that is the same as a 
visible typedef name. (This restriction is usually not present in older compilers.) 
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The only storage class specifier allowed in a parameter declaration is register. 
The declaration-lis/opt is pennitted only with non prototype definitions and can in

clude only declarations of parameter identifiers. Some traditional C compilers will pennit 
additional declarations (e.g., structures or typedefs). but the meaning of such declarations 
is problematic and are better placed in the function body. 

Example 

To illustrate these rules, the following are valid func tion definitions: 

Definition 

void f () 

( ... J 

tnt g(x, y l 
int x, y ; 

( ... J 

int h (int x, int y) 

( ... J 

int (*f (int x)) [J 

( ... J 

Explanation 

f is a function taking no parameters and returning 
no value (traditional form) 

g is a function taking two integer parameters and 
returning an integer result (traditional) 

h is a function taking two integer parameters and 
returning an integer result (prototype form) 

f is a function taking an integer parameter and 
returning a pointer to an array of integers (prototype 
form) 

The fo llowing are not valid function definitions for the reasons given. Assume the typedef 
name T was declared as " typedef int T () ; ". 

Deftnition 

int (*q) () ( ... J 

T r ( ... J 

T s O ( ... J 

void t(int, double) 

( ... J 

void u(int x, Y) 
int Y' 

( ... J 

Explanation 

q is a pointer, not a function 

r cannot inherit " functionness" from a typedef 

name 

declares s as a function returning a function 

t's parameter names do not appear in the declarator 

parameter declarations are only partially in proto
type form 

The only storage class specifiers that may appear in a function definition are ex
tern and static. extern signifies that the functi on can be referenced from other 
files-that is, the function name is exported to the linker. The specifier s ta tic signifies 
that the function cannot be referenced from other files-that is, the name is not exported to 
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the linker. If no storage class appears in a function definition, extern is assumed. In any 
case, the function is always visible from the definition point to the end of the file. In par
ticular, it is visible within the body of the function. 

References declarators 4.5; extern storage class 4.3 ; function declarations 5.8; 
initialized declaration 4.1; sta tic storage class 4.3; type specifiers 4.4 

9.2 FUNCTION PROTOTYPES 

A function prototype is a function declaration written in the prototype syntax (the param
eter-type-list) or a function definition written in that syntax. Like a traditional function 
deciaration, a function prototype declares the return type of a function. Unlike a traditional 
function declaration, a function prototype also declares the number and type of the func
tion 's fonnal parameters. All modern C code should be written using prototypes. C99 
characterizes the older, non prototype form as obsolescent. 

There are three basic kinds of prototypes depending on whether a function has no 
parameters, a fixed number of parameters, or a variable number of parameters: 

1. A function that has no parameters must have a parameter type list consisting of the 
single type specifier void. In a function definition, an empty parameter list means 
the same as void, but this is an obsolescent notation that should be avoided. 

Example 

extern int random_generator(void}; 
static void do nothing(void} {} /* void is optional */ 

2. A function that has a fixed number of parameters indicates the types of those param
eters in the parameter type list. If the prototype appears in a function declaration, 
parameter names may be included, as desired. (We think they help in documenting 
the function.) Parameter names must appear in function definitions. 

Example 

double square(double x} { return X*Xi } 
extern char *strncpy(char *, const char *, size t}; 

3. A function that has a variable number of parameters or parameters of varying types 
indicates the types of any fixed parameters as before and follows them by a comma 
and an ellipsis ( ... ). There must be at least one fixed parameter or else the param
eter list cannot be referenced using the standard library facilities from stdarg. h.: 

Example 

This is a declaration for a func tion that has a variable number of parameters. The parameter 
names are spelled in a way reserved for implementors as required in the standard library. 

extern int fprintf( FILE * file, 
const char * format, ... ); 
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Example 

Prototypes may be used in any function declarator, including those used to form more compli· 
cated types. The Standard C declaration of signal (Section 19.6) is 

void {*signal(int sig. void (·func) (int sigal)} (int sigal; 

This declares signal to be a function that takes two arguments: sig, an integer, and func, 
a pointer to a void function of a single integer argument, aiga. The function signal returns 
a pointer of the same type as its second parameter (Le., a pointer to a void function taking a 
single integer argument). A clearer way to write the declaration of signal is 

typede£ void sis_ handler{int siga); 
si9_ handler *signal(int sig, sig_ handler -func); 

However, when actually defining a signal handler function. the sig_ handler typedef name 
cannot be used by the rules for function definitions. Instead, the type must be repeated: 

void new_signal_ handler (int sig a) { ... } 

It is possible to use prototypes for some declarators and not for others in the same declaration. 
If we were to declare signa12 as 

typede£ void sig_handler2(); /* not a prototype */ 
sig_handler2 *signa12(int sig, sig_ handler2 *£unc); 

then the second argument of the signa12 function would not be in prototype form, although 
signa12 sti ll has the prototype form. 

References function declarator 4.5.4; function declarations 5.8; function definitions 9.1; 
void type 5.9 

9.2.1 When Is a Prototype Present? 

To predict how a function call will be perfonned, it is important that the programmer 
know whether the function (or function type) being called is governed by a prototype. A 
function call is governed by a prototype when: 

1. a declaration for the function (or type) is visible and the declaration is in prototype 
form , or 

2. the function definition is visible and that definition is in prototype form. 

Note that the visibility of any prototype for the function is all that is required; there may be 
other non prototype declarations or definitions visible. 

If there are two or more prototype declarations of the same function or function 
type, or a prototype declaration and a prototype definition, then the declarations and defi
nition must be compatible using the rules in Section 5.11.4. 

References compatible and composite types 5.11 
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9.2.2 Mixing Prototype and Nonprototype Dec/aratlons 

Although mixing prototype and non prototype declarations for the same function is not 
recommended. Standard C specifies conditions under which the two kinds of declarations 
are compatible (see Section 5.11.4). 

The behavior of a function call is undefined if the call supplies arguments that do not 
"match" the function definition. In traditional C, the programmer assumes all responsibility 
for making sure the call matches the definition; the language helps by converting arguments 
and parameters to a smaller and perhaps more manageable set of types. In Standard C, 
through the use of prototype declarations, the compiler can check at the call site that the 
arguments match the prototype. 

Depending on where function declarations appear, it is possible that some function 
calls will be governed by prototype declarations, some by traditional declarations, and 
some by the actual function definition. The calls and definition may be in a single source 
file or many files. Whenever some calls are not governed by a prototype, the programmer 
must assume the additional responsibility in being sure that the arguments in those calls 
match the function definition. 

Example 

In general, there are many different prototypes that are individually compatible with anonpro
totype declaration. For example, suppose the non prototype declaration 

extern int f(); 

appeared somewhere in a C program. Here are some compatible and incompatible prototype 
declarations. 

Prototype 

extern double f(void); 

extern int f(int, float); 

extern int f(double x); 

extern int f(int i, . .. ); 

extern int f(float *); 

Compatible 
with int f ()? 

no 

no 

yes 

no 

yes 

Reason 

the parameter list is OK, but the return 
types are not compatible 

float changes to double under the 
usual argument conversions; the two 
types arc not compatible 

parameter type docs not change on con
version 

the prototype must not contain ellipses 

the argument is a pointer that is not con
verted 

In general, there is only one prototype that matches a nonprototype function definition; 
this prototype is sometimes referred to as the function's Miranda prototype since it is "ap
pointed" to a function definition that otherwise would not have one. 

In Standard C, functions taking a variable number of arguments must be governed by 
prototypes. This means that any pre-Standard declarations of functions that take a variable 
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number of arguments (e.g., print f) must be rewritten with a prototype before they are 
used by a Standard C implementation. 

Example 

For example, suppose the following (nonprototype) definition appeared in a C program: 

int f (x, y) 

float Xi 

int ¥i 
{ ... } 

Here are some compatible and incompatible prototype declarations for this definition. 

Prototype 

extern double 

f(double x, int Y)i 

extern int 

f (float, tnt) i 

extern int 

f ( float, int, ... ); 

extern int 

f (double a, int b); 

Compatible? 

no 

no 

no 

yes 

Reason 

the parameter list is OK, but the return 
types arc not compatible 

the flrst parameter must have type 

double 

the prototype must not contain ellipses 

this is the only compatible prototype; the 
parameter names do not matter 

References compatible types 5.11; printf 15.11 

9.2.3 Using Prototypes Wisely 

Argument checking with prototypes is not foolproof. In a C program divided into many 
source files, the compiler cannot check that all calls to a function are governed by a proto
type, that all the prototypes for the same function are compatible, or that aU the prototypes 
match the function definition. 

However, if the programmer follows some simple rules, the loopholes can be elimi
nated for all practical purposes: 

1. Every external function should have a single prototype declaration in a header file. 
By having a single prototype, the possibility of incompatible prototypes for the same 
function is eliminated. 

2. Every source file that has in it a call to the function should include the header file 
with the prototype. This ensures that all calls to the function will he governed by the 
same prototype and allows the compiler to check the arguments at the call sites. 

3. The source file containing the definition of the function should also include the 
header file . This allows the compiler to check that the prototype and the declaration 
match, and. by transitivity. that all calls match the definition. 

It is not necessary that the function definition be in prototype fonn. 
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The use of static functions should follow similar rules. Be SUfe a prototype-fonn 
declaration of the static function appears before any calls to the function and before the 
function's definition. 

9.2.4 Prototypes and Calling Conventions 

This section is primarily useful to compiler impiementors, although it may give other pro
grammers some insight into the rules for function prototypes. One advantage to function 
prototypes is that they can pennit a compiler to generate more efficient calling sequences 
for some functions. 

Example 

For example, under traditional C rules, even if a function were defined to take a parameter of 
type float , the compiler had no choice but convert argument to type double , call the func
tion, convert the argument back to float inside the function, and store it in the parameter. In 
Standard C, if the compiler sees a function call governed by the prototype 

extern int f(float) i 

then the compiler is free to not convert the argument to type double, assuming it makes the 
corresponding assumption on the other side when it implements the definition off: 

int f (float xl { ... } 

The subtle point here is that the compiler does not have to remain compatible with 
calls that are not governed by a prototype in this caSe because no nonprototype declara
tions (or definition) of f could possibly be compatible with the indicated prototype. 
Hence, Standard C does not define what should happen if a call to f is made without the 
prototype visible. The compiler is free to pass the argument in a register even if the non
prototype convention is to pass all arguments on a stack. 

On the other hand, if a prototype declaration could be a Miranda prototype for a 
function declared or defined in the traditional way, then the compiler must use a compati
ble calling convention. 

Example 

A call to a function g governed by either of the following declarations would have to be im
plemented in a compatible way: 

extern short g(); 
extern short g(int,double); /* Could be g's Miranda */ 

Stated another way, if a compiler for Standard C sees the function call 

process{ a, b, c, d )i 

where no prototype is visible and where the types of the actual arguments are 

short ai 

struct {int a,bi} bi 
float *Cj 

float di 
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then the funct ion cal l must be implemented the same as if this prototype were in effect: 

int process (int, struct {int a,b;}, float *, double}; 

This rule does not actually establish a prototype that might affect later calls. Should 
a second call on process appear later in the program or in another source file, at which 
time the arguments to process are three values of type double, then that second call 
must be implemented as if the prototype were 

int process( double, double, double ); 

even though the two calls will probably be incompatible at execution time. 
To summarize the rules, a compiler is allowed to depend on all calls to a function 

being governed by a prototype only if it sees a call of the function that is governed by a 
prototype and that prototype 

1. includes an argument type that is not compatible with the usual argument conver
sions (char, short, their unsigned variants , or float) , or 

2. includes ellipses, indicating a variable argument list. 

Since the conversions of char and short to int have minimal cost on most computers, 
the first rule is useful mainly with arguments of type float. 

The second rule indicates that the compiler's standard calling convention need not 
support variable argument lists, as it must in traditional C. For example, a Standard com
piler could elect in its standard convention to use registers for the first four (fixed) argument 
words to any function, with the remainder of the arguments passed on the stack. This con
vention would probably not be appropriate in traditional C because some functions taking 
variable arguments depend on all the arguments being passed contiguously on the stack. 
Any traditional C functions that take a variable number of arguments (e.g., print f ) must 
be rewritten to have a prototype before they are compiled by a Standard C implementation. 

The storage class register is ignored when it appears in a prototype declaration. 
This means that register cannot be used to alter the calling convention of the function; 
it can only be used as a hint within the function body. 

9.2.5 Compatibility With Standard and Traditional C 

Standard C is now common enough that prototypes are recommended for all C programs. 
In the unusual case requiring compatibility with implementations that do not provide pro
totypes, you can remain compatible with both traditional and Standard C by not using 
them. However, you will give up the additional type checking when using a Standard C 
compiler. Here is a way around the problem using a macro PARMS : 

#ifdef STDC 
#define PARMS(x) x 
#else 
#define PARMS(x) () 

#endif 
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Then instead of the prototype declaration 

extern int f(int a, double b , char e)i 

write this declaration (note the doubled parentheses): 

extern int f PARMS«int a, double b, char e»; 

When compiled by a traditional implementation, the preprocessor expands this line to 

extern int f (); 

But a Standard C implementation expands it to: 

extern int f (int a, double hi char e)i 

The PARMS macro does not work correctly in function definitions, so you must write the 
corresponding function definitions using the traditional syntax, which is also accepted by 
Standard C: 

int f (a, b , c) 
int ai double bi long c; 

{ 

} 

A traditional definition in Standard C does not cause a problem as long as a prototype dec
laration for the function appears earlier in the source file. 

References _ STDC_ predefined macro 3.3. 4 

9.3 FORMAL PARAMETER DECLARATIONS 

In function definitions, fonnal parameters are declared either in the prototype syntax or in 
the traditional syntax. 

The only storage class specifier that may be present in a parameter declaration is 
regi s ter, which is a hint to the compiler that the parameter will be used heavily and 
might better be stored in a register after the function has begun executing. The nonnal re
strictions as to what types of parameters may be marked register apply (see Section 4.3). 

In Standard C, formal parameters have the same scope as identifiers declared at the 
top level of the function body, and therefore they cannot be hidden or redeclared by decla
rations in the body. Some current C implementations allow such a redeclaration, which is 
almost invariably a programming error. 
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Example 

In the following function definition, the declaration double X; would be an error if com
piled by a Standard-confonning compiler. However, some non-Standard compilers permit it, 
and thereby make the parameter x inaccessible within the function body. 

int f(x} 
int x; 

{ 
double X; 1* hides parameterl? */ 

} 

In Standard C, a parameter may be declared to be of any type except void. Howev
er, if a parameter is declared to have a type "function returning T" it is implicitly rewritten 
to have type "pointer to function returning T," and if a parameter is declared to have type 
"array of T" it is rewritten to have type "pointer to T." The array type in the parameter 
declaration can be incomplete. These adjustments are made regardless of whether a proto
type or traditional definition is used and parallel the default argument conversions at the 
call site (Section 6.3.5 ). The programmer need not be aware of this change of parameter 
types in most cases since the parameters can be used within the function as if they had the 
declared type. 

Example 

Suppose the function FONC were defined as 

void FUNC(int f(void) , int (*g) (void), int h(]. int *j) 
{ 

int i; 
i • f(), I' OK 'I 
i • g(), I' OK 'f 
i • h [3] , I' OK 'f 
i - j [3] , I' OK 'f 

} 

Suppose moreover that the following call were made to FONe: 

extern int a(void) , b[20]; 

FUNe ( a, a, b. b ); 

Within FUNe the expression f would be equivalent to g, and h would be equivalent to j. 

Some pre-Standard implementations reject declarations of parameters of type "func
tion returning T," requiring instead that they be explicitly declared as "pointer to function 
returning T." 

C99 extends the syntax. for declaring formal array parameters. An array-qualifier
list may appear within the top-level brackets ( []) of the array declarator. The array quali
fiers (type qualifiers) const. volatile, and restrict support the equivalence of ar
ray and pointer types. That is, parameter declarations ofthe form 
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T A[qualifier-list e] 

are treated as equivalent to 

T * qualifier-list A 

Example 

Given these e99 declarations 

extern int f(int x[const 10]); 
extern int g(const y[lO]); 
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Then in function f the parameter x is treated as if it had type int * const (a constant point
er to int), whereas in 9 the parameter y is treated as if it had type const int * (a pointer 
to a constant int). 

The static array qualifier is also pennitted within array brackets in C99. It is an 
optimization hint to the C implementation, asserting that the actual array argument will be 
non-null and will have the declared size and type upon entry to the function. Without this 
qualifier, a null pointer could be passed as the actual argument for an array parameter, 
which makes it difficult for an implementation to know that it is safe, for example, to 
prefetch the contents of an input parameter array upon entry to the function. 

Finally, for a C99 formal array parameter declaration in a prototype (not part of a 
function definition), the size may be replaced by an asterisk, signifying that the actual ar
gument will be a variable-length array. Any nonconstant expression as the array size in a 
prototype declaration is treated the same as the asterisk. The function definition must sup
ply a nonconstant expression for the size. 

A formal parameter is treated just like a local variable of the specified (or rewritten) 
type into which is copied the value of the corresponding argument passed to the function. 
The parameter can be assigned to, but the assignment only changes the local argument val
ue, not the argument in the calling function . Parameter names declared to have function or 
array types are lvalues due to the rewriting rules, even though identifiers with those types 
are not normally lvalues. 

It is permissible in traditional C implementations to include typedef, structure, 
union, or enumeration type declarations in the parameter declaration section. In Standard 
C, the only names that can be defined in the parameter declaration section are the formal 
parameter names, and all of them must be defined. (Prior to C99, definitions of parameters 
of type int were optional.) If parameters are declared using the prototype syntax, then the 
parameter declaration section must be empty. 

Example 

int process record(r) 

{ 

} 

struct { int ai int hi } *r; /* not Standard C */ 

Il is generally bad programming style to do this in traditional C. If the declarations involve the 
parameters, the declarations should be moved oUlSide the function where the caller can also 
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use them. If the declarations do not involve the parameters, they should be moved into the 
function body. 

References array-qualifier-list 4.5.3; enumeration types 5.5; function declarator 4.5.4; 
function prototype 9.2; incomplete types 5.4; register storage class 4.3; storage class specifiers 4.3; 
structure types 5.6; typede£ 5.10; union types 5.7; variable length array 5.4.5; void type 5.9 

9.4 ADJUSTMENTS TO PARAMETER TYPES 

This section applies only when function prototypes are not used in Standard and traditional 
C. Without a prototype, certain conversions (promotions) of the values of function argu
ments must be made. These conversions, which are designed to simplify and regularize 
function arguments, are called the usual argument conversions (or promotions) and are list
ed in Section 6.3.5. Expecting these argument conversions by the caller, C functions arrange 
for the promoted argument values to be converted to the declared parameter types before 
the function body is executed. For example, if a functionF were declared to take a param
eter, x , of type short, and a call to F specified a value of type short, then the call would 
be implemented as if the following sequence of events occurred: 

J. The caller widens the argument of type short to become a value of type into 

2. The value of type int is passed to F. 

3. F narrows the int value to type short. 

4. F stores the value of type short in the parameter X. 

Fortunately, the conversions that occur have little , if any, overhead-at least for integers. 
The argument types affected by the conversions include char, short, unsigned 
char, unsigned short, and float. 

Example 

Programmers should be aware that some pre- Standard compilers fail to perform the required 
narrowing operations on entt'y to a function. Consider the following function, which has a pa
rameter of type char: 

int pass through (c) 
char Ci 

{ 
return C; 

} 

Some compilers will implement this function as if it were defined with anint parameter: 

int pass through (c) 
int C; 

{ 
return C; 

} 
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A consequence of this incorrect implementation is that the argument value is not narrowed to 
type char. That is, pass_ through (Oxl001) would return the value OxlOOl instead 
of 1. The correct implementation of the function would resemble this: 

int pass_ through(anonymous) 
int anonymous; 

{ 

} 

char c : anonymous; 
return C; 

References array types 5.4; floating-point types 5.2; function argument conversions 6.3.5; 
function definition 9.1; function prototypes 9.2; func tion types 5.8; integer types 5.1; Ivalue 7. 1; 
J:Xlinter types 5.3 

9.5 PARAMETER-PASSING CONVENTIONS 

C provides only call-by-value parameter passing. This means that the values of the actual 
parameters are conceptually copied into a storage area local to the called function. It is 
possible to use a formal parameter name as the left side of an assignment, for instance, but 
in that case only the local copy of the parameter is altered. If the programmer wants the 
called function to alter its actual parameters, the addresses of the parameters must be 
passed explicitly. 

Example 

Function swap below will not work correctly because x and y are passed by value: 

void swap (x, y) 

j * swap: exchange the values of x and y */ 
/ * Incorrect version! */ 

int x, Yi 
{ 

int tempi 
temp = Xi X = Yi Y = tempi 

} 

swap (a, b)i j* Fails to swap a and b. */ 

A correct implementation of the function requires that addresses of the arguments be passed: 
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void swap(x, y) 
/* swap - exchange the values of *x and *y */ 
/* Correct version */ 

int *x, ·Yi 
{ 

int tempi 

temp: *Xj *x = ·Yi .y = tempi 
} 

swap (&&, &b); /* Swaps contents of a and b. */ 

Chap. 9 

The local storage area for parameters is usually implemented on a pushdown stack. 
However, the order of pushing parameters on the stack is not specified by the language, 
nor does the language prevent the compiler from passing parameters in registers. It is valid 
to apply the address operator & to a formal parameter name (unless it was declared with 
storage class register), thereby implying that the parameter in question would have to 
be in addressable storage when the address was taken. (Note that the address of a formal 
parameter is the address of the copy of the actual parameter, not the address of the actual 
parameter. ) 

When writing functions that take a variable number of arguments, programmers 
should use the varargs or stdarg facilities for maximum portability. 

References address operator & 7.5.6; function prototype 9.2; register storage class 4.3; 
stdarg facility 11.4; varargs facility 11.4.1 

9.6 AGREEMENT OF PARAMETERS 

Most modern programming languages such as Pascal and Ada check the agreement of for
mal and actual parameters to functions-that is, both the number of arguments and the 
types of the individual arguments must agree. This checking is also perfonned in Standard 
C when a function is declared with a prototype. 

Example 

In the following example, the call to the function sqrt is not governed by a prototype; there
fore, the C compiler is not required to warn the programmer that the actual parameter to 
sqrt is of type long, whereas the formal parameter is declared to have type double. (In 
fact, if the call and definition were in different source files, then the compiler would be unable 
to do so.) The function will simply return an incorrect value: 

double sqrt( x ) 
double Xi 

{ 

} 

/* not a prototype */ 
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long hypotenuse(x,y} 
long x,y; 

( 
return sqrt(x*x + y*y); 

} 
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When a call is governed by a prototype in Standard C, the actual arguments are con
verted to the corresponding formal parameter type. Only if this conversion is impossible, 
or if the number of arguments does not agree with the number of formal parameters, will 
the C compiler reject the program. 

Example 

By adding a prototype to the definition of sqrt above, the example will work correctly: The 
long argument will be converted to double without the programmer's knowledge: 

double sqrt{ double x ) 
{ 

} 

long hypotenuse(x,y) 
long x,y; 

( 
return sqrt(x*x + y*y); 

} 

/* prototype * / 

As a matter of good style, we recommend using explicit casts to convert arguments to the 
expected parameter type unless that conversion is just duplicating the usual argument conver· 
sions. That is, we would write the return statement in the example above like this: 

return sqrt ( (double) (x*x + y*y) } i 

Some C functions, such as fprintf , are written to take arguments that vary in 
number and type. In traditional C, the varargs library facility has evolved to provide a 
fairly reliable way of writing such functions, although the usage is not portable since dif· 
ferent implementations have slightly different forms ofvarargs. In Standard C a similar 
library mechanism, stdarg, was created to provide portability and reliability . Functions 
using stdarg must be declared with a prototype that uses the ellipsis notation," I ••• ", 

before any call, thus giving the compiler an opportunity to prepare a suitable calling mech
anism. 

References conversion of actual parameters 9.4; function argument conversions 6.3.5; 
function prototypes 9.2; fprintf 15.11 

9.7 FUNCTION RETURN TYPES 

A function may be defined to return a value of any type except "array of T" or "function 
returning T." These two cases must be handled by returning pointers to the array or func
tion. There is no automatic rewriting of the return type as there is for formal parameters. 
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The value returned by the function is specified by an expression in the return 
statement that causes the function to terminate. The rules governing the expression are dis
cussed in Section 9.8. 

The value returned by a function is not an Ivalue (the return is "by value"), and 
therefore a function call cannot appear as the outennost expression on the left side of an 
assignment operator. 

Example 

/* Invalid */ f () • x; 

*fO ::: XI 

f().a=Xi 

/* OK if f returns a pointer of suitable type */ 
/* Invalid--not an 'lvalue ( Section 7.4.2) */ 

References array types 5.4; function calls 7.4.3; function parameters 9.4; function types 
5.8; Ivalue 7.1; pointer types 5.3; void type 5.9 

9.8 AGREEMENT OF RETURN TYPES 

If a function has a declared return type Tthat is not void, then the type of any expression 
appearing in a return statement must be convertible to type T by assignment, and that 
conversion in fact happens on return in both Standard and traditional C. 

Example 

In a function with declared return type int, the statement 

return 23.1; 

is equivalent to 

return (int) 23.1; 

which is the same as 

return 23; 

If a function has a declared return type of void, it is an error to supply an expres
sion in any return statement in the function. It is also an error to call the function in a 
context that requires a value. With older compilers that do not implement void, it is the 
custom to omit the type specifier on those functions that return no value: 

process_ something() /* probably returns nothing */ 
{ 

} 

It is also possible to define your own void type to improve readability (Section 4.4.1). 
If a function has a non-void return type, C89 permits a return statement with no 

expression-that is , simply "return: ". (C99 prohibits such a return, as does C++.) 
This rule is to provide backward compatibility with compilers that do not implement 
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void. When a function has a non-void return type and a return statement with no ar
guments is executed, then the value actually returned is undefined. It is therefore unwise 
to call the function in a context that requires a value. 

References adjustments to fonnal parameters 9.4; default type specifiers 4.4.1; Ivalue 7.1; 
return statement 8.9; void type 5.9 

9.9 THE MAIN PROGRAM 

All C programs must define a single external function named main. That function will be
come the entry point of the program- that is, the first function executed when the program 
is started. Returning from this function tenninates the program, and the returned value is 
treated as an indication of program success or fai lure, as if it had been used in a call to the 
library function exit. If the end of the body of main is reached without returning, it is 
treated as if return 0; were executed. 

Standard C permits main to he defined with either zero or two parameters: 

int main(void) { •. . } 
int main() { ... } /* also OK, but not recommended */ 
int main( int argc, char *argv[] ) { ... } 

When no parameters are declared, no information is passed to the main program from the· 
environment, although library functions such asgetenv or system may be used to obtain 
it later. 

Prior to C99, the return type of main was often omitted, defaulting to into This is 
no longer allowed. 

When arguments are declared, those arguments are set up by the execution environ
ment and are not directly under control of the C programmer. The parameter argo is the 
count of the number of "program arguments" or "options" supplied to the program when it 
was invoked by a user or another program. The parameter argv is a vector of pointers to 
strings representing the program arguments. The first string, argv [0] , is the name of the 
program; if the name is not available, argv [0] [0] must be I \ 0 I . The string argv [i] , 
for i=l, ... , argc-l, is the ith program argument. Standard C requires that argv [argc] 
be a null pointer, but it is not so in some older implementations. The vector argv and the 
strings to which it points must be modifiable, and their values must not be changed by the 
implementation or host system during program execution. If the implementation does not 
support mixed-case strings, then the strings stored in argv must be in lower case. 

Freestanding C environments and certain software frameworks (e.g., Microsoft 
Windows MFC) may have special conventions for how C programs are started. 

Example 

The following short program prints out its name and arguments. 
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#include cstdio.h> 
int main(int argc, char *argv{]) 
{ 

} 

lnt i, 
printf(RName: %8\n·, argv[O]); 
printf(RArguments: ")i 

for( i:l; icargci i++) 
printf ("'lisa II I argv [1] ) ; 

printf("'n ll
) ; 

return 0 1 
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Some implementations permit a third argument to main, char * envp [] , which 
points to a null-terminated vector of "environment values," each one a pointer to a null
terminated string of the form n name=val ue II. When the environment pointer is not a 
parameter to main, it might be found in a global variable. Some UNIX implementations 
use the global variable environ to hold the environment pointer. However, it is more 
portable to use the Standard C facility getenv to access the environment. 

Example 

Assuming envp holds the environment pointer, thi s code prints out the environment contents: 

for(i=O; envp[i) 1= NULL; i++) 

printf(-%s\n-, envp[i]); 

References exit 16.5; getenv 16.6; system 16.7 

9.10 INLINE FUNCTIONS 

Inline functions are new to C99 and are designated by the appearance of the function spec
ifier inline on a function declaration or definition. The inline designation is only a hint 
to the translator, suggesting that calls to the inline function should be as fast as possible. 
The name comes from a compiler optimization called inline expansion, whereby a call to a 
function is replaced by a copy of the function's body. This eliminates the overhead of the 
function call. Many C translators prior to C99 had extended C to provide inline functions, 
and C++ provides them as well. There are three important principles for inline expansion: 

I. Visible definition. To expand a function call inline, the translator must know the def
inition of the function when the call is translated. In C99, if a function is declared 
inline, then the function's definition must be visible in that translation unit. 

2. Free choice. Translators are never obligated to perform inline expansion. If there are 
four calls to an inline function, it is perfectly all right to expand two of the calls in· 
line and generate two nonnal function calls for the other two. A C program must 
never depend on whether a call is expanded. 
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3. Same meaning. Whenever a translator expands one or more calls inline, it must ensure 
that the program behaves as if the function had been called normally. Inline expansion 
is only an optimization; it does not change the meaning of the program. 

Any static function can be designated inline because all the calls and the defini
tion are limited to a single translation unit. 

External functions are another matter because in the usual case the call is in one unit 
and the definition is in another unit. Since the definition must be visible where any inline 
declaration is visible, it would seem that an inline declaration of an external function could 
only appear in the translation unit that defined the function. What we would like is a way 
to give other translation units a "peek" at the definition of the external function, just in 
case the translator would like to expand calls to the external function in those units. 

The "peek" is called an inline definition. If all the top-level declarations of a function 
in a translation unit include inline and do not include extern, then the definition of that 
function in that unit is called an inline definition. (It follows that there must be such a def
inition, and it must be inline and not extern.) An inline definition does not provide an 
external definition for the function ; another external definition must be provided in some 
other translation unit. Rather, the internal definition is an alternative to making an external 
call, and the translator can use the alternative to perform inline expansion. If the translator 
chooses not to use the alternative, then it just generates a nonnal function caU, treating the 
inline definition as a nonnal extern declaration. If all the inline definitions and the single 
external definition of a function are not equivalent, then the program's behavior is unde
fined. One way to use inline definitions is to alter a header file to replace the declaration of 
a function with an inline definition. 

Example 

The function square returns the square of its argument. The header file square. h pro
vides an inline definition for any translation unit that includes it. The inline definition also 
serves as a declaration of the ex ternal function if the translator chooses not to expand a callor 
needs to take the address of the function. A lfanslation unit named square. c includes the 
inline definition , but also supplies an extern declaration; this makes the definition in 
square. h become the external function defini tion. 

II File: square.h 
II Inline definition: 
in line double square{double x) { return x*x; } 

II File square . c 
#include -square.h-
II Force an external definition using the inline code 
extern inline square(double Xli 

Standard library headers in general cannot make use of inline definitions of the 
standard functions because programs are permitted to redeclare those functions (macros) in 
some circumstances. However, implementations are always free to use their own, nonport
able mechanisms to inline or treat specially in some other fashion standard library facilities. 

Problems can arise if an external inline function includes the definition of a static 
object. There is no easy way to link the static object appearing in an inline definition with 
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the static object appearing in the external definition in another unit. Therefore, C99 pro
hibits any (nonstatic) inline function from defining a modifiable static object and from 
containing a reference to an identifier with internal linkage. Constant static objects can be 
defined, but each inline definition may create its own object. 

References inline func tion specifier 4.3.3 

9.11 C++ COMPATIBILITY 

9. 11. 1 Prototypes 

To be compatible with C++, all functions must be declared with prototypes. In fact, the 
nonprototype fonn has a different meaning in C++-an empty parameter list signifies a 
function that takes no parameters in C++, whereas it signifies a function that takes an un
known number of parameters in C. 

Example 

int f()i / * Means int f(void) in C++, int f( • •• ) in C * / 
int g(void) ; / * Means the same in both C and c++ * / 

x=f(2); / * valid in C, not in c++ * / 

9.11.2 Type Declarations in Parameter and Return Types 

Do not place type declarations in parameter lists or return type declarations; they are not 
permitted in C++. 

Example 

struct s { ... } f1 (int i); / * OK in C, not in C++ */ 
void f2 (enum e{ ... ) x); / * OK in C, not in C++ * / 

9.11.3 Agreement of Return Types 

In C++ and C99, you must return a value of appropriate type from a function that has a 
non-void return type. C89 pennits not returning a value for backward compatibility. 

Example 

int f (void) 
{ 

return 

} 

/ * Valid but unpredictable in C ; 
inv alid in C++ */ 

References agreement of return types 9.8 
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9.11.4 Main 

In C++, the main function must not be called recursively, nor can its address be taken. 
e++ imposes more restrictions on program start-up, so implementations may handle main 
as a special case. If you need to manipulate the main function, simply create a second 
function, call it from main, and use it in place of main in your program. 

9.11.5Inline 

The e99 rules for inline definitions of functions are less strict than those for C++, which 
requires all inline definitions and the external definition to be "exactly" the same and not 
merely equivalent. e99 permits inline definitions in some translation units to be specialized 
and puts the responsibility for equivalence on the programmer. C++ also requires an inline 
function to be declared inline in al l translation units, which C99 does not. For portability, 
you have to follow the stricter C++ rules. 

9.12 EXERCISES 

1. Which of the following declarations serve as Standard C prototypes? 

(a) short f(void); (d) int f(i,j); 

(b) int f () ; (e) int *f (float) ; 

(e) double f ( ... ) ; (I) int f (i) int i; { ... } 

2. Declarations and definitions of functions are shown next. Which pairs are compatible m 
Standard C? 

Declaration Definition 

(a) extern int f(short x) i int f (x) short x; { ... } 
(b) extern int f() , int f(short x) { ... } 
(e) extern f(short x); int f(short int y) { ... } 
(d) extern void feint x) i void f (int x, ... ) { ... } 
(e) extern f(); int f(x ,y) short x,y; { ... } 
(I) ex tern f () ; f (void) { ... } 

3. Declarations and invocations of functions are shown next. In each case, indicate whether the 
invocation is valid in Standard C and, if so, what convers ions will be applied to each actual pa
rameter. Assume s has type short and ld has type long double. 

Declaration Invoca tion 

(a) extern int f (int ·x); f (&s) 

(b) extern int f () ; f(s,ld ) 

(e) extern f (short x ); f (ld) 

(d) extern void f(short, . .. ); f(s,s,ld) 

(e) int f (x) short x ; { ... } f (s) 

(I) int f (x) short x; { ... } ; f (ld) 

4. In the fo llowing program fragment, is the invocation of P governed by a prototype? Why? 
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extern void P{void); 

int QO 
{ 

} 

extern P(); 

P(), 

Functions Chap. 9 

5. If the declared return type of a function is short, which of che following types of expressions 
appearing in a return statement would be allowable and would produce a predictable value 
at the call site? 
(a) int 
(b) long double 

(c) void (e .g., the invocation of a function returning void) 
(d) char * 

6. Explain the ways in which this macro definition of square differs from the inline version in 
Section 9.10: 

#define square (x) «x) * (xl) 
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Introduction to the Libraries 

Standard C comprises both a language standard and a set of standard libraries. These li
braries support characters and strings, input and output, mathematical functions, date and 
time conversions, dynamic storage allocation, and other features. The facilities (types, 
macfOS, functions) in each library are de.fined by standard header file.s; to use a library's 
facilities, add a preprocessor #include command that references the header for that li
brary. 

Example 

In the following program fragment, the header fi le ma th. h gives the program access to the 
cosine function, cos. 

#include <math.h> 
double x, y; 

x '" cos(y) i 

Some implementations of traditional C do not use header files for all library functions, so 
some must be declared by the programmer. 

For those library facilities that are defined as functions, Standard C permits imple
mentations to provide a function- like macro of the same name in addition to the true func
tion. The macro might provide a faster implementation of a simple function or it might call 
a function of a different name. The macro will take care to evaluate each argument expres
sion exactly once, just as a function would. If you truly need to access the function, re
gardless whether a macro exists, you must bypass the macro as shown in the following 
example. 

311 
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Example 

Suppose you were worried that there was a macro shadowing cos in math. h . Here are two 
ways to reference the underlying function. Both depend on there not being an opening paren
thesis immediately after the possible macro name; this prevents any function-like macro 
named cos from expanding. 

#include <math.h> 
double a, b , (*p) (double); 

p'" &COS; a '" (*p) (b) 1 /* calls function cos, always */ 
a = (cos) (b); /* calls function cos, always */ 

Alternatively, you can simply remove any shadowing macro: 

#include <math.h> 
#undef cos 

a '" cos (b) ; /* calls function cos, always */ 

References #include 3.4; macros with parameters 3.3.2;#undef 3.3.5 

10.1 STANDARD C FACILITIES 

Section 10.3 summarizes the standard library facilities by listing for each library header 
the names defined in the header and the chapter or section in this book that describes the 
facilities. If you are looking for a particular library facility name and do not know which 
header it is in, then look up the name in the index at the back of the book. 

In the individual chapters and sections, each facility is described in its Standard C 
form. Except where noted in the text, the traditional C library function definitions may be 
obtained from the Standard C definitions by rewriting them as follows. 

1. Eliminate any functions that use Standard C types such as long long or 
_ Complex, or which are identified as new in Standard C (C89 or C99). 

2. Drop qualifiers const , restrict, and volatile. Drop static when used 
inside array declarator brackets. 

3. Change type void * to char *. Change type size t to into 

Library facilities and header files in Standard C are special in many ways mostly to 
protect the integrity of implementations: 

1. Library names are in principle reserved. Programmers may not define external ob
jects whose names duplicate the names of the standard library. 

2. Library header files or file names may be "built in" to the implementation, although 
they still must be included for their names to become visible. That is, stdio.h 
might not actually correspond to a #include file named "stdio. h ." 

3. Programmers may include library header files in any order any number of times. 
(This may not be true in traditional C implementations.) 
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Example 

Here is a typical way that library headers ensure that they are not included mUltiple times: 

/* Header stdde£.h */ 
#ifnde£ STDDEF /* Donlt try to redeclare */ 
#define STDDEF 1 
typede£ int ptrd!ff t; 

... /* other defini tiona * / 
#endif 

10.1.1 Reserved Library Identifiers 

In addition to the keywords listed in Section 2.6, Standard C reserves for its own use the 
identifiers declared in the standard library, plus some other identifiers that might be used 
internally by Standard C implementations. The easy-la-remember rule is: Do not use iden
tifiers defined anywhere in the standard library for any other purpose, and do not use iden
tifiers that begin with an underscore. This should avoid name clashes when moving 
between different Standard C implementations. More precise rules are listed next. 

Kind of identifier 

Library identifiers having eXlernallinkage 
(e.g., function names, errno) 

Library identi fiers with file scope, and library 
macros 

Identifiers beginning with an underscore and 
either an uppercase lettcr or another under
score 

Other identifiers beginning with an under
score 

Use by programmers 

Cannot be reused with extemallinkage at any 
time in a hosted implementation. 

Cannot be reused as file scope names or mac
ros if the library header defining them is 
included. 

Cannot be used for any purpose; often used 
for extensions by C implementations. 

Cannot be used as me scope names or tags. 

You cannot write your own replacements for standard library functions. Attempting 
to replace the sqrt function with your own can result in a link-time error due to there be
ing two functions with the same name. This restriction gives C implementations more 
freedom in packaging and using internally the standard library functions. 

10.2 C++ COMPA TlBILlTY 

The c++ language includes the Standard C run-time library, but adds a number of C++
specific libraries. None of the additional libraries has names ending in ".h," so they are un
likely to conflict with your C libraries. 

C++ uses a different convention for calling its functions, which means that, in gener
al, it is not possible to call a c++ function from a C program. However, C++ does provide 
a way to call C functions from C++. There are two requirements on the declarations of the 
C functions: 
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1. The function declarations must use Standard C prototypes. C++ requires prototypes. 

2. The external C declarations must be explicitly labeled as having C linkage by in
cluding the string lIe ll after the storage class extern in the C++ declaration. 

Example 

If you were calling a C function from another C function, it would be declared as, 
for example 

extern int f(void); 

However, if called from a c++ program, the declaration would have to be 

extern "C" int f(void); 

If a group of C functions were to be declared in C++, you can apply the linkage spec
ification to all of them: 

extern "e" { 

} 

double sqrt(double x); 
int f (void) ; 

When writing a header file for a library that might be called from C or C++, you 
must choose whether to specify the C linkage within the header file or whether you will 
require C++ programs to supply the linkage declaration in the file that includes the header. 

Example 

Suppose a header file library . h is to be called from C or C++ programs. The first possi
bility is to include the extern n en declarations inside che header file, conditional on the 
_cplusplus macro, which indicates that this is a C++ program. 

/* File library.h */ 
#i£de£ __ cplusplus 
extern "e· { 
#endi£ 

/* C declarations */ 

#i£de£ __ cplusplus 
} 
#end!! 

The second alternative is to write the header file using nonnal C declarations and simply re
quire that C++ users wrap the linkage declaration around the tine 1 ude command: 

extern "C" { 
#include "library.h" 
} 
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The second alternative in the previous example must he used when calling libraries 
that were written before C++ became a consideration. There is no harm in nesting the 
extern nell {} declarations. 

References cplusplus macro 3.9.1 
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10.3 LIBRARY HEADERS AND NAMES 

10.3.1 assert.h 

See Chapter 19. 

assert NDEBUG 

10.3.2 complex.h 

See Chapter 23. This header file was added in C99. 

cabs 

cabsf 

cabsl 

caeoa 

caeoaf 

cacosh 

cacoshf 

cacoshl 

caeoal 

carg 

cargf 

cargl 

casin 

casinf 
casinh 

casinhf 
casinhl 
casinl 

10.3.3 ctype.h 

See Chapter 12. 

isalnum 
isalpba 
isblank 

iscntrl 

isdigit 

10.3.4 errno.h 

See Chapter 11. 

EDOM 
EILSEQ 

catan 

catanf 

catanh 

catanhf 

catanhl 

catanl 

ccos 

ccosf 

ccosh 
ccoshf 

ccoshl 

ccosl 

cexp 

cexp£ 

cexpl 
cimag 

cimagf 

elmagl 

isgraph 

islower 
isprint 

ispunct 

isspace 

ERANGE 

errno 

clog csinf 
clog£ csinh 
clogl csinhf 

complex csinhl 

_ Complex_ I csinl 

conj csqrt 

conj£ csqrtf 

conjl csqrtl 

cpow ctan 

cpowf ctanf 

cpowl ctanh 

cproj ctanhf 

cproj£ ctanhl 

cprojl ctanl 

creal ex LIMITED RANGE 

crealf I 

creall imaginary 

csin _Imaginary_ 1 

isupper 

isxdigit 

tolower 

toupper 
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10.3.5 fenv.h 

See Chapter 22. This header file was added in C99. 

FE ALL EXCEPT FE TONEAREST fegetround fesetround 

FE DFL ENV FE TOWARD ZERO feholdexcept fetestexcept 
FE OrVBYZERQ FE UNDERFLOW PENV ACCESS feupdateenv 

FE DOWNWARD FE UPWARD fanv t fexcept t 

FE INEXACT feclearexcept feraiseexcept 

FE INVALID fegetenv fesetenv 

FE OVERFLOW fegetexceptflag fesetexceptflag 

10.3.6 f/oat.h 

See Table 5-3. 

DBL DIG DBL MIN EXP FLT MAX EXP LDBL MANT DIG 

DBL EPSILON DECIMAL DIG FLT MIN LDBL MAX 

DBL KANT DIG FLT DIG FLT MIN 10 EXP LDBL MAX 10 EXP 

DBL MAX FLT EPSILON FLT MIN EXP LDBL MAX EXP 

DBL MAX 10 EXP FLT_ EVAL_ METHOD FLT_ RADIX LDBL MIN 

OBL MAX EXP FLT KANT DIG FLT ROUNDS LDBL MIN 10 EXP 

DBL MIN FLT MAX LDBL DIG LDBL MIN EXP 

DBL MIN 10 EXP FLT MAX 10 EXP LDSL EPSILON 

10.3.7 inttypes.h 

See Chapter 21. This header file was added in e99. 

CNiLEASTN PRIoKAX PRlxPTR SCNuFASTN 

imaxabs PRIoN PRIXPTR SCNuLEASTN 
imaxdiv PRloPTR SCNdFASTN SCNuMAX 

imaxdiv t PRIuFASTN SCNdLEASTN SCNuN 

PRldFASTN PRluLEASTN SCNdMAX SCNuPTR 

PRldLEASTN PRluKAX SCNdN SCNxFASTN 

PRldMAX PRluN SCNdPrR SCNxLEASTN 

PRIdN PRluPTR SCNiFASTN SCNxMAX 
PRldpTR PRlxFASTN SCNiMAX SCNxN 

PRIiFASTN PRIXFASTN SCNiN SCNxPTR 

PRliLEASTN PRlxLEASTN SCNiPTR strtoimax 

PRliMAX PRIXLEASTN SCNoFASTN strtoumax 
PRliN PRlxMAX SCNoLEASTN wcstoimax 

PRliPTR PRIXMAX SCNoMAX wcstoumax 
PRloFASTN PRlxN SCNoN 

PRloLBASTN PRIXN SCNoPTR 
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10.3.8 iso646.h 

See Section 11 .5. This header file was added in Amendment 1 to C89. 

and 

and_ eq 

bitand 

10.3.9 limits.h 

See Table 5-2. 

CHAR BIT 

CHAR MAX 

CHAR MIN 

INT MAX 

INT MIN 

10.3.10Iocale.h 

See Chapter 20. 

LC ALL 
LC COLLATE 

LC CTYPE 

biter 

compi 

not 

LLONG MAX 

LLONG MIN 

LONG MAX 

LONG MIN 

MB LEN MAX 

LC MONETARY 
LC NUMERIC 

LC TIME 

not_ eq 

or 

or_ eq 

SCHAR MAX 

SCHAR MIN 

SHRT MAX 

SHRT MIN 

UCHAR MAX 

loony 

localeconv 

NULL 

xor 

xor eq 

UINT MAX 

ULLONG MAX 

ULONG MAX 

USHRT MAX 

set locale 
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10.3.11 math.h 

See Chapter 17. 

acos coshl fmin ieinf 

acosf cos 1 fminf islses 

acosh double t fmini islessequal 

aoosbf erf fmod islessgreater 

acoshl erfc fmod£ isnan 

acosl erfcf fmodl isnormal 

as in erfcl FP CONTRACT isunorderedldex 

asinf srff FP FAST FHA P 
asinh erfl FP FAST FMAF Idexpf 

asinhf exp FP FAST FMAL Idexpl 

asinhl exp2 FP lLOGBO 19amma 

asinl exp2f FP ILOGBNAN 19ammaf 

atan exp21 FP INFINITE 19ammal 

atan2 expf FP NAN llrint 

atan2f expl FP NORMAL l1rintf 

atan21 expml FP SUBNORMAL llrintl 
atanf expmlf FP ZERO llround 

atanh expmll fpclassify llroundf 

atanhf fabs frexp llroundllog 

atanhl fabsf frexpf 10g10 

atanl tabsl frexpl 10g10£ 

cbrt fdim HUGE VAL 10g101 

chrtf fdimf HUGE VALF loglp 

cbrtl fdiml HUGE VALL loglpf 

ceil float t hypot loglpl 

ceilf floor hypotf log2 

ceill floorf hypotl log2f 

copysign floorl ilogb log21 

copysignf fma ilogbf 10gb 

copysignl fmaf ilogbl logbf 

cos fmal INFINITY logbl 

cosf fmax isfinite 

cosh fmaxf isgreater 

coshf fmaxl isgreaterequal 
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ma th. h continued. 

10g£ nanl remquol sinhl 

10g1 nearbyint rint sinl 

lrint nearbyintf rintf sqrt 

lrintf nearbyintl rintl sqrtf 
lrintl nexta£ter round sqrtl 

lround nextafterf roundf tan 

lroundf nextafterl roundl tanf 

lroundl next toward scalbln tanh 
MATH ERREXCEPT nex t towardf scalblnf tanhf 
math nexttowardl seal bInI tanhl 

errhandling pow scalbn tanl 

MATH ERRNO powf scalbnf tgamma 

modf powl scalbnl tgammaf 

modff remainder signbit tgammal 

modfl remainderf sin trune 
NAN remainderl sinf truncf 
nan remquo sinh truncI 
nanf remquof sinhf 
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10.3.12 setjmp.h 

See Section 19.4. 

10.3.13 signal.h 

See Section 19.6. 

raise 

sig_ atomic_ t 

SIG DFL 

10.3.14 stdarg.h 

See Section 11.4. 

10.3.15 stdbool.h 
See Section 11.3. 

bool 

longjmp 

SIG ERR 

SIG IGN 

SIGABRT 

va end 
va list 

bool true false are defined 

10.3.16 stddef.h 

See Section Il.l. 

NULL 

offsetof 

ptrdi ff t 

size t 

setjmp 

SIGFPE 
SIGILL 

SIGINT 

va start 

false 

true 

wchar t 

signal 

SIGSEGV 

SIGTERM 
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10.3.17 stdint.h 

See Chapter 21 . This header file was added in C99. 

INT_ FASTN_ MAX INTN C SIG ATOMIC MIN UINTN MAX 

INT FASTN MIN INTN MAX SIZE MAX uintN t 

int fastN t INTN MIN UINT FASTN MAX UINTPTR MAX 

INT LEASTN MAX intN t uint fastN t uintptr_ t 

INT LEASTN MIN INTPTR MAX UINT LEASTN MAX WCHAR MAX 

int leastN t INTPTR MIN uint leastN t WCHAR MIN 

INTMAX C intptr_ t UINTMAX C WINT MAX 

INTKAX MAX PTRDIFF MAX aIN'TMAX MAX WINT MIN 

INTMAX MIN PTRDIFF MIN uintmax t 

intmax t BIG ATOMIC MAX UINTN C 

10.3.18 stdio.h 

See Chapter 15 . 

BUFSIZ fput!!! printf stderr 

clearerr fread putc stdin 

EOF freopen put char stdout 

fclose fscanf puts TMF MAX 

feof fsesk remove tmpfile 

ferror fsetpos rename _nam 

fflush ftell rewind ungetc 

fgate fwrite scanf vfprintf 

fgetpos gate SEEK CUR vfseanf 
fgets getchar SEEK. END vprintf 

FILE gets SEEK SET vacan f 

FILENAME MAX IOFBF setbuf vsnprintf 

fopen IOLay setvbuf vsprintf 

FOPEN MAX IONBF size t vsscanf 

fpos t L_ tmpnam snprintf 
fprintf NULL sprintf 

fputc perror sscanf 
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10.3.19 stdlib.h 

See Chapter 16. 

abort 

abs 

atexit 

atof 

ato! 

atol 

atoll 

bsearch 

calloo 

div 

div t 

exit 

10.3.20 string.h 

See Chapter 13. 

memchr 
mem_ 

memcpy 

memmove 

memset 

NULL 

10.3.21 tgmath.h 

Exit 

EXIT FAILURE 

EXIT SUCCESS 

free 

getenv 

labs 

Idlv 

ldlv t 
llabs 

lldiv 

lldiv t 
malloe 

size t 

strcat 

strchr 

strcmp 

streo!1 

strcpy 

MB CUR MAX 

mblen 

mbstowcs 

mbtowc 

NULL 

qsort 

rand 

RAND MAX 

realloc 

size t 

srand 

strtod 

strcspn 

strerror 

strlen 

strncat 

strncmp 

strncpy 

See Section 17 .12. This header file was added in C99. 

acos cproj hypot 

acosh creal 110gb 

asin or< Idexp 

asinh erfc 19amma 

atan sxp llrint 
atan2 exp2 llround 

atanh expml log 
carg fabs log10 

cbrt fdim loglp 

ceil floor 10g2 

cimag 'ma 10gb 

conj 'max lr1nt 

copysign fmin lround 

cos 'mod nearbyint 

cosh frexp nextafter 

strtef 

strtel 

strtold 

strtoll 

strtoul 

strtoul! 
system 

wchar t 

wcstombs 

we tomb 

strpbrk 

strrchr 

strspn 

strstr 

strtok 

strxfrm 

next toward 
pow 

remainder 
remquo 

rint 

round 

seal bIn 
scalbn 

sin 

sinh 

sqrt 

tan 

tanh 

tgamma 

trunc 
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10.3.22 time.h 

See Chapter 18. 

asctime 

clock 

clock t 

CLOCKS PER SEC 

10.3.23 wchar.h 

ctime 

difftime 

gmtime 

local time 

mktime 

NULL 

size t 

strftime 

See Chapter 24. This header file was added in Amendment I to C89. 

btowc putwchar wcschr 

fgetwc size t wcscmp 

fgetw8 swprintf wescoll 

fputwc swscanf wcscpy 

fputws tm wcscspn 

fwide ungetwc wcsftime 
fwprintf vfwprintf wcslen 

fwscanf vfwscanf wcsncat 

getwc vswprintf wcsncmp 

getwchar vswscanf wcsncpy 

mbrlen vwprintf wcspbrk 

mhrtowc vwscanf wcsrchr 

mbsinit WCHAR MAX wcsrtombs 

mbsrtowcs WCHAR MIN wcsspn 

mbstats t wehar t wesstr 

NULL wcrtomb wastod 

putwc wcscat wastof 

10.3.24 wctype.h 

See Chapter 24. This header file was added in Amendment I to C89. 

iswalnum iswgraph iswxdigit 

iswalpha iswlower towetrans 

iswblank iswprint towlower 

iswentrl iswpunet towupper 

iswetype iswspaee we trans 
iswdigit iswupper we trans t 

struet tm 

time 

time t 

wcstok 

wcstol 

wcstold 

westoll 

westoul 

westoull 
wcsxfrm 

wetob 

WEOF 
wint t 

wmemchr 

wmemcmp 

wmemcpy 

wmemmove 

wmemset 

wprintf 

wscanf 

we type 
wetype_ t 

WEOF 

wint t 
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Standard Language Additions 

Certain Standard C libraries can be considered part of the language. They provide standard 
definitions and parameterization that help make C programs more portable. They must be 
provided by freestanding implementations even when the other libraries are not provided. 
These core libraries consist of the header files float.h, iso646.h, limits.h, 
stdarg.h, stdbool.h, stddef.h,and stdint . h . The facilities in float.hand 
limi ts • h were described in Chapter 5. The s tdin t . h library is described in Chapter 
21. The other libraries are described in this chapter. 

This chapter also describes the facilities in errno. h, although that library is not 
considered to be a language addition. Despite its name, the header file stdlib. h is also 
not considered a language addition; it is described in Chapter 16. 

11.1 NULL, ptrdiff_ t, size_t, offsetof 

#include <stddef.h> 

#define NULL ... 

typedef 
typedef ... size_t; 
typedef ... wchar _ t; 

Synopsis 

#define offsetof (type, member·designator ) ... 

These are the faci lities defined in the header file stddef. h . 

The value of the macro NULL is the traditional null pointer constant. Many 
implementations define it to be simply the integer constant 0 or 0 cast to type void * . In 
Standard C the macro is defined in many different header files for convenience. 

325 
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Type ptrdi f f _tis an implementation·defined signed integral type that is the type 
of the result of subtracting two pointers; most implementations have used long for this 
type. Type size _ t is the unsigned integral type of the result of the sizeof operator; most 
implementations have used unsigned long for this type. Pre-Standard implementations 
sometimes used the (signed) type int for size t. The minimum and maximum values 
for ptrdiff t and size _ t are defined in stdint. h in e99. 

As processors become larger and more powerful, memory sizes are becoming too 
large for 32-bit pointers. C implementations may use the C99 type long long for 
ptrdiff_t and unsigned long long for size_to This may cause problems for 
older C code, which assumes sizeof (size_t) = sizeof (ptrdiff_t) = 
sizeof (long) . 

The macro offsetof expands to an integral constant expression (of type 
size_t) that is the offset in bytes of member member-designator within structure type 
type. If the member is a bit field, the result is unpredictable. If offsetof is not defined 
(in a non-Standard implementation), it is often possible to define it as follows: 

#define offsetof (type,memb) «size t) & ({type *) 0) ->memb) 

If the implementation does not permit the use of the null pointer constant in this fashion, it 
may be possible to compute the offset by using a predefined, non-null pointer and sub
tracting the member's address from the structure's base address. 

Example 

At the end of the following program fragmen~ the value of di f f will be 1 and the values of 
size and offset will be equal. [For a byte-addressed computer on wh ich 
sizeof (int) is 4, size and offset will both be equal to 4.] 

#include <stddef.h> 
struct s {int ai int hi } Xi 
size_ t size, offset; 
ptrdiff t diff; 

diff : &x.b - &x.ai 
size: sizeof(x.a); 
offset: offsetof(struct srb); 

Type wchar _tis defined in s tddef . h , but we defer its description to the chapter 
on the wchar. h header file in Chapter 24. 

References conversion of integers to pointers 6.2.7; null pointers 5.3.2; pointer types 5.3; 
sizeof operator 7.5.2; stdint . h Ch. 21; subttaction of pointers 7.6.2; wchar _ t 24.1 
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11.2 EDOM, ERANGE, EILSEQ, errno, strerror, perror 

#include <errno.h> 
extern int errnOi 
or #define errno ... 
#define EDOM 
#define ERANGE ... 
#define EILSEQ ... 

#include <stdio.h> 
void perror(const char *8) 

#include <string.h> 
char *strerror(int errnum) 

Synopsis 
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These are the fac ilities defined in errno. h and other headers, which support error re
porting in the standard libraries. 

The external variable errno is used to hold implementation-defined error codes 
from library routines, traditionally defined as macros spelled beginning with E in 
errno. h. All error codes are positive integers, and library routines should never clear 
errno. In Standard C, errno need not be a variable; it can be a macro that expands to 
any modifiable Ivalue of type into 

Example 

It would be possible to define errno this way: 

Example 

extern int * errno_ func()i 
#define errno (* errno_ func(» 

The typical way of using errno is to clear it before calling a library function and check it 
afterward: 

errno = 0; 
x = sqrt (Y) i 

if (errno) { 

} 

printf("?sqrt failed, code %d\nn, errno); 
x = 0; 

C implementations generally define a standard list of error codes that can be stored 
in errno. The standard codes defined in errno. h are 

EDOM 

ERANGE 

An argument was not in the domain accepted by a mathematical 
function. An example of this is giving a negative argument to the 
log function. 

The result of a mathematical function is out of range; the function has 
a well-defined mathematical result, but cannot be represented because 
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EILSEQ 
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of the limitations of the floating-point fannat. An example of this is 
trying to use the pow function to raise a large number to a very large 
power. 

An encoding error was encountered when translating a multibyte 
character sequence. This error is ultimately detected by mbrtowc or 
wcrtomb, which are in turn called by other wide character func
tions. (Amendment 1 to C89) 

The function strerror returns a pointer to an error message string whose con
tents are implementation-defined; the string is not modifiable and may be overwritten by a 
subsequent call to the strerror function . 

The function perror prints the following sequence on the standard error output 
stream: the argument string s, a colon. a space, a short message concerning the error 
whose error code is currently in errno, and a newline. In Standard C, if s is the null 
pointer or points to a null character, then only the error message is printed; the prefix 
string, colon, and space are not printed. 

Example 

The previous sqrt example could be rewritten to use perror in this way: 

#include <math.h> 
#include <errno.h> 

errno '" OJ 
x '" sqrt (y) ; 

if (errno) { 

} 

perror("sqrt failed"); 

x '" 0; 

If the call to sqrt failed, the output might be: 

sqrt failed: domain error 

It is not part of the C Standard, but in some systems the error messages correspond
ing to values of errno may be stored in a vector of string pointers, typically called 
sys_errlist, which can be indexed by the value in errno. The variable sys_nerr 
contains the maximum integer that can be used to index sys_errlist; this should be 
checked to ensure that errno does not contain a nonstandard error number. 

References encoding error 2.1.5; mbrtowc 11.7; wcrtomb 11.7 
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11.3 bool, false, true 

#include <stdbool.h> 

#define bool Bool 
#define false 0 
#define true 1 

Synopsis 

#define bool true false are defined 1 
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The s tdbool . h header file is new in e99 and contains just the declarations shown pre
viously. These names for the Boolean type and values are consistent with C++. 

Although it is normally not allowed to #unde fine macros defined in the standard 
header files, e99 does permit the programmer to #unde fine and, if desired, redefine the 
macros bool, false, and true. 

References _ Boo1 type 5.1.5 

#include <stdarg.h> 

typede£ ... va_ list; 

Synopsis 

#define va_ start ( a _ list ap, type LastFixedParm) 
#define v&_ arg( va_ list ap, rype) 

void va_end(va_list ap)i 

void V&_copy(va_list dest, va_ list arc); 

The s tdarg . h facility gives programmers a portable way to access variable argument 
lists, as is needed in functions such as fprintf (implicitly) and vfprintf (explicit
ly). 

e originally placed no restrictions on the way arguments were passed to functions, 
and programmers consequently made nonportable assumptions based on the behavior of 
one computer system. Eventually the vararga . h facility arose in traditional e to promote 
portability, and Standard e adopts a similar facility defined in s tdarg . h. The usage of 
stdarg. h differs from varargs. h because Standard e allows a fixed number of para
meters to precede the variable part of an argument list, whereas previous implementations 
force the entire argument list to be treated as variable-length. 

The meanings of the defined macros, functions, and types are listed next. This facil
ity is stylized, making few assumptions about the implementation: 

va list This type is used to declare a local state variable, unifonnly called 
ap in this exposition, which is used to traverse the parameters. 

va start This macro initializes the state variable ap and must be called before 
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va_arg 

va end 

va_copy 
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any calls to va_arg or va_end. In traditional C, va_start sets 
the internal pointer in ap to point to the first argument passed to the 
function; in Standard C, va_start takes an additional parameter
the last fixed parameter name-and sets the internal pointer in ap to 
point to the first variable argument passed to the function. 

This macro returns the value of the next parameter in the argument 
list and advances the internal argument pointer (in ap) to the next ar
gument (if any). The type of the next argument (after the usual argu
ment conversions) must be specified (by type) so that va_arg can 
compute its size on the stack. The first call to va_arg after calling 
va B tart will return the value of the first variable parameter. 

This function or macro should be called after all the arguments have 
been read with va argo It perfonns any necessary cleanup opera
tions on ap and va _ al i s t. 

(C99) This macro duplicates the current state of sre in dest, creat
ing a second pointer into the argument list. va _ arg may then be ap
plied to arc and dest independently. va end must be called on 
dest just as it must be on sre. 

The type name type used in the va _ arg macro call must be written in such a way 
that suffixing "*" to it will produce the type "pointer to type." 

The new C99 macro va eopy(saved ap, ap) can be used to retain a pointer - -
into the argument list while va arg (ap, type ) is used to advance further down the list. 
If needed, va_arg (saved _ ap, type) can be used to look back at the earlier position. 

Example 

We show how to write a variable-arguments function in Standard C. The next section will show 
the implementation in traditional C. The function, printargs, takes a variable number of 
arguments of different types and prints their values on the standard output. The fi rst argument 
to printargs is an array of integers that indicates the number and types of the following 
arguments. The array is terminated by a zero eiemenl. Here is an example of how 
printargs is used. This example is valid in both traditional and Standard C: 

#include wprintargs.h w 

int arg types[] _ { INTARG, DBLARG, INTARG, DBLARG, 0 }; 
int mainO 
( 

} 

printargs( &arg_ types[O], 1, 2.0, 3, 4.0); 
return 0; 

The declaration of prin targs and the values of the integer type specifiers are kept in file 
printargs .h: 
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/ * file printargs . h; Standard C * / 
#include <stdarg.h> 
#define INTARG 1 / * codes used in argtypep[] */ 
#define DBLARG 2 

void printargs(int *argtypep, ... ); 

The corresponding definition of prin targs in Standard C is shown next. 

#include <stdio.h> 
Hinclude · printargs . h R 

void printargs( int *argtypep , ... ) 
{ v a _ list api int argtype; 

v&_start(ap, argtypep); 

/ * Standard C */ 

while ( (argtype '" *argtypep++) 1= 0 ) { 
switch (argtype) { 
case INTARG : 

printf("int: %d \ n", va_ arg(ap, int ) ) ; 
break; 

case DBLARG: 
printf( ndouble : \ f \ n " , va_ arg(ap, double ) ) ; 
break; 

} 

/ * ... * / 
} 

} I -while· / 
va_ end (ap) i 

11.4.1 Traditional Facilities: varargs.h 

#include <varargs . h > 
#define va alist ... 
#define va del 

typede£ . .. va_ list ; 

Traditional C synopsis 

void va start( va_ list ap ) ; 

~pe va_ arg( va_ list ap, ~pe ); 

void va end(va list ap); 
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In trad itional C, variable arguments are implemented using the header file varargs . h . 

It has two new macros and a change in the definition of va_ start: 

va alist This macro replaces the parameter list in the definition of a function 
taking a variable number of arguments. 

va del This macro replaces the parameter declarations in the function defini
tion. It should not be fo llowed by a semicolon to allow for it to be empty. 



332 Standard Language Additions Chap. 11 

va start This macro initializes the state variable ap, and roust be called be
fore any calls to va _ arg or va_end. In traditional C, va_start 
sets the internal pointer in ap to point to the first argument passed to 
the function; it takes one fewer argument than the Standard C ver
SIOn. 

Example 

Here is the declaration of printargs in traditional C. 

/ * file printargs.h; Traditional C */ 
#define INTARG 1 ; * codes used in argtypep[] */ 
#define DBLARG 2 

#include <varargs.h> 
printargs( v&_alist ); 

The traditional C implementation ofprintargs is shown next. The only differences are in 
the func tion argument list and in the call to va _ start. 

#include <stdio.h> 
#include "printargs.h" 
printargs( va_ alist )/* Traditional C * / 

va del 
{ va_ list api int argtype, *argtypepi 

va_ start (ap) i 

} 

argtypep : va_ arg(ap, int *)i 

while ( (argtype = *argtypep++) 1: 0 ) { 
switch (argtype) { 

} 

case INTARG: 
printf("int: %d \ n", va_ arg(ap. int) )i 

breaki 
case DBLARG: 

printf("double : %f \ n". va_ arg(ap. double) ); 
break; 

/ * ... */ 
} 

va end (ap) 1 
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11.5 Standard C Operator Macros 

#include <iso646.h> 
#define a n 

#define and_ eq&: 
#define bitand& 
#define bite r l 
#define comp 1-
#define n 0 

#define not_ eql= 
#define 0 r II 
#define or e ql= 

d&& 

tl 

#define x 0 rA 
#define xor eqA= 

Synopsis 
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Amendment I to C89 adds the header file i B064 6 • h , which contains definitions of mac
ros that can be Ilsed in place of certain operator tokens. Those tokens could he inconvenient 
to write in a restricted source character set (such as ISO 646). In C++, these identifiers are 
keywords. 

Example 

Each of the following three if statements has the same effect. 

#!nclude <i80646.h> 

if (*p II 1= 0) *p 
, 

f * custqJl,ary * f q = 

if (*p ? ?11?1 q 1= 0) *p ??' = q, f * trigraphs * f 
if (*p or q 1= 0) *p xor _ eq <it iso646.h* / 

Amendment 1 also provides for the respelling of punctuator tokens such as { and} 
using other characters that are more common in foreign alphabets. 

References keywords 2.6; token respeUing 2A.1; trigraphs 2. 1A 
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Character Processing 

There are two kinds of facilities for handling characters: classification and conversion. Ev
ery character classification facility has a name beginning with is and returns a value of type 
int that is nonzero (true) if the argument is in the specified class and zero (false) if not. 
Every character conversion facility has a name beginning wiLh to and relurns a value of 
type int representing a character or EOF. Standard C reserves names beginning with is 
and to for more conversion and classification facilities that may be added to the library in 
the future. The character-related facilities described here are declared by the library header 
file ctype. h. 

Amendment 1 to C89 defines a parallel set of classification and conversion facilities 
that operate on wide characters. These facilities have names beginning with i sw and tow, 
with the remainder of the name matching the corresponding character-based facility. The 
wide character classification facilities accept arguments ofwint _ t and return a truth val
ue of type in t. The conversion facilities map between values of type win t t. There are 
also generalized classification functions wctraos and iswctrans and generalized 
conversion functions wctrans and towctrans since extended character sets may have 
special classifications. These facilities are all defined in the header file wc type. h. 

The negative integer EOF is a value that is not an encoding of a "real character." 
(WEOF serves the same purpose for wide characters.) For example, fgetc (Section 15.6) 
returns EOF when at end-of-file because there is no "real character" to be read. It must be 
remembered, however, that the type char may be signed in some implementations, and 
so EOF is not necessarily distinguishable from a "real character" if nonstandard character 
values appear. (Standard character values are always non-negative even if the type char 
is signed.) All of the facilities described here operate properly on all values representable 
as type char or type unsigned char, and also on the value EOF, but are undefined 
for all other integer values unless the individual description states otherwise. WEOF serves 
the same purpose for wchar _ t as EOF does for char, but WEOF does not have to be neg
ative. 

335 
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The formu lation of these facilities in Standard C takes into account the possibility 
that several locales will be supported; in general it tries to make as few assumptions as 
possible about character encodings or concepts such as "letter." The traditional eversion 
of these functions is roughly equivalent to the Standard C formulation for the "C" locale 
except that any ASCII-dependencies (such as isascii and to ascii) are also re
moved. 

Warning: Some non-Standard implementations of C let the type char be signed 
and also support a type unsigned char, yet the character-handling facilities fail to op
erate properly on all values representable by type unsigned char. In some cases, the 
facilities even fail to operate properly on all values representable by type char, but han
dle only "standard" character values and EOF. 

References EOF 11.1 ; WEOF 11.1; wide character 2.1.4; wchar_t 11.1; wint_t 11.1 

12.1 isalnum, isalpha, iscntrl, iswalnum, iswalpha, iswcntrl 

Synopsis 

#include <ctype.h> 

int isalnum(int c) ; 
int isalpha(int C) I 

int iscntrl(int c) ; 
int isascii(int c) ; /* Common extension */ 

#include <wctype.h> 

int iswalnum(wint_t c); 
int iswalpha(wint_ t c); 
int iswcntrl(wint t c) 1 

The isalnum function tests whether c is an alphanumeric character-that is, one of the 
following in the C locale: 

0 1 2 3 4 5 6 7 8 9 
A B C D E F G H I J K L M N 0 p Q R S T U V W X Y Z 

a b c d e f g h i j k 1 m n 0 p q r s t u v w x y z 

This function is by definition equivalent to 

isalpha (c) I I isdigit(c) 

The isalpha function tests whether c is an alphabetic character-that is, one of 
the following for the C locale: 

ABC D E F G H I J K L M N 0 P Q R STU V W X Y Z 
abc d e f 9 h i j k 1 m n 0 p q r stu v w x y z 
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In any locale, this function is true whenever islower (0) or isupper (0) is true, and 
it is false whenever iscntrl (o) , isdigi t (c) , ispunct (0) , or isspace (0) is 
true, but otherwise it is implementation-defined. 

The function iscntrl tests whether c is a "control character." If the standard 128-
character ASCII set is in use, the control characters are those with values a through 31 
(378 or IF16) and also 127 (1778 or 7F16). The isprint function (Section 12.4) is the 
complementary function at least for standard ASCII implementations. 

The function isascii is not part of Standard C, but it is a common extension in C 
libraries. It tests whether the value of c is in the range 0 through 127 (177 8 or 7F 16)- the 
range of the standard I 28-character ASCII character set. Unlike most of the character clas
sification functions in traditional C, isascii operates properly on any value of type 
int (and its argument is of type int even in traditional C). 

In traditional C, these functions take an argument of type char, but they return 
into 

Example 

The following function is _ id returns TRUE if the argument string s is a valid C identifier ; 
otherwise it returns FALSE. The current locale must be C for this function to work correctly. 

#include <ctype.h> 
#define TRUE 1 
#define FALSE 0 

int is id(const char *s) 
{ 

} 

char Chi 
if {(ch = *s++) == '\0') return FALSE; /*empty string*/ 
if (1 (isalpha(ch) II ch -= ' '» return FALSE; 
while «ch = *s++) 1= '\0') { 

if (1 (isalnum (ch) II ch == '» return FALSE; 
} 
return TRUE; 

12.1.1 Wide-Character Facilities 

Header we type. h, defined in Amendment 1 of C89, provides three additional functions. 

The iswalnum function is equivalent to iswalpha (e) I I iswdigi t (e) . 

The i swalpha function tests whether e is a locale-specific set of "alphabetic" 
wide characters. In any locale, this function is true whenever iswlower (c) or 
iswupper (c) is true, and it is false whenever iswcntrl (c) , iswdigit (c) , 
iswpunct (c) ,or iswspace (c) is true, but otherwise it is implementation-defined. 

The function iswcntrl returns a nonzero value if c is the code for a member of a 
locale-specific set of control wide characters. A control wide character cannot be a print
ing wide character as classified by iswprint (Section 12.4). 
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12.2 Iscsym, iscsymf 

#include <ctype.h> 

int iscsym(char e)i 

int iscsymf(char c); 
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Non-Standard synopsis 

These functions are not found in Standard C. The iscsym function tests whether c is a 
character that may appear in a C identifier. iscsym£ tests whether c is the code for a char
acter that may additionally appear as the first character of an identifier. 

The iscsymf function is true for at least the 52 upper- and lowercase letters and 
the underscore character. iscsym will additionaJly be true for at least 10 decimal digits. 
These functions may be true for other characters as well depending on the implementation. 

12.3 isdlgit, isodigit, isxdigit, iswdlgit, iswxdiglt 

#include <ctype . h> 

int isdigit(int e)i 

tnt isxdigit(int c) 

#include <wctype.h> 

int iswdigit(wint_ t c); 
int iswxdigit(wint_ t c); 

Synopsis 

The isdigi t function tests whether c is one of the 10 decimal digits. The isxdigi t 
function tests whether c is one of the 22 hexadecimal digits-that is, one of the following: 

012 3 4 5 6 7 8 9 ABC D E F abc d e f 

In pre-Standard C, these functions took an argument of type char, but they re
turned into Also, you may see a non-Standard isodigit function, which tests whether 
c is the code for one of the 8 octal digits. 

12.3.1 Wide-Character Facilities 

The i swdigi t function (C89 Amendment J) tests whether c corresponds to one of the 
decimal-digit characters. The iswxdigi t function tests whether c corresponds to one of 
the hexadecimal-digit characters. 
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12.4 isgraph, isprint, ispunct, iswgraph, Iswprlnt, Iswpunct 

#include <ctype. h > 

int isgraph(int e ) i 

int ispunct(int e)i 

int isprint(char c); 

#include <wctype.h> 

tnt !swgraph(wint_t e)1 
int iswpunct(wint_ t e); 
int !swprint (win t _t e); 

Synopsis 
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The i sprin t funct ion tests whether c is a printing character-that is, any character that 
is not a control character. A space is always considered to be a printing character. The 
isgraph function tests whether c is the code for a "graphic character"-that is, any 
printing character other than space. The i sprin t and i sgraph functions differ only in 
how they handle the space character; isprint is the opposite of iscntrl in most im
plementations, but this need not be so for every locale in Standard C. In traditional C, 
these functions take an argument of type char, but they return in t . 

Example 

If the standard 128-character ASCII set is in use, the printing characters are those with codes 
040 through 017 6-that is, space plus lhe following: 

I " # $ % & ( ) • + I 
o 1 2 3 4 5 6 7 8 9 ; < = > ? 
@ A B C D E F G H I J K L M N 0 p Q R S T U V W X Y Z 
[ \ 1 

, 

abc de f g h i j k 1 m n o p q r • t u v w x y z 
{ I } -

The graphic characters are the same, but space is omitted. 

The function i spunc t tests whether c is the code for a "punctuation character"-a 
printing character that is neither a space nor any character for which i salnum is true. 

Example 

If the standard 128-character ASCII character set is in use, the punctuation characters are 
space plus the following: 

I " # $ % « 
?@[\l' 

) • + 

{ I } 
-. /:;<:> 
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12.4.1 Wide-Character Facilities 

The iswprint function (e89 Amendment I) tests whether c is a printing wide charac
ter-that is , a locale-specific wide character that occupies at least one position on a display 
device and is not a control wide character. 

The iswgraph function is equivalent to iswprint (c) && I iswspace (c) . 
The function i swpunc t tests whether c is a local-specific wide character for which: 

iswprint(c) && I (iswalnum(c) II iswspace(c» 

12.5 is/ower, /supper, isw/ower, iswupper 

#include <ctype.h> 

int islower(int e)i 

int isupper(int e)i 

#1nclude <wctype.h> 

int iswlower(wint_ t e); 
int iswupper(wint_ t e)i 

Synopsis 

In the C locale, the islower function tests whether c is one of the 26 lowercase letters, 
and the isupper function tests whether c is one of the 26 uppercase letters. In other lo
cales, the functions may return true for other characters as long as they satisfy: 

liscntrl(c) && lisdigit(c) && lispunct(c) && lisspace(c) 

In traditional C, these functions take an argument of type char, but they return into 

12.5.1 Wide-Character Facilities 

The iswlower function (C89 Amendment I) tests whether c corresponds to a lowercase 
letter or is another of a local-specific set of wide characters that satisfies: 

liswcntrl(c) && I iswdigit (c) && 
liswpunct(c) && I iswspace (c) 

The i Bwupper function tests whether c corresponds to an uppercase letter or is an
other of a locale-specific set of wide characters that satisfies the same logical condition as 
iswlower. 



Sec. 12.6 isblank, isspace, iswhite, iswspace 

12.6 isblank, isspace, is white, iswspace 

#include <ctype.h> 
tnt isblank(int e)i 

int isspace(int e); 

#include <wctype.h> 
int iswspace(wint t e)i 

Synopsis 
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The isspace function tests whether c is the code for a whitespace character. In the C lo
cale, isspace returns true for only the tab (I \ t I), carriage return (I \r I), newline 
( I \n I ), vertical tab ( I \ v I ), form feed ( I \ f I ), and space ( I I) characters. Many other 
library facilities use isspace as the definition of whitespace. 

The isblank function tests whether c is the code for a character used to separate 
words within a line of text. This always includes the standard blank characters, space 
( , I) and horizontal tab ( I \ t I ). and it may include additional locale-specific characters 
for which i sspace is true. The n c n locale has no additional blank characters. 

Some implementations of C provide a variant of isspace called iswhi teo In tra
ditional C, these functions take an argument of type char, but they return in t. 

12.6.1 Wide-Character Facilities 

The i swspace function (C89 Amendment I) tests whether c is a locale-specific wide 
character that satisfies: 

liswalnum(c) && ! iswgraph (c) && !ispunct(c) 

12.7 toascii 

#include <ctype.h> 
int toascii(int c); 

Non-Standard Synopsis 

The non-Standard toascii function accepts any integer value and reduces it to the range 
of valid ASCII characters (codes 0 through 127 [1778 or 3F16]) by discarding all but the 
low-order seven bits of the value. If the argument is already a valid ASCII code, the result 
is equal to the argument. 
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12.8 to/nt 

#include <c type . h > 
int toint(char e)i 
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Non-Standard synopsis 

The non-S1andard toint function returns the "weight" of a hexadecimal digit: 0 through 
9 for the characters 10 1 through 19 I . respectively, and IO through 15 for the letters I a I 

through I f I (or I A I through I F I), respectively. The function's behavior if the argument 
is not a hexadecimal digit is implementation-defined. 

Example 

This facility is not present in Standard C, but it is easily implemented. This implementation 
assumes that certain characters are contiguous in the target encoding: 

int toint( int c ) 
{ 

if (e > = '0 ' && e <= 19 I ) 

if (e > = ' A' && e < = 'F' ) 
if (e >= 'a' && e < = If' ) 

I - e is not a hexadecimal 
return 0; 

} 

12.9 t%wer, toupper, tow/ower, towupper 

#include <ctype . h > 
int tolower(int e) ; 
int toupper(int c); 

#include <wctype.h> 
wint t towlower(wint t c) ; 
wint t towupper(wint t c); 

Synopsis 

return e '0 Ii 

return e 'A' + 10; 
return e 'a' + 10; 
digit - I 

If c is an uppercase letter, then to lower returns the corresponding lowercase letter. If c 
is a lowercase letter, then toupper returns the corresponding uppercase letter. In all other 
cases, the argument is returned unchanged. In some locales, there may be uppercase letters 
without corresponding lowercase letters or vice versa; in these cases, the functions return 
their arguments unchanged. 

The functions towlower and towupper are defined in Amendment 1 to C89. If c 
is a wide character for which i swupper (c) is true and if d is a wide character corre
sponding to c for which iswlower (d) is true, then towlower (c) returns d and 
towupper (d) returns c. Otherwise, the two functions return their arguments unchanged. 
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When using non-Standard implementations, you should be wary of the value returned 
by tolower when its argument is not an uppercase letter and of the value returned by 
toupper when its argument is not a lowercase letter. Many older implementations work 
correctly only when the argument is a letter of the proper case. Implementations that allow 
more general arguments to tolower and toupper may provide faster versions of 
these-macros named _ tolower and _ toupper. These macros require more restrictive 
arguments and are correspondingly faster. The non-Standard signatures are 

#include <ctype.h> 
int tolower{char e)i 

int toupper(char c); 
#define tolower(c) 
#define toupper(c) 

Example 

If the vers ion of to lower in your C library is not well behaved for arbitrary arguments, me 
following function safe _ tolower acts like to lower, but is safe for all arguments. II 
is difficult to write safe_tolower as a macro because the argument is evaluated more 
than once (by isupper, to lower, and the return statement) : 

#include <ctype . h > 
int safe tolower(int c} 
{ 

if (isupper(c» return tolower(c)i 
else return Ci 

} 

12.10 wctype_t, wctype, iswctype 

#include <wctype . h > 

typedef ... wctype_tJ 

Synopsis 

wctype t wctype(const char *property); 
int iswctype(wint t c, wctype t desc); 

The functions we type and iswetype are defined in Amendment 1 to C89. They imple
ment an extensible, locale-specific, wide-character classification faci lity. 

The type we type _ t must be scalar; it holds values representing locale-specific 
wide-character classifications. The we type function constructs a value of type 
we type _ t that represents a class of wide characters. The class is specified by the string 
name property, which is specific to the value of the LC _ CTYPE category of the current 

locale. All locales must permit property to have any of the string names in Table 12- 1, 
with the listed meaning. 

The iswetype function tests whether e is a member of the class represented by 
the value dese. The setting of the LC CTYPE category when iswctype is called must 
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Table 12-1 Properly names for we type 

property name 

"alnum" 

"alpha" 

"cntrl" 

"digit" 

"graph" 

"lower" 

"punct" 

"space" 

"upper" 

"xdigit" 

specifics the class for which 

iswalnum{c) istrue 

iswalpha (e) is true 

iswcntrl (e) is true 

iswdigit (c) is true 

iswgraph(c) is true 

iswlower (e) is true 

iswprint (e) is true 

i swpunc t (c) is true 

iswspace (e) is true 

i swupper (c) is true 

i swxdigi t (c) is true 

Chap. 12 

he the same as the setting of LC CTYPE when the value dese was determined by 
wctype. 

Example 

The expression iswctype (c, wctype (llalnum n )) has the same truth value as 
iswalnum (c) for any wide character c and any locale setting. The same holds for the 
other property strings and their corresponding classification functions. 

References LC _ CTYPE 11.5; locale 11.5 

12.11 wetfans_t, wetfans 

#include <wctype.h> 

typede£ ... wctrans ti 

Synopsis 

wctrans_ t wctrans( const char ·property ), 
wint t towctrans( wint_ t c, wctrans_ t desc ), 

The facilities in this section are defined in Amendment 1 to C89. They implement an ex
tensible, locale-specific, wide-character mapping faci lity. 

The type wctrans_ t must be scalar; it holds values representing locale-specific 
wide-character mappings. The wctrans function constructs a value of type 
wctrans_t that represents a mapping between wide characters. The mapping is speci
fied by the string name property, which is specific to the value of the LC_ CTYPE cate-
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gory of the current locale. All locales must permit property to have any of the 
following string values with the listed meaning: 

property va]uc 

"tolower" 

ntoupper" 

spccifics the same mapping 
as pcrfonncd by 

towlower(c) 

towupper(c) 

(Note that the property names are different from the function names.) 
The towctrans function maps c to another wide character as specified by the val

ue dese . The setting of the LC CTYPE category when towctrans is called must be the 
same as the setting of LC _ CTYPE when the value dese was determined by wctrans. 

Example 

The expression towctrans (c I wctrans (11 tolower n) ) has the same value as 
towlower (o) for any wide-character c and any locale setting. The same holds for the 
other property string and its corresponding mapping function . 

References LC _ CTYPE 11.5; locale 11.5 
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String Processing 

By convention, strings in C are arrays of characters ending with a null character (1 \0 I). 
The compiler automatically supplies an extra null character after all string constants, but it 
is up to the programmer to make sure that strings created in character arrays end with a 
null character. All of the string-handling facilitie.s described here assume that strings are 
tenninated by a null character. 

All the characters in a string, not counting the terminating null character, are together 
called the contents of the string. An empty string contains no characters and is represented 
by a pointer to a null character. Note that this is not the same as a null character pointer 
(NULL), which is a pointer that points to no character at all. 

When characters are transferred to a destination string, often no test is made for over
flow of the destination. It is up to the programmer to make sure that the destination area in 
memory is large enough to contain the result string, including the terminating null character. 

Most of the facilities described here are declared by the library header file 
string. h ; some Standard C conversion facilities are provided by stdlib. h. In Stan
dard C, string parameters that are not modified are generally declared to have type cons t 
char * instead of char * ; integer arguments or return values that represent string 
lengths have type size t instead of into 

Amendment 1 to C89 adds a set of wide-string functions that parallel the normal 
string functions. The differences are that the wide-string functions take arguments of type 
wchar t * instead of char *, and the names of the wide-string functions are derived 
from the string functions by replacing the initial letters str with wcs. Wide strings are 
tenninated with a wide null character. When comparing wide strings, the integral values 
of the wchar t elements are compared. The wide characters are not interpreted, and no 
encoding errors are possible. 

Other string facilities are provided by the memory functions (Chapter 14), 
sprintf (Section 15 .11), and sBeanf (Section 15.8). 

References wchar_ t 11.1; wide character 2.1.4 

347 
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13.1 slreal, slmeal, weseal, wesneal 

Synopsis 

#include <string.h> 

char *strcat( char *dest, const char *src ) ; 
char *strncat( char *dest, const char *src, size t n ); 

#include <wchr.h> 

wchar t *wcscat( wchar_ t *dest, conat wchar_ t *src ); 
wchar_ t *wcsncat( wchar_ t *dest , const wchar_ t *src, size t n ); 

The function strcat appends the contents of the string Brc to the end of the string 
dest. The value of dest is returned. The null character that terminates dest (and per
haps other characters fo llowing it in memory) is overwritten with characters from arc 
and a new terminating null character. Characters are copied from arc until a null charac
ter is encountered in arc . The memory area beginning with dest is assumed to be large 
enough to hold both strings. 

wcsca t is the same as s trca t except for the types of the arguments and result. 

Example 

The fo llowing statements append three stri ngs to D; at the end, D contains the string 
"All for one. II : 

#include <string . h > 
char D[20]j 

D[O] '" ' \ 0' i / * Set s t ring to empty * / 
strcat(D,"All n) I 

strcat (D, "for n); 
strcat(D,"one." }1 

The strncat fu nction appends up to n characters from the contents of arc to the 
end of dest. If the null character that terminates src is encountered before n charac ters 
have been copied, then the null character is copied but no more. If no null character ap
pears among the first n characters of arc, then the first n charac ters are copied and a null 
character is supplied to terminate the destination string; that is, n +l characters in all are 
written. If the value of n is zero or negative, then calling strnc at has no effect. The 
function always retu rns dest. In traditional C , the last argument to strncat has type 
into 

wcsncat is like strncat except for the types of the arguments and result. 
The behavior of all these functions is undefined if the strings overlap in memory. 



Sec. 13.2 strcmp, strncmp, wcscmp, wcsncmp 349 

13.2 strcmp, strncmp, wcscmp, wcsncmp 

Synopsis 

#include <string.h> 

int strcmp( const char *a1, const char *82 ); 
int strncmp( const char *sl, cons t char *a2, size t n ), 

#include <wchr.h> 

int wcscmp( conat wchar t *a1, const wchar t *82 )1 

int wcsncmp( const wchar_ t *sl, conat wchar t *82, size_ t n ); 

The function strcmp lexicographically compares the contents of the null -terminated 
string 81 with the contents of the null -terminated string 82 . It returns a value of type int 
that is less than zero if 81 is less than 82 , equal to zero if 81 is equal to 82, and greater 
than zero if 81 is greater than 82. 

Example 

To check only whether two strings are equal, you negate the return value from strcmp: 

if (lstrcmp(sl,s2» printf("Strings are equal\n" l i 
else printf("Strings are not equal\n"l, 

Two strings are equal if their contents are identical. String s1 is lexicographically 
less than string s2 under either of two circumstances: 

1. The strings are equal up to some character position, and at that first differing charac
ter position the character value from s1 is less than the character value from s2. 

2. The string s1 is shorter than the string s2 , and the contents of s1 are identical to 
those of s2 up to length of s 1 . 

wcscmp (Amendment I) is like strcmp except for the types of the arguments. 
The function strncmp is like strcmp except that it compares up to n characters 

of the null-terminated string s1 with up to n characters of the null -terminated string s2 . 
In comparing the strings, the entire string is used if it contains fewer than n characters; 
otherwise the string is treated as if it were n characters long. If the value of n is zero or 
negative, then both strings are treated as empty and therefore equal, and zero is returned. 
In traditional C, the argument n has type into 

wcsncmp is like strncmp except for the types of the arguments. 
The function memcmp (Section 14.2) provides similar functionality to strcmp. 

The strcoll function (Section 13.10) provides locale-specific comparison facilities. 
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13.3 strcpy, strncpy, wcscpy, wcsncpy 

Synopsis 

#include <string . h > 

char *strcpy( char *deat, const char ·arc ); 
char *strncpy ( char *deat. const char ·arc, size t n ) i 

#inc lude <wchar . h > 

wchar t *wcscpy( wchar_ t -deat, const wchar_ t ·arc ); 
wchar t *wcsncpy( wchar t ·deat, const wchar t ·arc, size t n ) ; 

The function strcpy copies the contents of the string Brc to the string deBt, overwriting 
the old contents of deat. The entire contents of Brc are copied, plus the terminating null 
character, even if src is longer than deat. The argument dest is returned. 

wcscpy (e89 Amendment I) is like strcpy except for the types of its arguments. 

Example 

The strcat function (Section 13. 1) can be implemented with the strcpy and strlen 
(Section 13.4) functions as fo llows: 

#include <string . h > 
char *strcat(char *dest. const char *src) 
{ 

} 

char *s : dest + strlen(dest) i 
strcpy(s, src ) 1 

return desti 

The function strncpy copies exactly n characters to dest . It first copies up to n 
characters from src . If there are fewer than n characters in src before the terminating 
null character. then null characters are written into dest as padding until exactly n char
acters have been written. If there are n or more characters in src. then only n characters 
are copied. and so only a truncated copy of src is transferred to dest . It fo llows that the 
copy in dest is terminated with a null by strncpy only if the length of src (not count
ing the terminating null) is less than n . If the value of n is zero or negative, then calling 
strncpy function has no effect. The value of dest is always returned. In traditional C, 
the argument n has type into 

wcsncpy (Amendment I ) is like strcpy except for the types of its arguments. 

The functions memcpy and memccpy (Section 14.3) prov ide similar functionality 
to strcpy. The results of both strcpy. strncpy. and their wide-string equivalents are 
unpredictable if the two string argument~ overlap in memory. The functions memmove 
and wmemmove (Section 14.3) are provided in Standard C for cases in which overlap may 
occur . 
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13.4 str/en, wcs/en 

Synopsis 

#include <string.h> 

size t strlen(const char *a); 

#include <wchar.h> 

size t wcslen(const wchar t ·8); 

The function strlen returns the number of characters in s preceding the terminating 
null character. An empty string has a null character as its first character and therefore its 
length is zero. In some older implementations of C, this function is called lenstr. 

wcslen (e89 Amendment I) is like strlen except for the type of its argument. 

13.5 strchr, strrchr, wcschr, wcsrchr 

Synopsis 

#include <string.h> 

char *strchr( const char *e, int c ); 
char *strrchr( const char *a, int c ); 

#include <wchar.h> 

wchar t ·wcschr( const wchar_t *8, wchar_t c ); 
wchar t *wcsrchr( const wchar t *8, wchar t c ); 

The functions in this section all search for a single character c within a null-terminated 
string s. In the Standard C functions, the terminating null character of s is considered to be 
part of the string. That is, if c is the null character (D), the functions will return the position 
of the terminating null character of s. In Standard C, the argument c has type int; in tra
ditional C, it has type char. The return value of these function is pointer to non-const, 
but in fact the object designated will be cons t if the first argument points to a cons t ob
ject. In that case, storing a value into the object designated by the return pointer will result 
in undefined behavior. 

The function s trchr searches the string s for the first occurrence of the character 
c. If the character c is found in the string, a pointer to the first occurrence is returned. If 
the character is not found, a null pointer is returned. 

The function wcschr (C89 Amendmel!t 1) is like strchr except for the types of 
its arguments and return value. 

The function s trrchr is like strchr except that it returns a pointer to the last oc
currence of the character c . If the character is not found, a null pointer is returned. 

The function wcsrchr (C89 Amendment 1) is like strrchr except for the types 
of its arguments and return value. 

The traditional C function strpos is like strchr except that the return value has 
type int and position of the first occurrence of c is returned, where the first character of s 
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is considered to be at position O. If the character is not found, the value - 1 is returned. The 
function strrpos is like strpos except that the position of the last occurrence of cis 
returned. Neither strpos nor strrpos is provided by Standard C. 

The functions memchr and wmemchr (Section 14.1) provide similar functionality 
to strchr and wcschr. In some implementations of C, strchr and strrchr are 
called index and rindex, respectively. Some implementations of C provide the func-, 
tion sens tr. which is a variant of s trpos. 

Example 

The following function how_many uses strchr to count the number of times a specified 
nannulI character appears in a string. The parameter s is repeatedly updated to point to the 
portion of the string just after the last-found character: 

int how_many(const char *s, int c) 
{ 

} 

int n '" 0; 
if (c "'''' 0) return 0; 
while(s) ( 

} 

a'" atrchr(a, c); 
if (a) n++, a++; 

return n; 

13.6 strspn, strcspn, strpbrk, strrpbrk, wcsspn, wcscspn, wcspbrk 

Synopsis 

#include <atring.h> 

size_ t strapn( const char *a, conat char *aet ); 
aize_ t strcspn( const char *a, const char *aet ); 
char *atrpbrk( const char *a, const char *set ); 

#include <wchar.h> 

size_ t wcsspn( const wchar_ t *s, const wchar_t *set ); 
size_ t wcscspn( conat wchar_ t *a, const wchar_ t *set ); 
wchar_ t *wcspbrk( const wchar_ t *s, const wchar t *set ); 

The functions in this section all search a null-terminated string s for occurrences of char
acters specified by whether they are included in a second null-terminated string set. The 
second argument is regarded as a set of characters; the order of the characters, or whether 
there are duplications, does not matter. 

The function strspn searches the string s for the first occurrence of a character 
that is not included in the string set, skipping over ("spanning") characters that are in set. 
The value returned is the length of the longest initial segment of s that consists of charac
ters found in set. If every character of s appears in set, then the total length of s (not 
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counting the terminating null character) is returned. If set is an empty string, then the 
first character of s will not be found in it, and so zero will be returned. 

The function strcspn is like strspn except that it searches s for the first occur
rence of a character that is included in the string set, skipping over characters that are not 
in set. 

The function strpbrk is like strcspn except that it returns a pointer to the first 
character found from set rather than the number of characters skipped over. If no charac
ters from set are found, a null pointer is returned. 

The non-Standard function strrpbrk has the same signature as strpbrk but it 
returns a pointer to the last character from set found within s . If no character within s 
occurs in set, then a null pointer is returned. 

The wcsspn, wcscspn, and wcspbrk function s (C89 Amendment 1) are the 
same as their s tr counterparts except for the types of their arguments and result. 

Rarely, strspn and strcspn are called notstr and instr. 

Example 

The function is_ id determines whether the input string is a valid C identifier. strspn is 
used to sec whether all the string's characters arc letters, digits, or the underscore character. If 
so, a final test is made to be sure the first character is not a digit. Compare this solution with 
the one given in Section 12.1 : 

#include <string.h> 
#define TRUE (1) 
#define FALSE (0) 

int is id(const char *s) 
{ 

} 

static char *id chars = 
nabcdefghijk1mnopqrstuvwxyz" 
· ABCDEFGHIJRLMNOPQRSTUVWXYZ" 
"0123456789 "; 

if (8 == NULL) return FALSE; 
if (strspn(s,id_ chars) 1= strlen(s» return FALSE; 
return lisdigit(*s); 
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13.7 strstr, strtok, wcsstr, wcstok 

Synopsis 

#include <string.h> 

char *strtok( char *str, const char *set )i 

char *strstr( canst char ·arc, const char ·sub ); 

#include <wchar.h> 

wchar_ t *wcstok( 
wchar_ t *str, const wchar_ t *set,wchar_ t **ptr )i 

wchar t *wcsstr ( 
const wchar t ·arc, const wchar t .sub )i 

Chap. 13 

The function strstr is new in Standard C. It locates the first occurrence of the string 
sub in the string arc and returns a pointer to the beginning of the first occurrence. If sub 
does not occur in arc, a null pointer is returned. The wcsstr function (C89 Amendment 
1) is the same as s trs tr except for the types of its arguments and result. 

The function strtok may be used to separate a string str into tokens separated 
by characters from the string set. A call is made on strtok for each token, possibly 
changing the value of set in successive calls. The first call includes the string str; sub
sequent calls pass a null pointer as the first argument, directing s trtok to continue from 
the end of the previous token. (The original string s tr must not be modified while 
strtok is being used to find more tokens in the string.) 

More precisely, if str is not null, then strtok first skips over all characters in 
str that are also in set. If all the characters of str occur in set, then strtok returns 
a null pointer, and an internal state pointer is set to a null pointer. Otherwise, the internal 
state pointer is set to point to the first character of str not in set, and execution contin
ues as if str had been null. 

If str and the internal state pointer are null, then strtok returns a null pointer, 
and the internal state pointer is unchanged. (This handles extra calls to s trtok after all 
the tokens have been returned.) If str is null , but the internal state pointer is not null, then 
the function searches beginning at the internal state pointer for the first character con
tained in set. If such a character is found, the character is overwritten with '\0 I, str
tok returns the value of the internal state pointer, and the internal state pointer is adjusted 
to point to the character immediately following inserted null character. If no such charac
ter is found, s trtok returns the value of the internal state pointer, and the internal state 
pointer is set to null. 

Library facilities in Standard C are not permitted to alter the internal state of str
tok in any way that the programmer could detect. That is, the programmer does not have 
to worry about a library function using strtok and thereby interfering with the program
mer's own use of the function. 

The wcstok function (C89 Amendment 1) is the same as strtok, except for the 
types of its arguments and result. Also, the additional ptr parameter indirectly designates 
a pointer that is used as the "internal state pointer" of strtok. That is, the caller ofwcs
tok provides a holder for the internal state. 
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If the first argument to s trs tr or weBS tr is a pointer to a constant string, then so 
will be the returned value, although it is not declared as pointer to cons t . 

Example 

The following program reads lines from the standard input and uses strtok to break the 
lines into "words"-sequences of characters separated by spaces, commas, periods, quotation 
marks. andlor question marks. The words are printed on the standard output: 

#include <stdio.h > 
#include <string.h> 
#define LINELENGTH 80 
#define SEPCHARS a .,?\"\n n 
int main (void) 
{ 

} 

char line[LINELENGTHli 
char *wordi 

while (1) { 

} 

printf ("\nNext line? (empty line to qult) \nn) ; 
fgets(line,LlNELENGTH,stdin); 
if (strlen(line) <= 1) break; / * exit program */ 
printf ( nThat line contains these words :\n n) ; 
word _ strtok (line,SEPCHARS); / * find first word */ 
while (word 1 = NULL) { 

printf(R \n%s\ n \nn,w~rd); 

word = strtok(NULL,SEPCHARS); /* find next word* / 
} 

Here is a sample execution of the program: 

Next line? (empty line to quit) 
RMy goodness,n she said, "Is that right?" 
That line contains these words: 
"My" 
ngoodness" 
Rshe " 
"said" 
Rls" 
" that " 
Rright R 

Next line? (empty line to quit) 

13.8 strtod, strtof, strto/d, strto/, strtol/, strtou/, strtoul/ 

See Section 16.4. 
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13.9 atof, atoi, atol, atoll 

See Section 16.3. 

13.10 strcoll, strxfrm, wcscoll, wcsxfrm 

Synopsis 

#include <string.h> 

int strcoll( const char *sl, const char *82 ); 
size_t strxfrm( 

char ·dest, const char ·arc, size t len ); 

#include <wchar.h> 

int wcscoll(const wchar t *sl, const wchar t ·82); 
size_t wcsxfrm( 

wchar_t *deat, const wChar_ t .arc, size_ t len); 

Chap. 13 

The strcoll and strxfrm functions provide locale-specific string-sorting facilities. 
The strcol1 function compares the strings 81 and 82 and returns an integer greater 
than, equal to, or less than zero depending on whether the string 81 is greater than, equal 
to, or less than the string 82. The comparison is computed according to the locale-specific 
collating conventions (LC COLLATE with setloeale, Section 11.5). In contrast, the 
atrcmp and wcaemp functions (Section 13.2) always compare two strings using the nor
mal collating sequence of the target character set (char or wchar_ t ). 

The function weacoll (C89 Amendment 1) is the same as atrcoll except for 
the types of its arguments. 

The atrxfrm function transforms (in a way described later) the string arc into a 
second string that is stored in the character array deat, which is assumed to be at least 
len characters long. The number of characters needed to store the string (excluding the 
terminating null character) is returned by atrxfrm. Thus, if the value returned by 
atrxfrm is greater than or equal to len, or if arc and deat overlap in memory, the fi
nal contents of deat is undefined. Additionally, if len is 0 and deat is a null pointer, 
atrxfrm simply computes and returns the length of the transformed string correspond
ing to arc. 

The atrxfrm function transforms strings in such a way that the atrcmp function 
can be used on the transformed strings to determine the correct sorting order. That is, if a1 
and s2 are strings, and tl and t2 are the transformed strings produced by strxfrm 

from s1 and s2 , then 

• atrcmp(t1,t2) > a if atrcoll{al,s2) > a 
• strcmp(tl,t2) == a if strcoll{sl,s2) == a 
• strcmp(t1,t2) <: a if strcoll(s1,s2) <: a 
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The function wcsxfrm (C89 Amendment 1) is like strxfrm except for the types of its 
arguments. The wcscmp function must be used to compare the transformed wide string. 

The functions strcoll and strxfrm have different performance trade-offs. The 
strcoll function does not require the programmer to supply extra storage, but it may 
have to perform string transfonnations internally each time it is called. Using strxfrm 
may be more efficient when many comparisons must be done on the same set of strings. 

Example 

The following function transform uses strxfrm to create a transformed string corre
sponding to the argument s . Space for the string is dynamically allocated: 

#include <string.h> 
#include <stdlib.h~ 

char *transform( char *s ) 
/* Return the result of applying strxfrm to s */ 
{ 

} 

char *dest; /* Buffer to hold transformed string */ 
size t length; /* Buffer length required */ 
length = strxfrm(NULL,s,O) + 1; 
dest = (char *) malloc(length); 
strxfrm(dest,s,length); 
return dest; 

r 
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Memory Functions 

The facilities in this chapter give the C programmer efficient ways to copy, compare, and 
set blocks of memory_ In Standard C, these functions are considered part of the string 
functions and are declared in the library header file string. h . In older implementations, 
they are declared in their own header file, memory. h. 

Blocks of memory are designated by a pointer of type void * in Standard C and 
char * in traditional C. In Standard C, memory is interpreted as an array of objects of 
type unsigned char; in traditional C, this is not explicitly stated, and either char or 
unsigned char might be used. These functions do not treat null characters any differ
ently than other characters. 

Amendment 1 to e89 added five new functions for manipulating wide-character ar
rays, which are designated by pointers of type wchar t *. These functions are defined in 
header wchar . h , and their names all begin with the letters wmem. The ordering of wide 
characters is simply the ordering of integers in the underlying integer type wchar t . No 
interpretation of the wide characters is made, so no encoding errors are possible. 

References wchar_ t 11.1; wide character 2.1.4 

14.1 memchr, wmemchr 

Synopsis 

#include <string.h> 

void *memchr( const void *ptr, int val, size t len ); 

#include <wchar.h> 

wchar t *wmemchr( const wchar t *ptr, wchar t val, size t len )i 

The function memchr searches for the first occurrence of val in the first len characters 
beginning at ptr. It returns a pointer to the first character containing val, if any, or returns 
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a null pointer if no such character is found. Each character c is compared to val as if by 
the expression (unsigned char) c == (unsigned char) val. See also strchr 
(Section 13.5). Although the returned pointer is declared to be a pointer to a non-const 
object, in fact it may point into a cons t object if the first argument was such. 

The wmemchr function (e89 Amendment 1) finds the first occurrence of val in 
the len wide characters beginning at ptr. A pointer to the found wide character is re
turned. If no match is found, a null pointer is returned. 

In traditional C, the signature of memchr is 

#include <memory.h> 
char *memchr(char *ptr, int val, int len ); 

14.2 memcmp, wmemcmp 

Synopsis 

#include <string.h> 

int memcmp( const void *ptrl, const void *ptr2, size t len )i 

#include <wchar.h> 

int wmemcmp( 
eonst wehar t *ptrl, const wehar t *ptr2, size t len )i 

The function memcmp compares the first len characters beginning at ptrl with the first 
len characters beginning at ptr2 . If the first string of characters is lexicographically less 
than the second, then memcmp returns a negative integer. If the first string of characters is 
lexicographically greater than the second, then memcmp returns a positive integer. Other
wise memcmp returns O. See also strcmp (Section 13.2). 

The wmemcmp fu nction (C89 Amendment 1) perfonns the same comparison on 
wide-character arrays. The ordering function on wide characters is simply the integer or
dering on the underlying integral type wcbar_t. The value returned is negative, zero, or 
positive according to whether the wide characters at ptrl are less than, equal to, or great
er than, respectively, the sequence of wide characters at ptr2. 

Older C implementations may include the function bcmp, which also compares two 
strings of characters, but returns 0 if they are the same and nonzero otherwise. No compar
ison for less or greater is made. The traditional C signatures of bemp and mememp are: 

#include <memory.h> 
int bcmp( char *ptrl, char *ptr2, int len )i 

int memcmp( char *ptrl, char *ptr2, int len ); 
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14.3 memcpy, memccpy, memmove, wmemcpy, wmemmove 

Synopsis 

#include <string.h> 

void *memcpy (void *dest, const void *src, size t len); 
void *memmove(void *dest, const void *src, size t len); 

#include <wchar.h> 

wchar_t *wmemcpy( 
wchar_ t *dest, const wchar t *src, size t len); 

wchar_ t * wmemmove( 
wchar_ t *dest, const wchar t *src, size t len); 
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The functions memcp¥ and memmove (Standard C) both copy len characters from arc 
to dest and return the value of dest. The difference is that memmove will work correct
ly for overlapping memory regions-that is, memmove acts as if the source area were first 
copied to a separate temporary area and then copied back to the destination area. (In fact, 
no temporary areas are needed to implement merrunove.) The behavior of memcpy is un
defined when the source and destination overlap, although some versions of memcpy do 
implement the copy-to-temporary semantics. If both versions are available, the program
mer should expect memcpy to be faster. See also s trcpy (Section 13.3). 

The functions wmemcpy and wmemmove (C89 Amendment 1) are analogous to 
memcpy and memmove , respectively, but they operate on wide-character arrays. They 
both return dest. 

Older C implementations may use the functions memccpy and bcopy in addition to 
memcpy. The function m'emccpy also copies len characters from src to dest, but it 
will stop immediately after copying a character whose value is val. When all len char
acters are copied, memccpy returns a null pointer; otherwise it returns a pointer to the 
character following the copy of val in dest. The function bcopy works like memcpy, 
but the source and destination operands are reversed. The traditional C signatures of these 
functions are 

#include <memory.h> 
char *memcpy( char *dest, char *src, int len); 
char *memccpy(char *dest, char *src, int val, int len); 
char *bcopy( char *src, char *dest, int len ); 
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14.4 memset, wmemset 

Synopsis 

#include <string.h> 

void *memset( void *ptr, int val, size t len ); 

#include <wchar.h> 

wchar_t *wmemset( wchar_t *ptr, int val, size t len }i 

The function memset copies val into each of len characters beginning at ptr. The 
characters designated by ptr are considered to be of type unsigned char. The func
tion returns the value ofptr. 

The function wmemset (e89 Amendment I) is analogous tomemset, but it fills an 
array of wide characters. 

Older C implementations may include the more restricted function bzero, which 
copies 0 into each of len characters at ptr. The traditional C signatures are 

#include <memory.h> 
char *memset( char *ptr, int val, int len ); 
void bzero( char *ptr,int len ); 
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Input/Output Facilities 

C has a rich and useful set of 1/0 facilities based on the concept of a stream, which may be 
a file or some other source or consumer of data, including a terminal or other physical de
vice. The data type FILE (defined in s tdio . h along with the rest of the I/O facilities) 
holds information about a stream. An object of type FILE is created by calling fopen, 
and a pointer to it (a file pointer) is used as an argument to most of the 110 facilities de
scribed in this chapter. 

Among the information included in a FILE object is the current position within the 
stream (the file position), pointers to any associated buffers, and indications of whether an 
error or end of file has occurred. Streams are normally buffered unless they are associated 
with interactive devices. The programmer has some control over buffering with the 
setvbuf facility, but in general streams can be implemented efficiently, and the pro
grammer should not have to worry about perfonnance. 

There are two general fonns of streams: text and binary. A text stream consists of a 
sequence of characters divided into lines; each line consists of zero or more characters fol
lowed by (and including) a newline character, I \n I . Text streams are portable when they 
consist only of complete lines made from characters from the standard character set. The 
hardware and software components underlying a particular C run-time library implemen
tation may have different representations for text files (especially for the end-of-line indi
cation), but the run-time library must map those representations into the standard one. 
Standard C requires implementations to support text stream lines of at least 254 characters 
including the terminating newline. 

Binary streams are sequences of data values of type char. Because any C data val
ue may be mapped onto an array of values of type char, binary streams can transparently 
record internal data. Implementations do not have to distinguish between text and binary 
streams if it is more convenient not to do so. 
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When a C program begins execution, there are three text streams predefined and 
open: standard input (stdin), standard output (stdout), and standard error 
(stderr). 

References fopen 15.2; setvbuf 15.3; standard character set 2.1 

Wide-character input and output Amendment 1 to C89 adds a wide-character 1/ 
o facility to C. The new wide-character input/output functions in header file wchar. h 
correspond to older byte input/output junctions, except the underlying program data type 
(and stream element) is the wide character (wchar_ t) instead of the character (char). In 
fact, the implementation of these wide-character I/O functions may translate the wide 
characters to and from multibyte sequences held on external media, but this is generally 
transparent to the programmer. 

Instead of creating a new stream type for wide-character 110, Amendment I adds an 
orientation to existing text and binary streams. After a stream is opened and before any in
put/output operations are performed on it, a stream has no orientation. The stream becomes 
wide-oriented or byte-oriented depending on whether the first input/output operation is 
from a wide-character or byte function . Once a stream is oriented, only 110 function s of the 
same orientation may be used or else the result is undefined. The fwide function (Section 
15.2) may be used to set andlor test the orientation of a stream. 

When the external representation of a file is a sequence of multibyte characters, 
some rules for multibyte character sequences are relaxed in the files: 

1. Multibyte encodings in a file may contain embedded null characters. 

2. Files do not need to begin or end in the initial conversion state. 

Different files may use different multibyte character encodings of wide characters. The 
encoding for a file, which is logically part of the internal conversion state, is established 
by the setting of the LC CTYPE category of the locale when that internal conversion state 
is first bound, not later than after the first wide-character input/output function is called. 
After the conversion state (and the encoding rule) of a file is bound, the setting of 
LC CTYPE no longer affects the conversions on the associated stream. 

Because the conversion between wide character and multibyte character may have 
state associated with it, a hidden mbstate_ t object is associated with every wide-oriented 
stream. Conversion during input/output conceptually occurs by calling mbrtowc or 
wcrtomb using the hidden conversion state. The fgetpos and fsetpos functions must 
record this conversion state with the file position. Conversion during wide-character input/ 
output can fail with an encoding error, in which case EILSEQ is stored in errno. When 
multiple encodings of files are permitted, the encoding for a stream will probably be part 
of the mbstate_ t object or at least recorded with it. 

References conversion state 2.1.5; EILSEQ 11.2; fgetpos and fsetpos 15.5; 
mbrtowc 11.7; mbs ta te _ tILl; multi byte character 2.1.5; orientation 15.2.2; wcrtomb 11.7; 
wide characters 2.1.5 
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15.1 FILE, EOF, wchar_t, wlnet, WEOF 

#include <stdio.h> 

typede£ ... FILE ... i 
#define EOF (- n) 

#define NULL ... 
#define size t ... 

#include <wchar.h> 

typede£ ... wchar t, 
typedef .. . wint t, -
#define WEOF ... 
#define WCHAR MAX 
#define WCHAR MIN 
#define NULL ... 
#define size t ... 

Synopsis 
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Type FILE is used throughout the standard ]/0 library to represent control infonnation 
for a stream. It is used for reading from both byte- and wide-character-oriented files. 

The value EOF is conventionally used as a value that signals end of file-that is, the 
exhaustion of input data. It has the value - 1 in most traditional implementations, but Stan
dard C requires only that it be a negative integral constant expression. Because EOF is 
sometimes used to signal other problems, it is best to use the feef facility (Section 15.14) 
to determine whether end of file has indeed been encountered when EOF is returned. The 
macro WEOF (Amendment 1) is used in wide-character 110 for the same purpose as EOF in 
byte I/O; it is a value of type wint _ t (not necessarily wchar_ t ) and need not be a neg
ative value. WCHAR_MAX is the largest value representable by type wchar_t, and 
WCHAR MIN is the smallest. 

The type si ze _ t and the null pointer constant NULL are defined in the header files 
s tdio. h and wchar . h for convenience. In Standard C, they are also defined in s td
de f • h , and it does no hann to use more than one header file. 

References wChar_ t2.1.5, 11.I;wint_ t2.1.5, 11 .1 
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15.2 (open, (close, fflush, (reopen, (wide 

Synopsis 

#include <stdio.h> 

FILE *fopen( 
const char * restrict filename, const char * restrict mode); 

int fc!ose(FILE * restrict stream); 
int fflush(FILE * restrict stream); 
FILE *freopen ( 

const char * restrict filename, 
const char * restrict mode, 
FILE * restrict stream); 

#define FOP EN_MAX ... 

#define FILENAME MAX 

#include <wchar.t> 

int fwide(FILE * restrict stream, int orient); 

The function fopen takes as arguments a file name and a mode; each is specified as a 
character string. The file name is used in an implementation-specified manner to open or 
create a file and associate it with a stream. (The value of the macro FILENAME_MAX is 
the maximum length for a file name or an appropriate length if there is no practical maxi
mum.) A pointer of type FILE * is returned to identify the stream for other input/output 
operations. If any error is detected, fopen stores an error code into ,errno and returns a 
null pointer. The number of streams that may be open simultaneously is not specified; in 
Standard C, it is given by the value of the macro FOP EN_MAX, which must be at least 
eight (including the three predefined streams). Under C89 Amendment 1, the stream re
turned by fopen has no orientation, and either byte or wide-character input/output (but 
not both) may be performed on it. 

The function fclose closes an open stream in an appropriate and orderly fashion, 
including any necessary emptying of internal data buffers. The function fclose returns 
EOF if an error is detected; otherwise it returns zero. 

Example 

Here are some functions that open and close normal text files. They handle error conditions 
and print diagnostics as necessary, and their return values match those of fopen and 
fclose: 
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#include <errno.h> 
#include <stdio.h> 

FILE *open_ input(const char -filename) 

{ 

} 

/* Open filename for input; return NULL if problem */ 

FILE *£; 
errno = O. 
I- Functions below might choke on a NULL filename. */ 
if (filename :: NULL) filename _ "\0"; 

f = fopen(filename,"r")i 
if (f .. NULL) 

fprintf(stderr, 

/* "w" for open_output */ 

"open_ input (\"%s\") failed: %s\nn, 
filename, strerror(errno»; 

return f; 

int close_ file(FILE *f) 
/ * Close file f */ 

{ 

} 

, 
int s = OJ 

if (f == NULL) return 0; /* Ingore this case */ 
errno = 0; 
s = fc!ose(f); 
if (8 == EOF) perror("Close failed"); 
return s; 
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The function fflush empties any buffers associated with the output or update 
stream argument. The stream remains open. If any error is detected, £ £1 ush returns EOF; 
otherwise it returns O. fflush is typically used only in exceptional circumstances; 
fclose and exi t normally take care of flu shing output buffers. 

The function freopen takes a file name, a mode, and an open stream. It first tries 
to close stream as if by a cal l to fclose, but any error while doing so is ignored. Then 
filename and mode are used to open a new file as if by a call to fopen, except that the 
new stream is associated with stream rather than getting a new value of type FILE *. 
The function freopen returns stream if it is successful ; otherwise (if the new open 
fails) a null pointer is returned. One of the main uses of freopen is to reassociate one of 
the standard input/output streams stdin, stdout, and stderr with another file. Un
der Amendment 1 to C89, freopen removes any previous orientation from the steam. 

References EOF 15.1; exit 19.3; stdin 15.4 

15.2.1 File Modes 

The values shown in Table 15- 1 are permitted for the mode specification in the functions 
fopen and freopen . 
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Table 15-1 Type specifications for f open and fr eope n 

Modea Meaning 

"r" Open an existing file for input. 

"w" Create a new file or truncate an existing one for output. 

"a" Create a new file or append to an existing one for output. 

"r+" Open an e)(isting file for update (both reading and writing) starting at the 

beginning of the file. 

"w+" Create a new file or truncate an existing one for update. 

II a +" Create a new file or append to an existing one for update. 

a All modes can have the letter b appended to them, signifying that the stream is to hold 
binary rather than character data. 

Chap. 15 

When a file is opened for update (+ is present in the mode string), the resulting 
stream may be used for both input and output. However, an output operation may not be 
followed by an input operation without an intervening cal l to fsetpo s , fseek, 
rewind, or f flu s h , and an input operation may not be followed by an output operation 
wi thout an intervening call to £setpos, £seek, rewind, or £flush or an input oper
ation that encounters end of file. (These operations empty any internal buffers.) 

Standard C allows any of the types listed in Table 15-1 to be followed by the char
acter b to indicate a "binary" (as opposed to "text") stream is to be created. (The distinction 
under UNIX was blurred because both kinds of files are handled the same; other operating 
systems are not so lucky.) Standard C also al lows any of the "update" file types to assume 
binary mode; the b designator may appear before or after the + in the stream mode speci
fication. 

In Standard C, the mode string may contain other characters after the modes listed 
earlier. Implementations may use these additions to specify other a,ttributes of streams; for 
example, 

£ = fopen("C: \\work\\dict.txt","r,access=lock" )i 

Table 15- 2 lists some properties of each of the stream modes. 

Table 15-2 Properties of f ope n modes 

Mode 

Property r w • r+ w+ .+ 

Named file must already exist yes no no yes no no 

Existing file's contents are lost no yes no no yes no 

Read from stream permiued yes no no yes yes yes 

Write to stream pennitted no yes yes yes yes yes 

Write begins at end of stream no no yes no no yes 
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15.2.2 File Orientation 

The fwide function (e89 Amendment I) is used to test and/or set the orientation of a 
stream. The function returns a positive, negative, or zero value according to whether 
stream is wide-oriented, byte-oriented, or has no orientation, respectively, after the call. 
The orient argument detennines whether fwide will first attempt to set the orienta
tion. If orien t is 0, no attempt to set the orientation is made, and the return value reflects 
the orientation at the time of the call. If orient is positive, then fwide attempts to set 
wide orientation; if orient is negative, then fwide attempts to set byte orientation. 
These attempts can only be successful if the stream previously had no orientation-that is, 
if it had just been opened by fopen or freopen. Otherwise, the orientation remains un
changed. 

Example 

When using wide-oriented streams, it is a good idea to use fwide to establish the orientation 
at the time fopen is called. Here is a function that opens a specified file in a specified mode 
and sets it to be wide-oriented in a given locale. If successful , the function returns a file point-, . . 
er: otherwise, It returns NULL. 

FILE *fopen_wide( 

{ 

} 

const char *filename, 1* file to open *1 
const char *mode, 1* mode for open *1 
const char *locale)/* locale for encoding *1 

FILE *f = fopen(filename, mode); 
if (f ,- NULL) { 

} 

char *old locale = setlocale(LC CTYPE, locale); 
if (old_locale -- NULL I I fwide(f, 1) <- 0) { 

fclose(f); 1* setlocale or fwide failed *1 
f = NULL; 

} 
1* return locale to its original value *1 
setlocale(LC_ CTYPE, old_ locale); 

return f; 

The multibyte encoding used (if any) is detennined when the orientation of the 
stream is established. It will be affected by the LC CTYPE category of the current locale 
at the time the orientation is established. 



370 

15.3 setbuf, setvbuf 

#include <stdio.h> 

int setvbuf( 
FILE * restrict stream, 
char *b restrict uf, 
in t bufmode I 
size_t size )i 

void setbuf( 
FILE * restrict stream, 
char * restrict buf )i 

#define BUFSIZ 
#define IOFBF 
#define IOLBF 
#define lONBF 

InpuVOutput Facilities Chap. 15 

Synopsis 

These functions allow the programmer to control the buffering strategy for streams in 
those rare instances in which the default buffering is unsatisfactory. The func tions must be 
called after a stream is opened and before any data are read or written. 

The function setvbuf is the more general function adopted from UNIX System V. 
The first argument is the stream being controlled; the second (if not null) is a character ar
ray to use in place of the automatically generated buffer; bufmode specifies the type of 
buffering, and size specifies the buffer size. The function returns zero if it is successful 
and nonzero if the arguments are improper or the request cannot be satisfied. 

The macros _ IOFBF, _ IOLBF, and _ IONBF expand to values that can be used for 
bufmode. Ifbufmode is _IOFBF, the stream is fully buffered; ifbufmode is _ IOLBF, 
the buffer is flushed when a newline character is written or when the buffer is full; if 
bufmode is _IONBF, the stream is unbuffered. If buffering is requested and ifbuf is not 
a null pointer, then the array specified by buf should be size bytes long and will be used 
in place of the automatically generated buffers. The constant BUFSI Z is an "appropriate" 
value for the buffer size. 

The function setbuf is a simplified fonn of setvbuf. The expression 

setbuf(stream,buf) 

is equivalent to the expression 

«buf==NULL) ? 
(void) setvbuf{stream,NULL,_IONBF,0) 
(void) setvbuf(stream,buf, IOFBF,BUFSIZ» 

References EOF 15.1; fopen 15 .2; size tIl.l 
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15.4 stdin, stdout, stde" 

#include <stdio.h> 

#define stderr 
#define stdin 
#define stdout 
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Synopsii 

The expressions stdin, stdout, and stderr have type FILE *, and their values are 
established prior to the start of an application program to certain standard text streams. 
s tdin points to an input stream that is the "normal input" to the program, s tdou t to an 
output stream for the "nonnal output", and stderr to an output stream for error messag
es and other unexpected output from the program. In an interactive environment, all three 
streams are typically associated with the tenninal used to start the program and, except 
stderr, are buffered. 

These expressions are not usually Ivalues, and in any case they should not be altered 
by assignment. The freopen function (Section 15.2) may be used to change them. 

Example 

The expressions stdin, stdout, and stderr are often defined as addresses of static or 
global stream descriptors: 

extern FILE 

#define stdin (& iob[O) 
#define stdout (& __ iob[l) 
#define stderr (& __ iob[2) 

UNIX systems in particular provide convenient ways to associate these standard 
streams with files or other programs when the application is launched, making them pow
erful when used according to certain standard conventions. 

Under C89 Amendment I , stdin, stdout, and stderr have no orientation when 
a C program is started. Therefore, those streams can be used for wide-character input/output 
by calling fwide (Section 15.2) or using a wide-character input/output function on them. 
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15.5 fseek, ftell, rewind, fgetpos, fsetpos 

#include <stdio.h> 

int fseek( 

Input/Output Facilities 

Synopsis 

FILE· restrict stream, long int offset, int wherefrom); 
long int ftell(FILE • restrict stream); 
void rewind(FILE * restrict stream); 
#define SEEK SET 0 
#define SEEK CUR 1 
#define SEEK END 2 

typede£ ... £pos t ". i 

int fgetpos( FILE * restrict stream, £pos t ·pos ); 
int fsetpos( FILE * restrict stream, const £pos_ t ·pos )i 

Chap. 15 

The functions in this section alJow random access within text and binary streams-typi
cally, streams associated with files. 

15.5.1 fseek and ftell 

The function ftell takes a stream that is open for input or output and returns the posi
tion in the stream in the form of a value suitable for the second argument to f seek. Using 
£seek on a saved result of f tell will result in resetting the position of the stream to the 
place in the file at which ftell had been called. 

For binary files, the value returned will be the number of characters preceding the 
current file position. For text files, the value returned is implementation-defined. The re
turned value must be usable in fseek, and the value OL must be a representation- not 
necessarily the only one--{)f the beginning of the file. 

If ftell encounters an error, it returns -IL and sets errno to an implementation
defined, positive value. Since -lL could conceivably be a valid file position, errno must 
be checked to confirm the error. Conditions that can cause ftell to fail include an attempt 
to locate the position in a stream attached to a terminal or an attempt to report a position 
that cannot be represented as an object of type long into 

The function fseek allows random access within the (open) stream. The second 
two arguments specify a file position: offset is a signed (long) integer specifying (for 
binary streams) a number of characters, and wherefrom is a "seek code" indicating from 
what point in the file offset should be measured. The stream is positioned as indicated 
next, and fseek returns zero if successful or a nonzero value if an error occurs. (The value 
of errno is not changed.) Any end of file indication is cleared and any effect ofungetc 
is undone. Standard C defines the constants SEEK_ SET, SEEK_CUR, and SEEK_END to 
represent the values of wherefrom; programmers using non-Standard implementations 
must use the integer values specified or define the macros. 
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When repositioning a binary file, the new position is given by the following table : 

If wherefrom is: 

SEEK~SET or O 

SEEK CUR or I 

SEEK END or 2 

Then the new position is: 

offset characters fro m the beginning of the fi le 

offset characters from the current position in the file 

offset characters from the end of the fil e (Negative 
values specify positions before the end; positive values 
extend the fil e with unspecified contents.) 

Standard C does not require implementations to "meaningfull y" support a where
from value of SEEK_END for binary streams. The following, more limited set of calls is 
permitted on text streams by Standard C: 

A call of the ronn Positions (text) stream 

fseek (stream, OL, SEEK_ SET ) at the beginning of the fi le 

fseek (stream. OL , SEEK_CUR) at the same location (i.e., the call has 
no effec t) 

fseek (stream, OL, SEEK_ END) at the end of the file 

fseek (stream, ftell-pos. SEEK_ SET) at a position returned by a previous 
call to ftell for stream 

These limitations recognize that a position within a text file may not map directly onto the 
file 's internal representation. For example, a position may require a record number and an 
offset within the record. (However, Standard C requires that implementations support the 
call fseek (stream, OL, SEEK END) for text files, whereas they do not have to 
"meaningfull y" support it for binary streams.) 

Under Amendment 1 of C89, file positioning operations performed on wide-orient
ed streams must satisfy all restrictions applicable to either binary or text files. The fseek 
and ftell functions are in general not powerful enough to support wide-oriented 
streams, even for the simplest positioning operations such as the beginning or end of the 
stream. The fgetpos and fsetpos functions described in the next section should be 
used for wide-oriented streams. 

The function rewind resets a stream to its beginning. By Standard C definition, the 
call rewind (stream) is equivalent to 

(void) fseek(stream, OL, SEEK_SET} 

15.5.2 (getpas and (setpas 

The functions fgetpos and fsetpos are new to Standard C. They were added to han
dle files that are too large for their positions to be representable within an integer of type 
long int (as in ftell and fseek). 
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The £getpos function stores the current file position in the object pointed to by 
pos. It returns zero if successfuL If an error is encountered, it returns a nonzero value and 
stores an implementation-defined, positive value in errno. 

The fsetpos function sets the current file position according to the value in 
*pos, which must be a value returned earlier by £getpos on the same stream. fset
pos undoes any effect of ungetc or ungetwc. It returns zero if successful. If an error is 
encountered, it returns a nonzero value and stores an implementation-defined, positive 
value in errno. 

Under e89 Amendment 1, the file position object used by fgetpos and fsetpos 
will have to include a representation of the hidden conversion state associated with the 
wide-oriented stream (i.e., a value of type mbstate t). That state, in addition to the 
position in the file, is needed to interpret the following multibyte characters after a reposi
tioning operation. 

In wide-oriented output streams, using fsetpos to set the output position and then 
writing one or more multi byte characters will cause any following multibyte characters in 
the file to become undefined. This is because the output could partially overwrite an 
existing multibyte character or could change the conversion state in such a way that later 
multi byte characters could not be properly interpreted. 

References mbstate t 1l.1 , ungetc 15.6 

15.6 fgete, fgetwe, gete, getwe, getehar, getwehar, ungete, ungetwe 

#include <stdio.h> 

int fgetc(FILE *stream); 
int getc(FILE *stream)i 
int getchar(void) i 

Synopsis 

int ungetc(int c, FILE *stream)1 

#include <stdio.h> 
#include <wchar.h> 

wint t fgetwc(FILE *stream)i 
wint t getwc(FILE *stream); 
wint t getwchar(void)i 
wint t ungetwc(wint t c, FILE *stream); 

The function fgetc takes an input stream as its argument. It reads the next character from 
the stream and returns it as a value of type in t. The internal stream position indicator is 
advanced. Successive calls to fgetc will return successive characters from the input 
stream. If an error occurs or if the stream is at end of file, then fgetc returns EOF. The 
feof and/or ferror facilities should be used in this case to detennine whether end of file 
has really been reached. 
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The function gete is identical to fgetc except that gete is usually implemented 
as a macro for efficiency. The stream argument should not have any side effects because 
it may be evaluated more than once. 

The function getchar is equivalent to gete (stdin) . Like gete , getchar is 
often implemented as a macro. 

In C89 Amendment 1, the functions fgetwc , getwc , and getwchar are analo
gous to their byte-oriented counterparts-including probable macro implementations-but 
they read and return the next wide character from the input stream. WEOF is returned to in
dicate error or end of file; if the eITor is an encoding error, EILSEQ is stored in errno. 
Reading a wide character involves a conversion from a multibyte character to a wide char
acter; this is perfonned as ifby a call to mbrtowc using the stream's internal conversion 
state. 

The function ungetc causes the character c (converted to unsigned char) to be 
pushed back onto the specified input stream so that it will be returned by the next call to 
fgetc , getc, or getchar on that stream. If several characters are pushed, they are re
turned in the reverse order of their pushing (Le., last character first). ungetc returns c 
when the character is successfully pushed back, EOF if the attempt fails. A successful file
positioning command on the stream (fseek, fsetpos, or rewind) discards all 
pushed-back characters. After reading (or discarding) all pushed-back characters, the file 
position is the same as immediately before the characters were pushed. 

One character of pushback is guaranteed provided the stream is buffered and at least 
one character has been read from the stream since the last fseek, fopen, or freopen 
operation on the stream. An attempt to push the value EOF back onto the stream as a char
acter has no effect on the stream and returns EOF. A call to fsetpos , rewind, fseek, 
or freopen erases all memory of pushed-back characters from the streamwithout affect
ing any external storage associated with the stream. 

The function ungetc is useful for implementing input-scanning operations such as 
scanf . A program can "peek ahead" at the next input character by reading it and then 
putting it back if it is unsuitable. (However, scanf and other library functions are not 
pennitted to preempt the use of ungetc by the programmer-that is, the programmer is 
guaranteed to have at least one character of push back even after a call to scanf or similar 
function.) 

The function ungetwc (C89 Amendment 1) is analogous to ungetc. 

References EOF 15.1 ; feof 15.14; fseek 15.5; fopen 15.2; freopen 15.2; scanf 
15.8; stdin 15.4 
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15.7 fgets, fgetws, gets 

Synopsis 

#include <stdio.h> 

char *fgets(char *8, int n, FILE *stream); 
char *gets(char *8); 

#include <stdio.h> 
#include <wchar.h> 

wchar t *fgetws(wchar t *8, int n, FILE .stream}i 

Chap. 15 

The function fgets takes three arguments: a pointer s to the beginning of a character ar
ray. a count n , and an input stream. Characters are read from the input stream into s until 
a newline is seen, end of file is reached, or n-l characters have been read without encoun

tering end of file or a newline character. A terminating null character is then appended to 
the array after the characters read. If the input is terminated because a newline was seen, 
the newline character will be stored in the array just before the terminating null character. 
The argument s is returned on successful completion. 

If end of file is encountered before any characters have been read from the stream, 
then £gets returns a null pointer and the contents of the array s are unchanged. If an er
ror occurs during the input operation, then £gets returns a null pointer and the contents 
of the array s are indeterminate. The feo f facility (Section 15.14) should be used to de
tennine whether end of file has really been reached when NULL is returned. 

The function gets reads characters from the standard input stream, stdin, into 
the character array s. However, unlike £gets, when the input is terminated by a newline 
character gets discards the newline and does not put it into s . The use of gets can be 
dangerous because it is always possible for the input length to exceed the storage available 
in the character array. The function £gets is safer because no more than n characters will 
ever be placed in s. 

The function £getws (e89 Amendment 1) is analogous to £gets, but it operates 
on wide-oriented input streams and stores wide characters into s , including a null wide 
character at the end. There is no wide-character function corresponding to gets-another 
hint that gets is to be avoided. 

References feof 15.14; stdin 15.4 
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15.8 fscanf, fwscanf, scanf, wscanf, sscanf, swscanf 

Synopsis 

#include <stdio.h> 

int fscanf( 
FILE * restrict stream, const char * restrict format, ... ); 

int scanf ( 
const char· restrict format •... ); 

int sscanf( 
char *e, const char * restrict format, ... ); 

#include <stdio.h> 
#include <wchar.h> 

in t fwscanf ( 
FILE * restrict stream, 
const wchar t * restrict format, ... ); 

tnt wBcan£( 
const wchar t ·format, ... ), 

int swscanf ( 
wchar t *s, const wchar t ·format, ... ); 

377 

The function fscanf parses formatted input text, reading characters from the stream 
specified as the first argument and converting sequences of characters according to the 
control string format. Additional arguments may be required depending on the contents of 
the control string. Each argument after the control string must be a pointer; converted val
ues read from the input stream are stored into the objects designated by the pointers. 

The functions scanf and sscanf are like fscanf. In the case of scanf , charac
ters are read from the standard input stream stdin. In the case of sscanf, characters 
are read from the string s . When sscanf attempts to read beyond the end of the string e, 
it operates as fscanf and scanf when end of file is reached. 

The input operation may tenninate prematurely because the input stream reaches 
end of file or because there is a conflict between the control string and a character read 
from the input stream. The value returned by these functions is the number of successful 
assignments performed before tennination of the operation for either reason. If the input 
reaches end of file before any conflict or assignment is performed, then the functions re
turn EOF. When a conflict occurs, the character causing the conflict remains unread and 
will be processed by the next input operation. 

Amendment 1 to C89 defines a set of wide-character formatted input functions cor
responding to fscanf, scanf, and secanf. The new wscanf "family" of functions use 
wide-character control strings and expect the input to be a sequence of wide characters. Any 
conversions from underlying multibyte sequences in the external file are transparent to the 
programmer. In the descriptions that follow, the byte-oriented function s are described. The 
behavior of the wide-oriented functions can be derived by substituting "wide character" for 
"character" or "byte" unless otherwise noted. 
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Amendment 1 also extends Standard C's formatting strings, permitting the 1 size 
specifier to be added to the s , C , and [ conversion operations to indicate that the associat
ed argument is a pointer to a wide string or character. See the description of those conver
sion operations for more infonnation. 

15.8.1 Control String 

The control string is a picture of the expected form of the input. In Standard C, it is a 
multibyte character sequence beginning and ending in its initial shift state for the scanf 
family, and it is a sequence of wide characters for the wscanf family. One may think of 
these functions as performing a simple matching operation between the control string and 
the input stream. The contents of the control string may be divided into three categories: 

1. Whitespace characters. A whitespace character in the control string causes 
whites pace characters to be read and discarded. The first input character encoun
tered that is not a whitespace character remains as the next character to be read from 
the input stream. Note that if several consecutive whitespace characters appear in 
the control string, the effect is the same as if only one had appeared. Thus, any se
quence of consecutive whitespace characters in the control string will match any se
quence of consecutive whitespace characters, possibly of different length, from the 
input stream. 

2. Conversion specifications. A conversion specification begins with a percent sign, %; 
the remainder of the syntax for conversion specifications is described in detail next. 
The number of characters read from the input stream depends on the conversion op
eration. As a rule of thumb, a conversion operation processes characters until: (a) 
end of file is reached, (b) a whitespace character or other inappropriate character is 
encountered, or (c) the number of characters read for the conversion operation 
equals the specified maximum field width. The processed characters are normally 
converted (e.g., to a numeric value) and stored in a place designated by a pointer ar
gument following the control string. 

3. Other characters. Any c haracter other than a whitespace character or a percent sign 
must match the next character of the input stream. If it does not match, a conflict has 
occurred; the conversion operation is terminated, and the conflicting input character 
remains in the input stream to be read by the next input operation on that stream. 

There should be exactly the right number of pointer arguments, each of exactly the 
right type, to satisfy the conversion specifications in the control string. If there are too 
many arguments, the extra ones are ignored; if there are too few, the results are undefined. 
If any conversion specification is malfonned, the behavior is likewise undefined. There is 
a sequence point after the actions performed by each conversion specification. 

15.8.2 ConverSion Specifications 

A conversion specification begins with a percent sign, %. After the percent sign, the fol
lowing conversion specification elements should appear in this order: 
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1. An optional assignment suppression flag, written as an asterisk, *. If this is present 
for a conversion operation that normally performs an assignment, then characters 
are read and processed from the input stream in the usual way for that operation, but 
no assignment is performed and no pointer argument is consumed. 

2. An optional maximum field width expressed as a positive decimal integer. 

3. An optional size specification expressed as one of the character sequences hh, h , 1 
(ell), 11 (ell-ell), j , Z , t , or L. The conversion operations to which these may be ap
plied are listed in Table 15-3. The hh, 11, j, Z , and t size specifications are new in 
C99. 

4. A required conversion operation (or conversion specifier) expressed (with one 
exception) as a single character: a , c , d, e , f, g , i , n, 0 , p, S , u, x, %, or [. The ex
ception is the [ operation, which causes all following characters up to the next] to 
be part of the conversion specification. 

The conversion specifications for fscanf are similar in syntax and meaning to 
those for fprin t f, but there are certain differences. It is best to regard the control string 
syntax for fprintf and fscanf as being only vaguely similar; do not use the docu
mentation for one as a guide to the other. 

Example 

Here are some of the differences between the conversions infscanf and fprin tf: 

The (conversion operation is peculiar to fscanf. 

fscanf does not admit any precision specification of the kind accepted by fprintf , nor 
any of the flag characters -, + , space, 0, and # that are accepted by fpr in t f. 

An explicitly specified field width is a minimum for fprintf , but a maximum for fscanf . 
• 

Whereas fprin tf allows a field width to be specified by a computed argument, indicated by 
using an asterisk for the field width, fscanf uses the asterisk for another purpose- namely, 
assignment suppression; this is perhaps the most glaring inconsistency of all. 

Except as noted, all conversion operations skip over any initial whitespace before 
conversion. This initial whitespace is not counted toward the maximum field width. None 
of the conversion operations normally skips over trailing whitespace characters as a matter 
of course. Trailing whitespace characters (such as the newline that terminates a line of in
put) will remain unread unless explicitly matched in the control string. (Doing this may be 
tricky because a whites pace character in the control string will attempt to match many 
whitespace characters in the input, resulting in an attempt to read beyond a newline.) 

It is not possible to determine directly whether matches of literal character in the 
control string succeed or fail. It is also not possible to determine directly whether con
version operations involving suppressed assignments succeed or fail. The value returned 
by these functions reflects only the number of successful assignments peiformed. 

The conversion operations are complicated. A brief summary is presented in Table 
15-3 and discussed in detail next. 
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Table 15-3 Input conversions (s c anf , fs canf , sec anf ) 

d [-i+ ]dd ... d 
i " [ - I+ ][O[x ]]dd ... d' 

u [- 1+ Jdd ... dc 
o [- 1+ ]dd . .. d 
x [- 1+ ][ Ox]dd ... d' 

c a fixed~wid(h sequence of characters; 
must be multibytes if 1 is used 

s a sequence of non-whiles pace charac
ters; must be multibytes if 1 is used 

p" 

n" 

[ 

a e89 addi tion. 

a sequence of characters such as output 
with \ p in fprintf . 

none; the number of characters read is 
stored in the argument 

any floating-point constant or decimal 
integer constant, optionally preceded 
by -or+ 

a sequence of characters fro m a scan
ning set; must be multi bytes ifl is used 

bThe base of the number is determined by the first digits in the same way as for C constants. 
C The number is assumed to be octal. 
d The number is assumed to be hexadecimal regardless of the presence of Ox. 
e C99 addition. 

The d conversion Signed decimal conversion is performed. One argument is 
consumed; it should be of type int *, short *, or long * depending on the size speci
fication. 
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The fonnat of the number read is the same as expected for the input to the strtol 
function (wcste! for wscanf) with the value 10 for the base argument- that is, a se
quence of decimal digits optionally preceded by - or +. If the value expressed by the input 
is too large to be represented as a signed integer of the appropriate size, then the behavior 
is undefined. 

The i conversion Signed integer conversion is performed. One argument is 
consumed; it should be of type int *. short *, or long * depending on the size speci
fication . 

The fonnat of the number read is the same as expected for the input to the strtol 
function (wastel for wscanf) with the value 0 for the base argument- that is, a C 
integer-constant, without suffix, and optionally preceded by - or +, and 0 (octal) or Ox 

(hexadecimal) prefixes. If the value expressed by the input is too large to be represented as 
a signed integer of the appropriate size, then the behavior is undefined. 

The u conversion Unsigned decimal conversion is performed. One argument is 
consumed; it should be of type unsigned *, unsigned short *, or unsigned 
long * depending on the size specification. 

The format of the number read is the same as expected for the input to the 
strtoul function (wcstoul for wscanf) with the value 10 for the base argument
that is, a sequence of decimal digits optionally preceded by - or +. If the value expressed 
by the input is too large to be represented as an unsigned integer of the appropriate size, 
then the behavior is undefined . 

• 
The 0 conversion Unsigned octal conversion is performed. One argument is con

sumed; it should be of type unsigned *, unsigned short * , or unsigned 
long * depending on the size specification. 

The format of the number read is the same as expected for the input to the 
strtoul function (wcstoul for wscanf) with the value 8 for the base argument
that is, a sequence of octal digits optionally preceded by - or +. If the value expressed by 
the input is too large to be represented as an unsigned integer of the appropriate size, then 
the behavior is undefined. 

The x conversion Unsigned hexadecimal conversion is performed. One argument 
is consumed; it should be of type unsigned *. unsigned ahort *, or unsigned 
long * depending on the size specification. 

The format of the number read is the same as expected for the input to the a trtoul 
function (wcatoul for wacanf) with the value 16 for thebaae argument- that is. a se
quence of hexadecimal digits optionally preceded by - or +. The operation accepts all of 
the characters 01234567 89abcdefABCDEF as valid hexadecimal digits. If the value ex
pressed by the input is too large to be represented as an unsigned integer of the appropriate 
size, then the behavior is undefined. 

Some non-Standard C implementations accept the letter X as an equivalent conver
sion operation. 
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The c conversion One or more characters are read. One pointer argument is con
sumed; it must be of type char * or, if the 1 size specification is present, wchar _ t *. 
The c conversion operation does not skip over initial whitespace characters. The conver
sions applied to the input character(s) depend on whether the 1 size specifier is present 
and whether scanf or wscanf is used. The possibilities are listed in Table 15-4. 

Table 154 Input conversions of (he c specifier 

Func- Si7.e Argument 
Input Conversions 

lion specifier type 

scanf none char • character(s) none; characters are copied 

1 wchar t • multibyte 10 wide character(s), as if by one or 
character(s) more calls to mbrtowc 

wscanf none char • wide charac- to multi byte character(s), as if by one 
ter(s) or more calls to wcrtomb 

1 wchar t • wide charac- none; wide characters are copied 
(er(s) 

If no field width is specified, then exactly one character is read unless the input 
stream is at end of file, in which case the conversion operation fails. The character value is 
assigned to the location indicated by the next pointer argument 

If a field width is specified, then the pointer argument is assumed to point to the be
ginning of an array of characters, and the field width specifies the number of characters to 
be read; the conversion operation fai ls if end of file is encountered before that many char
acters have been read. The characters read are stored into successive locations of the array 
No extra terminating null is appended to the characters that are read. 

The s conversion A string is read. One pointer argument is consumed; it must be 
of type char * or, if the 1 size specification is present (C89 Amendment 1), wchar t *. 
The s conversion operation always skips initial whitespace characters. 

Characters are read until end of file is reached, until a whites pace character is seen 
(in which case that character remains unread), or (if a field width was specified) until the 
maximum number of characters has been read. If end of file is encountered before any 
nonwhitespace character is seen, the conversion operation is considered to have failed. 
Conversions may be applied to the input characters depending on whether the 1 size spec
ifier is present and on whether scanf orwscanf is used (see Table 15-5). In the case of 
the 1 specifier used with scanf , the input is tenninated by the first whitespace character; 
this occurs before the input characters are interpreted as multibyte characters. 

A terminating null is always appended to the stored characters. The s conversion 
operation can be dangerous if no maximum field width is specified because it is always 
possible for the input length to exceed the storage available in the character array. 

The s operation with an explicit field width differs from the c operation with an ex
plicit fie ld width. The c operation does not skip over whitespace characters and will read 
exactly as many characters (or wide characters) as were specified unless end of file is en
countered. The s operation skips over initial whitespace characters, will be tenninated by 
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Table 15-5 Input conversions of the s specifier 

Func-
Size Argument 

lion 
specifier type Input Conversion 

scanf none char * characters none; characters are copied 

1 wchar t· multibytc characters to wide characters, as if by calls -
to mbrtowc 

wscanf none c har * wide characters to multi byte characters, as ifby 
call s to wcrtomb 

1 wchar t· wide characters none; wide characters arc copied -

a whitespace character after reading in some number of characters (or wide characters) 
that are not whitespace, and will append a null character to the stored characters. 

The p conversion Pointer conversion is performed. One argument is consumed; it 
should be of type void ••. The fonnat of the pointer value read is implementation
specified, but it will usually be the same as the fonnat produced by the %p conversion in 
the printf family . The interpretation of the pointer is also implementation-defined, but 
if you write out a pointer and later read it back, all during the same program execution, then 
the pointer read in will compare equal to the pointer written out. The p conversion is new 
with S1andard C. 

The n conversion No conversion is performed and no characters are read. Instead, 
the number of characters processed so far by the current call of the scanf-family func
tion is written to the argument, which must be of type int * , short *, or long * de
pending on the size specification. The n conversion is new with Standard C. 

The 3, f, e, and g conversions Signed decimal floating-point conversion is per
formed . In C99, the a conversion is allowed and is identical to f, e , and g for input. One 
pointer argument is consumed; it must be of type float * , double * , or 
long double * depending on the size specification. 

The format of the number read is the same as expected for the input to the s trtod 
function (wcstod for wscanf)-that is, a sequence of decimal or hexadecimal digits op
tionally preceded by - or + and optionally containing a decimal point and signed exponent 
part. (An integer with no decimal point is acceptable.) The input strings INF, INFINITY, 
NAN, and NAN C .. ) , ignoring case, denote special floating-point numbers. Acceptance of 
hexadecimal floating-point input is new in C99. 

The characters read are interpreted as a floating-point number representation and 
converted to a floating-point number of the specified size. If no digits are read, or at least 
no digits are read before the exponent part is seen, then the value is zero. If no digits are 
seen after the letter introducing the exponent, then the exponent part of the representation 
is assumed to be zero. If the value expressed by the input is too large or too small to be 
represented as a floating-point number of the appropriate size, then the value HUGE VAL 
is returned (with the proper sign) and the value ERANGE is stored in errno. (In imple
mentations that do not conform to Standard C, the return value and setting of errno are 
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unpredictable. ) If the value expressed by the input is not too large or too small , but never
theless cannot be represented exactly as a floating-point number of the appropriate size, 
then some fonn of rounding or truncation occurs. 

The a, f, e , and g conversion operations are completely identical; anyone of them 
will accept any style of floating-point representation. Some implementations may accept G 
and E as floating-point conversion letters. 

The % conversion A single percent sign is expected in the input. Because a per
cent sign is used to indicate the beginning of a conversion specification, it is necessary to 
write two of them to have one matched. No pointer argument is consumed. The assignment 
suppression flag, field width, and size specification are not relevant to the % conversion op
eration. 

The [conversion A string is read and one pointer argument of type char * or 
wchar t * (if the 1 size specifier is present) is consumed. The [ conversion operation 
does not skip over initial whitespace characters. The conversion specification indicates ex
actly what characters may be read as part of the input field. The [ must be fo llowed in the 
conlrol slring by more characlers, tenninaled by ] . All the characlers up lo lhe] are parl 
of the conversion specification, cal led the scansel. If the character immediately following 
the [is the circumflex A , it has a special meaning as a negation flag, and the scanset consists 
of all characters not appearing between A and] . The characters in the scanset are regarded 
as a set in the mathematical sense. 

Any [ between the initial [ and the terminating] is treated as any other character. 
Similarly, any A that does not immediately follow the initial [ is treated as any other char
acter. In Standard C, if] immediately follows the initial [, then it is in the scanset and the 
next] will terminate the conversion specification. If] immediately follows the negation 
flag A , then the ] is not in the scan set and the next] will terminate the scanset. Older 
implementations might not support this special treatment of] at the beginning of the con
version specification. 

Example 

If the conversion is ... 

% [abcaJ 

% [ AabcaJ 

• [ [I 

• [II 

% [ ,\tl 

Then the scanset is ... 

the three characters a , b , and c 

all characters except a , b , and c 

the single character [ 

the single character ] 

the characters space. comma. and horizontal tab 

Characters are read until end of file is reached, until a character not in the scanset is 
seen (in which case that character remains unread) . or (if a field width was specified) until 
the maximum number of characters has been read. Then if the assignment is not sup
pressed by *, the input characters are stored into the object designated by the argument 
pointer, just as for the s conversion operation, including any conversions to or from multi-
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byte characters (see Table 15-5). Then an extra terminating null character is appended to 
the stored characters. Size specification is not relevant to the [ conversion operation. 

Like the s conversion, the [ conversion operation can be dangerous if no maximum 
field width is specified because it is always possible for the input length to exceed the stor
age available in the character array. 

References EOP 15.1 ; £printf 15.11 ; stdin 15.4; 

15.9 fpule, fpulwe, pule, putwe, pulehar, putwchar 

Synopsis 

#include <stdio.h> 

int fputc(int c, FILE *stream); 
tnt putc(int c, FILE *stream); 
int putchar(int e)i 

#include <stdio.h> 
#include <wchar.h> 

wint t fputwc(wchar_ t c, FILE *stream); 
wint t putwc<wchar t c, FILE *stream)i 
wint t putwehar(wehar t e)i 

The function £putc takes as arguments a character value and an output stream. It writes 
the character to the stream at its current position and also returns the character as a value 
of type into Successive calls to £putc will write the given characters successively to the 
output stream. If an error occurs, £putc returns EOF instead of the character that should 
have been written. 

The function putc operates like £putc, but it is usually implemented as a macro. 
The argument expressions must not have any side effects because they may be evaluated 
more than once. 

The function putchar writes a character to the standard output stream stdout. 
Like putc, putchar is usually implemented as a macro and is quite efficient. The call 
putchar(c) isequivalenttoputc(c, stdout). 

Amendment I to C89 added the wide-character functions £putwc , putwc, and 
putwchar, which correspond to the byte-oriented functions. The value WEOF is returned 
on error. If an encoding error occurs, EILSEQ is also stored into errno. 

References EOF 15.1; stdout 15.4 
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15. 10 fputs, fputws, puts 

Synopsis 

#include <stdio.h> 

int fputs(const char *s, FILE ·stream); 
int puts (const char *8) i 

#include <stdio.h> 
#include <wchar.h> 

Input/Output Facilities 

int fputws(const wchar t *s, FILE ·stream}; 

Chap. 15 

The function £puts takes as arguments a null-terminated string and an output stream. It 
writes to the stream all the characters of the string, not including the terminating null char
acter. If an error occurs, £puts returns EOF; otherwise it returns some other, non-negative 
value. 

The function puts is like £puts except that the characters are always written to 
the stream s tdou t ; after the characters in s are written out, an additional newline char
acter is written (regardless of whether s contained a newline character). 

Several non-Standard UNIX implementations of £puts have an error that causes 
the return value to be indeterminate if s is the empty string. Programmers might be alert 
for that boundary case. 

Amendment 1 to C89 added the function £putws, which is analogous to £puts . 
The function returns EOF (not WEOF) on error, and EILSEQ is stored in errno if the er
ror was an encoding error. 

References EOF 15.1; stdout 15.4 
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15.11 (printf, printf, sprintf, snprlntf, (wprlntf, wprlntf, swprlntf 

Synopsis 

#include <stdio.h> 

int fprintf( 
FILE * restrict stream, const char * restrict format, ... ); 

int printf ( 
const char * restrict format, ... )j 

int sprintf( 
char * restrict 8, 

const char * restrict format, ... )i 
int snprintf( 

char * restrict s, size_ t n, 
const char * restrict format, ... )i 

#include <stdio.h> 
#include <wchar.h> 

int £wprintf( 
FIL~ * restrict stream, 
const wchar t * restrict format, ... )i 

int wprintf( 
const wchar t * restrict format, ... ); 

int swprintf ( 

II C99 

wchar t *8, size t n, const wchar t *format, ... ); 

387 

The function £printf perfonns output fonnatting , sending the output to the stream 
specified as the first argument. The second argument is a format control string. Additional 
arguments may be required depending on the contents of the control string. A series of 
output characters is generated as directed by the control string; these characters are sent to 
the specified stream. 

The printf function is related to fprintf , but sends the characters to the stan
dard output stream stdout. 

The sprintf function causes the output characters to be stored into the string buffer 
s. A final null character is output to s after all characters specified by the control string 
have been output. It is the programmer' s responsibility to ensure that the sprintf desti
nation string area is large enough to contain the output generated by the fonnatting opera
tion. However, the swprintf function, unlike sprintf, includes a count of the 
maximum number of wide characters (including the terminating null character) to be writ
ten to the output string s . In C99, snprintf was added to provide the count for the nonwide 
function. 

The value returned by these functions is EOF if an error occurred during the output 
operation; otherwise the result is some value other than EOF. In Standard C and most cur
rent implementations, the functions return the number of characters sent to the output 
stream if no error occurs. In the case of sprintf, the count does not include the termi
nating null character. (Standard C allows these functions to return any negative value if an 
error occurs.) 
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e89 (Amendment 1) specifies three wide-character versions of these functions; fw

printf , wprintf, and swprintf. The output of these functions is conceptually a wide 
string, and they convert their additional arguments to wide strings under control of the con
version operators. We denote these functions as the wprintf family of functions, or just 
wprintf functions, to distinguish them from the original byte-oriented print! functions. 
Under Amendment 1 al so, the 1 size specifier may be applied to the c and s conversion 
operators in both the printf and wprintf functions. 

e99 introduces the a and A conversion operators for hexadecimal floating-point 
conversions and the hh, 11, j , Z , and t length modifiers. 

References EOF 15.1; hexadecimal floating-point format 2.7.2; scanf 15.8; stdout 
15.4; wide characters 2.1.4 

15.11.1 Output Format 

The control string is simply text to be copied verbatim, except that the string may contain 
conversion specifications. In Standard C, the control string is an (uninterpreted) multibyte 
character sequence beginning and ending in its initial shift state. In the wprintf func
tions, it is a wide-character string. 

A conversion specification may call for the processing of some number of additional 
arguments, resulting in a formatted conversion operation that generates output characters 
not explicitly contained in the control string. There should be exactly the right number of 
arguments, each of exactly the right type, to satisfy the conversion specifications in the 
control string. Extra arguments are ignored, but the result from having too few arguments 
is unpredictable. If any conversion specification is malformed, then the effects are unpre
dictable. The conversion specifications for output are similar to those used for input by 
fscanf and related functions; the differences are discussed in Section 15.8.2. There is a 
sequence point just after the actions called for by each conversion specification. 

The sequence of characters or wide characters output for a conversion sp~cification 
may be conceptually divided into three elements; the converted value proper, which reflects 
the value of the converted argument; the prefu, which, if present, is typically +, - , or a 
space; and the padding, which is a sequence of spaces or zero digits added if necessary to 
increase the width of the output sequence to a specified minimum. The prefix always pre
cedes the converted value. Depending on the conversion specification, the padding may 
precede the prefix, separate the prefix from the converted value, or follow the converted 
value. Examples are shown in the following figure; the enclosing boxes show the extent of 
the output governed by the conversion specification. 

Padding Padding 
Prefix (No prefix) 

I OXOOOOOOOOOOOE~ 
I I I 

Prefix Padding Value 
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15.11.2 Conversion Specifications 

In what follows, the terms characters, letters, and so on are to be understood as normal 
characters or letters (bytes) in the case of the printf functions and wide characters or 
letters in the case of the wprintf functions. For example, in wprintf, conversion 
specifications begin with the wide-character percent sign, %. 

A conversion specification begins with a percent sign character, %, and has the fol
lowing elements in order: 

1. Zero or more flag characters (-, +, 0 , #, or space), which modify the meaning of 
the conversion operation. 

2. An optional minimum field width expressed as a decimal integer constant. 

3. An optional precision specification expressed as a period optionally followed by a 
decimal integer. 

4. An optional size specification expressed as one of the letters 11, 1 , L, h , hh, j, z, 
or t. 

5. The conversion operation , a single character from the set a, A, c , d , e , E, f, 9 , 
G, i, n , 0, p , S , u , x , X, and %. 

The size specification letters Land h , and the conversion operations i , p , and n , were 
introduced in C89. The size specification letters 11, hh, j , z , and t , and the conversion 
operations a and A, were introduced in C99. 

The conversion letter tenninates the specification. The conversion specification 
% - # 0 12 . 4hd is shown next broken into its constituent elements: 

12 

Start specification Conversion leiter 

Flags Size modifier 

Minimum field width Precision 

15.11.3 Conversion Flags 

The optional flag characters modify the meaning of the main conversion operation: 

o 
+ 

space 

# 

Left-justify the value within the fie ld width. 

Use 0 for the pad character rather than space. 

Always produce a sign, either + or -. 

Always produce either the sign - or a space. 

Use a variant of the main conversion operation. 

The effects of the flag characters are described in more detail now. 
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The - flag If a minus-sign flag is present, then the converted value will be left
justified within the field- that is, any padding will be placed to the right of the converted 
value. If no minus sign is present, the converted value will be right-justified within the field. 
This flag is relevant only when an explicit minimum field width is specified and the 
converted value is smaller than that minimum width; otherwise the value will fill the field 
without padding. 

The 0 flag If a 0 (zero) flag is present, then 0 will be used as the pad character if 
padding is to be placed to the left of the converted value. The 0 flag is relevant only when 
an explicit minimum field width is specified and the converted value is smaller than that 
minimum width . In integer conversions, this flag is superseded by the precision specifica
tion. 

If no zero-digit flag is present, then a space will be used as the pad character. Space 
is always used as the pad character if padding is to be placed to the right of the converted 
value even if the - flag character is present. 

The + flag If a + flag is present, then the result of a signed conversion will always 
begin with a sign- that is , an explicit + will precede a converted positive value. (Negative 
values are always preceded by - regardless of whether a plus-sign flag is specified.) This 
flag is only relevant for the conversion operations a, A, d , e , E, f , g , G, and i. 

The space flag If a space flag is present and the first character in the converted 
value resulting from a signed conversion is not a sign (+ or - ), then a space will be added 
before the converted value. The adding of this space on the left is independent of any pad
ding that may be placed to the left or right under control of the - flag character. If both the 
space and + flags appear in a single conversion specification, the space flag is ignored be
cause the + flag ensures that the converted value will always begin with a sign. This flag is 
relevant only for the conversion operations a , A, d , e , E, f , g , G, and i. 

The # flag If a # flag is present, then an alternate form of the main conversion op
eration is used. This flag is relevant only for the conversion operations a , A, e , E, f , g, G, 
i , 0 , x , and X. The modifications implied by the # flag are described in conjunction with 
the relevant conversion operations. 

15.11.4 Minimum Field Width 

An optional minimum field width, expressed as a decimal integer constant, may be spec
ified. The constant must be a nonempty sequence of decimal digits that does not begin 
with a zero digit (which would be taken to be the 0 flag). If the converted value (including 
prefix) results in fewer characters than the specified field width, then pad characters are 
used to pad the value to the specified width. If the converted value results in more charac
ters than the specified field width, then the field is expanded to accommodate it without 
padding. 

The field width may also be specified by an asterisk, *, in which case an argument 
of type intis consumed and specifies the minimum field width. The result of specifying 
a negative width is unpredictable. 
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Example 

The following two calls to printf result in the same output: 

int width:5, value; 

printf("%5d n , value); 
printf( -%*d", width, value); 

15.11.5 Precision 
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An optional precision specification may be specified and expressed as a period followed 
by an optional decimal integer. The precision specification is used to control: 

1. the minimum number of digits to be printed for d , i, 0 , u , x , and X conversions 

2. the number of digits to the right of the decimal point in e , E, and f conversions 

3. the number of significant digits in the 9 and G conversions 

4. the maximum number of characters to be written from a string in the B conversion 

If the period appears but the integer is missing, then the integer is assumed to be zero, 
which usually has a different effect than omitting the entire precision specification. 

The precision may also be specified by an asterisk following the period, in which 
case an argument of type int is consumed and specifies the precision. If both the field 
width and precision are specified with asterisks, then the field width argument precedes 
the precision argument. 

15.11.6 Size Specification 

An optional size modifier, one of the letter sequences 11 (ell-ell), 1 (ell) , L, h , hh, j , z , 
or t , may precede some conversion operations. 

The letter 1, in conjunction with the conversion operations d , i , 0, u , x, and X, indi
cates that the conversion argument has type long or unsigned long. In conjunction 
with the n conversion, it specifies that the argument has type long * . In C89, the modifi
er 1 may also be used with c, in which case the argument is oftypewint t , or with s , in 
which case it specifies that the argument has type wchar _ t *. The modifier 1 has no ef
feet when used with a, A, e , E, f, F, g , and G; compare this with the L modifier and be 
careful which you use. 

The modifier 11, in conjunction with the conversion operations d , i, 0, u , x , and x, 
indicates that the conversion argument has type long long int or unsigned long 
long into In conjunction with the n conversion, the 11 modifier specifies that the argu
ment has typc long long i.nt •. Thc 11 sizc modificr was introduced in C99. 

The letter h , in conjunction with the conversion operations d , i , 0, u , x, and X, indi
cates that the conversion argument has type short or unsigned short. That is, 
although the argument would have been converted to int or unsigned by the argument 
promotions, it should be converted to short or unsigned short before conversion. In 
conjunction with the n conversion, the h modifier specifies that the argument has type 
short *. The h size modifier was introduced in C89. 
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The modifier hh, in conjunction with the conversion operations d , i , 0, U , x , and x , 
indicates that the conversion argument has type char or unsigned char. That is, al
though the argument would have been converted to int or unsigned by the argument 
promotions, it should be converted to char or unsigned char before conversion. In 
conjunction with the n conversion, the hh modifier specifies that the argument has type 
signed char *. The hh s ize modifier is available in e99. 

The letter L, in conjunction with the conversion operations a, A, e , E, f , F, g , and G, 
indicates that the argument has type long double. The L size modifier was introduced 
in e89. Be careful to use L and not 1 for long double since 1 has no effect on these op
erations. 

The modifier j , in conjunction with the conversion operations d , i , 0, U, x , and X, 
indicates that the conversion argument has type intmax _ t or uintmax _ t. In conjunc
tion with the n conversion, the j modifier specifies that the argument has ty;>e 
intmax t *. The j size modifier was introduced in e99. 

The modifier z , in conjunction with the conversion operations d , i , 0 , U, x , and X, 
indicates that the conversion argument has type size t. In conjunction with the n con
version, the z modifier specifies that the argument has type s i z e _ t *. The z size modifier 
was introduced in e99. 

The modifier t, in conjunction with the conversion operations d , i , 0 , U , x , and x , 
indicates that the conversion argument has type ptrdiff t. In conjunction with the n 
conversion, the t modifier specifies that the argument has type ptrdi f f t *. The t 

size modifier was introduced in e99. 

15.11.7 Conversion Operations 

The conversion operation is expressed as a single character: a , A, c, d, e, E, f, g , G, i , n , 
0 , p , s, u , x, X, or %. The specified conversion determines the pennitted flag and size 
characters, the expected argument type, and how the output looks. Table 15-6 summarizes 
the conversion operations. Each operation is then discussed individually. 

The d and i conversions Signed decimal conversion is perfonned. The argument 
should be of type int if no size modifier is used, type short if h is used, or type long 
if 1 is used. The i operator is present in Standard C for compatibility with fscanf; it is 
recognized on output for unifonnity, where it is identical to the d operator. .. 

The converted value consists of a sequence of decimal digits that represents the ab
solute value of the argument. This sequence is as short as possible, but not shorter than the 
specified precision. The converted value will have leading zeros if necessary to satisfy the 
precision specification; these leading zeros are independent of any padding, which might 
also introduce leading zeros. If the precision is 1 (the default), then the converted value 
will not have a leading 0 unless the argument is 0, in which case a single 0 is output. If the 
precision is ° and the argument is 0, then the converted value is empty (the null string). 

The prefix is computed as follows. If the argument is negative, the prefix is a minus 
sign. If the argument is non-negative and the + flag is specified, then the prefix is a plus 
sign. If the argument is non-negative, the space flag is specified, and the + flag is nol spec
ified, then the prefix is a space. Otherwise, the prefix is empty. The # flag is not relevant 
to the d and i conversions. Table 15-7 shows examples of the d conversion. 
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Table 15--6 Output conversion speciftcalions 

Conver- Defined flags Size Default 

sian - + # o space modifier Argument type precisiona Output 

d, i b - + 0 space none int 1 dd ... d 
h short - dd ... d 
1 l ong +dd ... d 

u - + 0 space none unsigned int 1 dd .. . d 
h uns igned short 
1 unsigned long 

0 - + # 0 space none unsigned int 1 00 ... 0 

h unsigned sho rt 0 00 ... 0 

1 unsigned long 

x, X - + # 0 space none unsigned int hh ... h 
h unsigned short Oxhh ... h 
1 unsigned l ong OXhh ... h 

, - + # 0 space none d ouble 6 d ... d.d ... d 

1 double -d ... d.d ... d 
L long double +d ... d.d ... d 

e, E - + # 0 space none double 6 d.d ... de+dd 
1 double -d.d ... dE-dd 
L long double 

g, 0 - + # 0 space none double 6 like e, E, 

1 double M' 
L long double 

a,Ae - + # 0 space none double 6 Oxh.h ... hp+dd 
1 double -oxh.h ... hp-
L long double dd 

c none int c 
l ' wint t 

S none c har .- x cc ... c 
l ' wchar t • 

p b impl. defined none void • 1 imp!. defined 

n b none int • nia none 
h short • 
1 long .-

• none none oJa 

a Default precision, if none is specified. 

b Introduced in e89. The cooversions i and d are equivalent on output. 
(: Introduced in e99 
d Introduced in e89 (Amendment I). 

The u conversion Unsigned decimal conversion is performed. The argument 
should be of type unsigned if no size modifier is used, type unsigned short if h is 
used, or type uns igned long if 1 is used. 

The converted value consists of a sequence of decimal digits that represents the val
ue of the argument. This sequence is as short as possible, but not shorter than the specified 
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Table 15-7 Examples of the d conversion 

Sample rannat 
Sample output 

Value = 45 

%12d 45 

%0 12d 000000000045 

% 012d 00000000045 

\ +12d .45 

\+012d +00000000045 

%- 12d 45 

%- 12d 45 
%-+12d .45 

%12.4d 0045 

%-12. 4d 0045 

Input/Output Facilities 

Sample output 

Value = -45 

-45 
-00000000045 

-00000000045 

-45 

- 00000000045 

-45 
-45 

-45 

-0045 

-0045 

Chap. 15 

precision. The converted value will have leading zeros if necessary to satisfy the precision 
specification; these leading zeros are independent of any padding, which might also intro
duce leading zeros. If the precision is I (the default), then the converted value will not 
have a leading 0 unless the argument is 0, in which case a single 0 is output. If the preci
sion and argument are 0, then the converted value is empty (the null string). The prefix is 
always empty. The +, space, and # flags are not relevant to the u conversion operation. 
Table 15-8 shows examples of the u conversion. 

Table 15-8 Examples of the u conversion 

Sample OUlput 
Sample fonnat Value = 45 

%l4u 45 

%014u 00000000000045 

%#14u 45 

%#014u 00000000000045 

%- 14u 45 

%-#14u 45 

%14.4u 0045 

%- 14.4u 0045 

Sample output 
Value =-45 

4294967251 

00004294967251 

4294967251 

00004294967251 

4294967251 

4294967251 

4294967251 

4294967251 

• 
The 0 conversion Unsigned octal conversion is performed. The argument should 

be of type uns igned if no size modifier is used, type unsigned short if h is used, or 
type unsigned long if 1 is used. 

The converted value consists of a sequence of octal digits that represents the value 
of the argument. This sequence is as short as possible, but not shorter than the specified 
precision. The converted value will have leading zeros if necessary to satisfy the precision 
specification ~ these leading zeros are independent of any padding, which might also intro
duce leading zeros. If the precision is I (the default) , then the converted value will not 
have a leading 0 unless the argument is 0, in which case a single 0 is output. If the preci
sion is ° and the argument is 0, then the converted value is empty (the null string). If the # 
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flag is present, then the prefix is O. If the # flag is not present, then the prefix is empty. 
The + and space flags are not relevant to the 0 conversion operation. Table 15-9 shows 
examples of the 0 conversion. 

Table 15-9 Examples of the 0 conversion 

Sample output 
Sample [onnal Value = 45 

%140 55 

%0140 00000000000055 

%#140 055 

%#0140 00000000000055 

%-140 55 

%-#140 055 

%14 .40 0055 

%-#14 .40 00055 

Sample output 
Value =-45 

37777777723 

00037777777723 

037777777723 

00037777777723 

377777777723 

037777777723 

37777777723 

037777777723 

The x and X conversions Unsigned hexadecimal conversion is performed. The 
argument should be of type unsigned if no size modifier is used, type unsigned 
short if h is used, or type unsigned long if 1 is used. 

The converted value consists of a sequence of hexadecimal digits that represents the 
value of the argument. This sequence is as short as possible, but not shorter than the spec
ified precision. The x operation uses 0123456789abcdef as digits, whereas the X 
operation uses 01234567 89ABCDEF. The converted value will have leading zeros ifnec
essary to sati sfy the precision specification; these leading zeros are independent of any pad
ding, which might also introduce leading zeros. If the precision is 1, then the converted 
value will not have a leading 0 unless the argument is 0, in which case a single 0 is output. 
If the precision is 0 and the argument is 0, then the converted value is empty (the null string). 
If no precision is specified, then a precision of 1 is assumed. 

If the # flag is present. then the prefix is Ox (for the x operation) or ox (for the X 
operation). If the # flag is not present, then the prefix is empty. The + and space flags are 
not relevant. Table 15- 10 shows examples of x and X conversions. 

Table 15-10 Examples of the x and X conversions 

Sample output 
Sample format Value = 45 

\;12x 2d 

\;012x 0OOOOOOOOO2d 
\;#12X OX2D 
\;#012X OXOOOOOOOO2D 

\; -12x 2d 

\; -#12x Ox2d 
\;12.4x 002d 

%- #12 .4x OxOO2d 

Sample ou tput 
Value =-45 

ffffffd3 
OOOOffffffd3 

OXFFFFFFD3 
OXOOFFFFFFD3 

ffffffd3 
Oxffffffd3 

ffffffd3 

fff£ffd3 
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The c conversion The argument is printed as a character or wide character. One 
argument is consumed. The + , space, and # flags, and the precision specification, are not 
relevant to the c conversion operation. The conversions applied to the argument character 
depend on whether the 1 size specifier is present and whether prin tf or wprintf is 
used. The possibilities are listed in Table 15- 13. Table 15-12 shows examples of the c 
conversion. 

Table 15-11 

Func-
tion 

printf 

wprintf 

Conversions of the e specifier 

Size Argument 
specifier typ' 

none int 

1 wint t 

none int 

1 wint t 

Conversion 

argument is converted to unsigned char and 
copied to the outpu t 

argument is converted to wchar_ t , converted ( 0 a 
multi byte characlers as if by wcrtomb3

, and output 

argument is converted to a wide character as if by 
btowc and copied to the outpu t 

argument is converted to wchar_ t and copied to 
the output 

a The conversion state for the wcrtomb func tion is set to zero before the character is converted. 

Table 15-12 Examples of the c conversion 

Sample format 

%12c 

%D12c 

%-12c 

Sample output 
Value = ,*, 

• 
00000000000* 

• 

The s conversion The argument is printed as a string. One argument is consumed. 
If the 1 size specifier is not present , the argument must be a pointer to an array of any 
character type. If 1 is present, the argument must have type wchar _ t * and designate a 
sequence of wide characters. The prefix is always empty. The + , space, and # flags are not 
relevant to the s conversion. 

If no precision specification is given, then the converted value is the sequence of 
characters in the string argument up to but not including the terminating null character or 
null wide character. If a precision specification p is given, then the converted value is the 
first p characters of the output string or up to but not including the terminating null charac
ter, whichever is shorter. When a precision specification is given, the argument string need 
not end in a null character as long as it contains enough characters to yield the maximum 
number of output characters. When writing multibyte characters (printf , with 1), in no 
case will a partial multibyte character be written, so the actual number of bytes written 
may be less than p. 
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The conversions that occur on the argument string depend on whether the 1 size 
specifier is present and whether the printf or wprintf functions are used. The possi
bilities are listed in Table 15-13. Table 15-14 shows examples of the s conversion. 

Table 15-13 Conversions of lhe s specifier 

Func- Size Argument 
Conversion 

lion specifier type 

printf none char * characters from the argument sIring are copied to the 
ou tput 

1 wchar t * wide characters from the argument string are con-
verted to multibytc characters as if by wcrtomb8 

wprintf none char * multibyte characters from the argument string are 
converted to wide characters as ifbymbrtowc a 

1 wchar t * wide characters from the argument string are copied 
to the output 

a The cooversion state for the wcrtomb or mbrtowc function is set to zero before the first character 
is convened . Subsequent conversions use the state as modified by the preceding characters. 

Table 15-14 Examples of the s conversion 

Sample format 

\ 12s 

\ 12.Ss 

\0 12s 

\ -12s 

Sample output 
Value = -zap-

zap 

zap 
OOOOOOOOOzap 

zap 

Sample output 
Value = -longish -

l o ngish 

longi 

0000 0Iongish 

longish 

The p conversion The argument must have type void *, and it is printed in an 
implementation-defined format. For most computers, this will probably be the same as the 
format produced by the 0, x, or X conversions. This conversion operator is found in Stan
dard C, but is otherwise unommon. 

The n conversion The argument must have type int * if no size modifier is 
used, type long * if the 1 specifier is used, or type short * if the h specifier is used. 
Instead of outputting characters, this conversion operator causes the number of characters 
output so far to be written into the designated integer. This conversion operator is found in 
Standard C, but is otherwise uncommon. 

The f and F conversions Signed decimal floating-point conversion is performed. 
One argument is consumed, which should be of type double if no size modifier is used 
or type long double if L is used. If an argument of type float is supplied, it is con
verted to type double by the usual argument promotions, so it does work to use %f to 
print a number of type floa t . 

The converted value consists of a sequence of decimal digits, possibly with an em
bedded decimal point, that represents the approximate absolute value of the argument. At 
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leas t one digit appears before the decimal point. The precision specifies the number of dig
its to appear after the decimal point. If the precision is 0, then no digits appear after the 
decimal point. Moreover, the decimal point also does not appear unless the # flag is 
present. If no precision is specified, then a precision of 6 is assumed. 

If the floating-point value cannot be represented exactly in the number of digits pro
duced, then the converted value should be the result of rounding the exact floating-point 
value to the number of decimal places produced. (Some C implementations do not per
form correct rounding in all cases.) 

In C99, if the floating-point value represents infinity, then the converted value using 
the f operator is one of info -inf, infinity. or -infinity. (Which one is chosen 
is implementation-defined.) If the floating-point value represents NaN, then the converted 
value using the f operator is one of nan, -nan, nan ( .. . ) , or -nan ( ... ) , where ""." is an 
implementation-defined sequence of letters, digits , or underscores. The F operator converts 
infinity and NaN using uppercase letters. The # and 0 flags have no effect on conversion 
of infinity or NaN. 

The prefix is computed as follows. If the argument is negative, the prefix is a minus 
sign. If the argument is non-negative and the + flag is specified, then the prefix is a plus 
sign. If the argument is non-negative, the space flag is specified, and the + flag is not 
specified, then the prefix is a space. Otherwise, the prefix is empty. Table 15-15 shows ex
amples of the f conversion. 

Table 15-15 Examples of (he £ conversion 

Sample output 
Sample format Value::; 12.678 

\ 10 .2£ 12 .68 

%010.2£ 000000012.68 

% 010.2£ 00000012.68 

%+10.2f +12.68 

%+010.2£ +00000012.68 
%-10.2£ 12.68 
,- 10.2£ 12.68 

%-+10.4£ +12.6780 

Sample output 
Value::: -12.678 

-12.68 

-00000012.68 

-00000012.68 

-12.68 

-00000012.68 

-12.68 

-12.68 

-12.6780 

The e and E conversions Signed decimal floating-point conversion is performed. 
One argument is consumed, which should be of type double if no size specifier is used 
or type long double if L is used. An argument of type floa tis pennitted, as for the f 
conversion. The e conversion is described; the E conversion differs only in that the letter 
E appears whenever e appears in the e conversion. 

The converted value consists of a decimal digit, then possibly a decimal point a'hd 
more decimal digits, then the letter e , then a plus or minus sign, then finally at least two 
more decimal digits. Unless the value is zero, the part before the letter e represents a value 
between 1.0 and 9.99 ... . The part after the letter e represents an exponent value as a 
signed decimal integer. The value of the first part, multiplied by 10 raised to the value of 
the second part, is approximately equal to the absolute value of the argument. The number 
of exponent digits is the same for all values and is the maximum number needed to repre-
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sent the range of the implementation' s floating-point types. Table 15-16 shows examples 
of e and E conversions. 

Table 15-16 Examples of e and E conversions 

Sample output 
Sample fannal Value = 12.678 

%10.2e 1. 27e+01 

%010.29 00001. 27e+01 , 010.2e 0001. 27e+01 

%+10.2E +1.27E+Ol 

%+OlO.2E +OOOl.27E+Ol 

%-10 . 2e 1.27e+01 

,- 10.2e 1. 27e+01 

%-+10.2e +1.27e+01 

Sample output 
VaJue = - 12.678 

-1.27e+01 

-0001.27e+01 

-0001.27e+01 

-1.27E+Ol 

-OOOl.27E+Ol 

-1.27e+Ol 

-1.27e+01 

-1.27e+01 

The precision specifies the number of digits to appear after the decimal point; if not 
supplied, then 6 is assumed. If the precision is 0, then no digits appear after the decimal 
point. Moreover, the decimal point also does not appear unless the # flag is present. If the 
floating-point value cannot be represented exactly in the number of digits produced, then 
the converted value is obtained by rounding the exact floating-point value. The prefix is 
computed as for the f conversion. Values of infinity or NaN are converted as specified for 
the f and F conversions. 

The g and G conversions Signed decimal floating-point conversion is perfonned. 
One argument is consumed, which should be of type double if no size specifier is used, 
or type long double if L is used. An argument of type flca t is permitted, as for the f 
conversion. Only the 9 conversion operator is discussed later; the G operation is identical 
except that wherever 9 uses e conversion, G uses E conversion. If the specified precision 
is less than I , then a precision of I is used. If no precision is specified, then a precision of 
6 is assumed. 

The g conversion begins the same as either the f or e conversions; which one is se
lected depends on the value to be converted. The Standard C specification says that the e 
conversion is used only if the exponent resulting from the e conversion is less than -4 or 
greater than or equal to the specified precision. Some other implementations use the e 
conversion if the exponent is less than -3 or strictly greater than the specified precision. 

The converted value (whether by f or e) is then further modified by stripping off 
trailing zeros to the right of the decimal point. If the result has no digits after the decimal 
point, then the decimal point is also removed. If the # flag is present, this stripping of ze
ros and the decimal point does not occur. 

The prefix is computed as for the f and e conversions. Values of infinity or NaN are 
converted as specified for the f and F conversions. 

The a and A conversions These conversions are new in C99. Signed hexadecimal 
floating-point conversion is performed. One argument is consumed, which should be of 
type double if no size specifier is used or type long double if L is used. An argument 
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of type f loa t is permitted, as for the other floating-point conversions. The a conversion 
is described; the A conversion differs by using uppercase letters for the hexadecimal dig
its, the prefix (OX), and the exponent letter (P). 

The converted value consists of a hexadecimal digit, then possibly a decimal point 
and more hexadecimal digits, then the letter p , then a plus or minus sign, then finally one 
or more decimal digits. Unless the value is zero or denormalized, the leading hexadecimal 
digit is nonzero. The part after the letter p represents a binary exponent value as a signed 
decimal integer. 

The precision specifies the number of hexadecimal digits to appear after the decimal 
point; if not supplied, then enough digits appear to distinguish values of type double. (If 
FLT RADIX is 2, then the default precision is enough to exactly represent the values.) If 
the precision is 0, then no digits appear after the decimal point; moreover, the decimal 
point also does not appear un less the # flag is present. If the floating-point value cannot be 
represented exactly in the number of hexadecimal digits produced, then the converted val
ue is obtained by rounding the exact floating-point value. The prefix is computed as for 
the f conversion. 

Values of infinity or NaN are converted as specified for thef and F conversions. 

The % conversion A single percent sign is printed. Because a percent sign is used 
to indicate the beginning of a conversion specification, it is necessary to write two of them 
to have one printed. No arguments are consumed, and the prefix is empty. 

Standard C does not pennit any flag characters, minimum width, precision, or size 
modifiers to be present; the complete conversion specification must be %%. However, other 
C implementations perform padding just as for any other conversion operation; for exam
ple, the conversion specification %05% prints 0000% in these implementations. The +. 
space, and # flags, the precision specification, and the size specifications are never relevant 
to the % conversion operation. 

Example 

The following two-line program is known as a quine- a self-reproducing program. When ex
ecuted, it will print a copy of itself on the standard output. (The first line of the program is too 
long to fit on a printed line in this book, so we have split it after %cm.ain () by inserting a 
backs lash and a line break.) 

char*f:nchar*f= %c%s%C,q_'%c',n:'%cn',b_'%C%c';%cmain()\ 
{printf(f,q,f,q,q,b,b,b,n,n)i}%c",q:'"',n:'\n',b:'\\'; 
main(){printf(f,q,f,q,q,b,b,b,n,n)i} 

The following one-line program is almost a quine. (We have split it after" ; main () by in
serting a backslash and a line break since it does not fit on a printed line.) We leave it to the 
reader to discover why it is not exactly a quine. 

char*f:"char*f:%c%s%ci main(){printf(f,34,f,34)i}"imain()\ 
{printf(f,34,f,34);} 
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15.12 v[x]printf, v[x]scanf 

#include <stdarg.h> 
#include <stdio.h> 

Synopsis 

tnt v fprintf(FILE • restrict stream, 
const char * restrict format, va list arg) i 

int vprintf ( 

const char * restrict format, va list arg); 
int vsprintf(char *8, 

const char * restrict format, va list a rg)i 
int vfscanf (FILE * restrict stream, 

const char • restrict 
int vBcanf( 

const char * restrict 
int v8scanf(const char 

const char * restri c t 

#include <stdarg . h > 
#include <stdio. h > 
#include <wchar.h> 

format , va list 

format, va list 

• restrict s, 
format, va list 

int vfwprintf(FILE * restrict stream, 

arg) ; 

arg) ; 

arg) ; 

II 

II 

II 

const wchar t * restrict format, va list arg) ; 
int vwprintf( 

const wchar_ t * restrict format, va list arg)i 
int vswprintf (wc har_ t * restrict s, 

e99 

e99 

e99 

size_ t n, const wchar_ t * r e strict format, va_ list arg ) ; 
int vfws c anf ( FILE * restrict stream, 

const wchar t • restrict format, v a list arg) ; II e 9 9 - -
int vswscanf(const wchar t • restrict ., 

const wc har t • restrict format, va list arg) ; II e99 
int vwscanf( 

const wchar t • restrict format, v a list arg) ; II e9 9 
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The functions vfprintf, vprintf , and vsprintf are the same as the functions 
fprintf , printf, and sprintf, respectively, except that the extra arguments are 
given as a variable argument list as defined by the varargs (or stdarg) facil ity (Sec
tion 11.4). The argument arg must have been initialized by the va start macro and 
possibly subsequent va _ arg calls. These functions are useful when the programmer 
wants to define his or her own variable-argument functions that use the formatted output 
facilities. The functions do not invoke the va_ end facil ity. 

Amendment 1 to C89 added the functions vfwprintf , vwprintf , and 
vswprintf, which are analogous to fwprintf , wprintf , and swprintf , 
respectively. C99 added the corresponding input functions, vfscanf, vscanf, and 
vsscanf , and their wide versions vfwscanf, vwscanf, and vswscanf. 
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Example 

Suppose you want to write a general function, trace, that prints the name of a fu nction and 
its arguments. Any function to be traced would begin with a call to trace of the form: 

trace (name, format, parml ,parm2, ... , parmN) 

where name is the name of the function being call ed and format is a format string suitable 
for printing the argument values parmI, parm2 , .. . , parmN. For example: 

tnt f(int X, double y ) / * Trace this function . */ 
{ 

trace(nf",nx= %d , y=%f", X, y ) ; 

} 

A possible implementation of trace is given next for traditional C: 

#include <varargs.h> 
#include <stdio . h > 
void trace (va_alist ) 

{ 
va del 

va list args; 
char *name; 
char -format; 
VA_ start (args) ; 

name: v&_arg (args,char *); 

} 

15. 13 fread, fwrite 

format = v&_ arg(args,char * } ; 
fprintf (stderr,n-- > entering %s(n, name); 
vfprintf(stderr, format, args ) ; 
fprintf (stderr,") \ n n) ; 
va_ end (args) ; 

Synopsis 

#include <stdio.h > 

size t fread ( 
void * restrict ptr, size t element size , size t count, 
FILE * restrict stream); 

size t fwrite ( 
const void * restrict ptr, size t element_ size, size t count, 
FILE· restrict stream); 

The functions fread and fwri te perform input and output, respectively, to binary fi les. 
In both cases, stream is the input or output stream and ptr is a pointer to an array of 
count elements, each of which is element_size characters long. 
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The function fread reads up to count elements of the indicated size from the in
put stream into the specified array. The actual number of items read is returned by fread; 
it may be less than count if end of file is encountered. If an error is encountered, zero is 
returned. The feof or ferror facilities may be used to determine whether an eITor or an 
immediate end of file caused zero to be returned. If either count or element size is 
zero, no data are transferred and zero is returned. 

Example 

The following program reads an input file containing objects of a structure type and prints the 
number of such obj ects read. The program depends on exi t closing the input file: 

/* Count the number of elements 
of type "struct S" in file "in . dat" */ 

#include <stdio.h~ 
static char *FileName = nin.dat R ; 

struct S { int a,b; double d; char str[103]; }; 

int main (void) 
{ 

} 

struct S buffer; 
int items_ read = 0; 
FILE *in_ file = fopen(FileName,"r"); 
if (in_ file == NULL) 
{ fprintf(stderr,·?Couldn't open %s\n",FileName)i 

exit (1), } 

while (fread«char *) &buffer. 
sizeof (struct S), 1, in file) . '" 1) 

items_ read++i 

if (ferror(in_ file» 
{ fprintf(stderr,"?Read error, file %s record %d\n", 

FileName,items_ read+1); exit(1); } 
printf(nFinished; %d elements read\nn,items_ read); 
return 0; 

The function fwri te writes count elements of size element size from the 
specified array. The actual number of items written is returned by fwri te ; it will be the 
same as count unless an error occurs. 

In traditional C, the element_ size arguments have type unsigned, ptr argu
ments have type char * , and count arguments have type into 

References exit 19.3; feof , ferror 15. 14; fseek, ftell 15.5 
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15. 14 teot, terror, clearerr 

#include <stdio.h> 

int feof(FILE *stream); 
int ferror(FILE *stream); 
void clearerr(FILE -stream); 

InpuVOutput Facilities Chap. 15 

Synopsis 

The function feat takes as its argument an input stream. If end of file has been detected 
while reading from the input stream, then a nonzero value is returned; otherwise zero is re
turned. Note that even if there are no more characters in the stream to be read, fecf will 
not signal end of file unless and until an attempt is made to read "past" the last character. 
The function is normally used after an input operation has signaled a failure. 

The function ferror returns the error status of a stream. If an error has occurred 
while reading from or writing to the stream, then ferror returns a nonzero value; other
wise zero is returned. Once an error has occurred for a given stream, repeated calls to 
ferror will continue to report an error unless clearerr is used to explicitly reset the 
error indication. Closing the stream, as with fclose, will also reset the error indication. 

The function clearerr resets any error and end of file indication on the specified 
stream; subsequent calls on ferror will report that no error has occurred for that stream 
unless and until another error occurs. 

15.15 remove, rename 

#include <stdio.h> 

int rename( 

Synopsis 

const char *oldname. const char *newname); 
int remove(const char *filename); 

The remove function removes or deletes the named file; it returns zero if the operation 
succeeds and a nonzero value if it does not. The string pointed to by filename is not al~ 
teredo Implementations may differ in the details of what "remove" or "delete" actually 
mean, but it should not be possible for a program to open a file that it has deleted. If the 
file is open or does not exist, then the action of remove is implementation-defined. This 
function is not present in traditional C; instead, a UNIX-specific unlink fun ction is 
commonly provided. 

The rename function changes the name of oldname to newname; it returns zero 
if the operation succeeds and a nonzero value if it does not. The strings pointed to by old
name and newname are not altered. If oldname names an open or nonexistent file, or if 
newname names a file that already exists, then the action of rename is implementation
defined. 
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15.16 tmpfile, tmpnam, mktemp 

#include <stdio.h> 

FILE *tmpfile(void); 
char *tmpnam(char *buf); 
#define L_ tmpnam .. . 
#define TMP MAX .. . 

Synopsis 
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The function tmpfile creates a new file and opens it using fopen mode "w+b n ("w+" 
in traditional C). A file pointer for the new file is returned if the operation succeeds or a 
null pointer if it fails. The intent is that the new file be used only during the current pro
gram's execution. The file is deleted when it is closed or on program termination. After 
writing data to the file, the programmer can use the rewind function to reposition the file 
at its beginning for reading. 

The function tmpnam is used to create new file names that do not conflict with oth
er file names currently in use; the programmer can then open a new file with that name us
ing the full generality of fopen. The files so created are not "temporary"; they are not 
deleted automatically on program termination. Ifbuf is NULL, tmpnam returns a pointer 
to the new file name string; the string may be altered by subsequent calls to tmpnam. If 
buf is not NULL, it must point to an array of not less than L_ tmpnam characters; tmp
nam will copy the new file name string into that array and returnbuf. If tmpnam fails, it 
returns a null pointer. Standard C defines the value TMP _ MAX to be the number of succes
sive calls to tmpnam that will generate unique names; it must be at least 25. 

The traditional C function mktemp has the same signature as tmpnam, but bUf 
(the "template") must point to a string with six trailing X characters, which will be over
written with other letters or digits to fonn a unique file name. The value buf is returned. 
Successive calls to mktemp should specify different templates to ensure unique names. 
UNIX implementations often substitute the program's process identification for xxxxxx. 
mktemp is not in Standard C. 

Example 

A common but poor programming practice in C is to write 

ptr = fopen (mktemp (n/tmp/abcXxxxxxn) ,nw+R); 

This idiom will fail if the string constant is not modifiable. The programmer also loses the 
ability to reference the file name string. It is better and no less efficient to write 

char filename[]~n/tmp/abcXxxxxxn; 
ptr = fopen(mktemp(filename),nw+ n); 
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General Utilities 

The facilities in this chapter are declared by the header file stdlib. h . They fall into sev
eral general categories: 

• Storage allocation 

• Random number generation 

• Numeric conversions and integer arithmetic 

• Environment communication 

• Searching and sorting 

• Multibyte, wide-character, and string conversions 

16.1 malloc, calloc, mlalloc, clalloc, free, cfree 

Synopsis 

#include <stdlih.h> 
void *malloc(s!ze_ t size); 
void *calloc(size t elt_ count. size t elt_ s!ze)i 
void *realloc(void *ptr, size t size) , 
void free(void ·ptr)i 

The function malloe allocates a region of memory large enough to hold an object whose 
size (as measured by the sizeof operator) is size. A pointer to the first element of the 
region is returned, and it is guaranteed to be properly aligned for any data type. The caller 
may then use a cast operator to convert this pointer to another pointer type. If it is impossi
ble for some reason to perform the requested allocation, then a null pointer is returned. If 
the requested size is 0, then the Standard C functions will return either a null pointer or a 
non-null pointer that nonetheless must not be used to access an object. The allocated mem
ory is not initialized in any way, so the caller cannot depend on its contents. Since every 

407 
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allocated region from malloe must be aligned for any type, each region will effectively 
occupy a block of memory that is a multiple of the alignment size: usually four or eight 
bytes. 

Example 

The caller of an allocation routine will typically assign the result pointer to a variable of the 
appropriate type. Herein, we assume that T is some object type that we wish to allocate dy· 
namically; it might be a structure, army, or character. 

T *NeWObject(void) 
{ 

} 

T *objptr = (T *) malloc(sizeof(T»; 
if (objptr::NULL) printf("NewObject: failedl\n") 1 
return objptr; 

The cast (T * ) is not strictly necessary in Standard C because malloe returns a pointer of 
type void '* and the implicit conversion on assignment to objptr is allowed. In traditional 
C, the return type of malloc is char * and an implicit conversion may provoke a warning 
message. The cast is needed forC++ compatibility. 

The function calloc allocates a region of memory large enough to hold an array 
of el t _count elements, each of size el t_size (typically given by the sizeof oper
ator). The region of memory is cleared bitwise to zero, and a pointer to the first element of 
the region is returned. If for some reason it is impossible to perform the requested alloca
tion, or if elt_ count or elt size is zero, then the return value is the same as for 
malloc . Note that memory cleared bitwise to zero might not have the same representa
tion as a floating-point zero or a null pointer. 

The function realloc takes a pointer to a memory region previously allocated by 
one of the standard functions and changes its size while preserving its contents. If necessary, 
the contents are copied to a new memory region. A pointer to the (possibly new) memory 
region is returned. If the request cannot be satisfied, a null pointer is returned and the old 
region is not disturbed. If the first argument to realloe is a null pointer, then the function 
behaves like malloe. If ptr is not null and size is zero, then realloc returns either 
null pointer or a pointer that must not be used (like malloe), and the old region is deallo
cated. If the new size is smaller than the old size, then some of the old contents at the end 
of the old region will be discarded. If the new size is larger than the old size, then all of the 
old contents are preserved and new space is added at the end; the new space is not initialized 
in any way, and the caller must assume that it contains garbage information. Whenever re
alloe returns a pointer that is different from its first argument, the programmer should 
assume that the old region of memory was freed and should not be used. 

Example 

The following shows a typical use of realloc to expand the dynamic array designated by 
the pointer samples. (The elements of such an array must be referenced using subscript ex
pressions; any pointers into the array could be invalidated by the call to realloc.) 
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#include <stdlib.h> 
#define SAMPLE_ INCREMENT 100 
int sample_ limit: 0; /* Max size of current array */ 
int sample_count: 0; /* Number of elements in array */ 
double ·samples : NULL; /* will point to array */ 

int AddSample( double new_ sample) 

{ 

} 

/* Add an element to the end of the array */ 

if (sample_ count < sample_ limit) { 
samples [sample_count++] = new_ sample; 

} else { 

} 

/* Allocate a new, larger array. */ 
int new_ limit = sample_ limit + SAMPLE_ INCREMENT; 
double ·new_ array = 

realloc(samples, new_ limit * sizeof(double»; 
if (new array == NULL) { 

/* Can't expand; leave samples untouched. */ 
fprintf(stderr,n?AddSample: out of memory\nn); 

} else { 

} 

samples = new_ array; 
sample limit = new_limit; 
samples [sample_ count++] = new_ sample; 

return sample_ count; 
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The function free deallocates a region of memory previously allocated by 
malloe, calloc, or realloc. The argument to free must be a pointer that is the 
same as a pointer previously returned by one of the allocation functions. If the argument is 
a null pointer, then the call has no effect. Once a region of memory has been freed, it must 
not be used for any other purpose. The use of any pointer into the region- a "dangling 
pointer"-will have unpredictable effects. Likewise, allocating a region of storage once 
but freeing it more than onc~ has unpredictable effects. 

In a freestanding implementation with limited memory, the programmer may have 
direct control over how much memory is made available for allocations by malloe and 
the other functions. This memory is generally called the heap. In many C programs for 
freestanding environments, malloe is never used and so no heap is necessary. How the 
size of the heap is specified is implementation-dependent. 

References assignment conversions 6.3.2 
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16.1.1 Traditional Storage-Allocation Facilities 

TraditionaJ and alternate facilities synopsis 

char ·mallo c(unsigned size); 
char *mlal1oc(unsigned long size); 
char 
char 

*callo c(unsigned elt_ count. unsigned 
·clalloc(unsigned long elt_count, unsigned 

void free (char *ptr); 
void cfree(char *ptr) i 

char *reallo c(char *ptr, unsigned size); 
char *relalloc(char ·ptr, unsigned long size); 

elt_ size); 
long elt_size); 

In traditional C implementations, there is typically no header file to declare these facili
ties, so the programmer must declare them. 

The size arguments to the storage-allocation functions originally had type un
signed into Since that type could be too small to express large storage areas, new ver
sions of the allocation functions appeared whose size arguments had type unsigned 
long. The return types are char *, and the result pointer should be explicitly cast to the 
type of the object pointer. 

The traditional version of free deallocates memory previously allocated by 
malloe, mlalloe , realloc, or relalloc . The efree function deallocates memo
ry previously allocated by calloc or clalloc . Passing a null pointer to a traditional 
free or cfree function has implementation-defined behavior in traditional implementa
tions. 

16.2 rand, srand, RAND_MAX 

#include <stdlib.h> 

int rand (void) ; 

void srand(unsigned seed); 

#define RAND MAX ... 

Synopsis 

Successive calls to rand return integer values in the range from 0 to the largest represent
able positive value of type int (inclusive) that are the successive results of a 
pseudorandom-number generator. In Standard C, the upper bound of the range of rand is 
given by RAND MAX. which will be at least 32,767. 

The function srand may be used to initialize the pseudorandom-number generator 
that is used to generate success ive values for calls to rand. After a call to srand, suc
cessive calls to rand will produce a certain series of pseudorandom numbers. If Brand is 
called again with the same argument, then after that point successive calls to rand will 
produce the same series of pseudorandom numbers. Successive calls made to rand before 
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srand is ever called in a user program will produce the same series of pseudo-random 
numbers that would be produced after srand is called with argument 1. 

Standard C library facilities will not call rand or srand in any way that affects the 
programmer's observed sequence of pseudorandom numbers. 

16.3 atot, atoi, atol, atoll I 

Synopsis 

#include <stdlib.h> 

double atof const char *str ) 1 

int ato! const char *str ) ; 

long atol const char *str ) ; 

long long atoll ( const char *str I ; II e99 

These functions, which convert the initial portion of the string s tr to numbers, are found 
in many UNIX implementations. In Standard C, they are present for compatibility, but are 
defined in terms of the strtox functions in Section 16.4, which are preferred. If the func
tions in this section are unable to convert the input string, then their behavior is undefined. 

Except for their behavior on error, these functions are defined in tenns of the more 
general ones as follows: 

#include <stdlib.h> 

double atof(const char *str ) { 
return strtod(str. (char **) NULL); 

} 

int atoi(const char *str) { 
return (int) strtol (str. (char **) NULL. 10) 1 

} 

long atol(const char * str) { 
return strtol(str. (char **) NULL, 10); 

} 

long l o ng atoll(const c har * str) { 
return strtoll (str, (char **) NULL, 10) i 

} 
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strtod, strtof, strtold, strtol, strtoll, strtoul, strtoull 

Synopsis 

#include <stdlib .h> 

double strtod( 
const char * restrict s tr, char -- restrict ptr ) ; 

fl o at s t rto£ ( 
const cha r * restrict str, char 

_. 
restrict ptr ) ; 

long double strtold ( 
c onst char '* restrict str, char -- r e str i c t ptr ) ; 

l o ng strto l ( 
const char '* r e stri ct str, char •• restrict ptr, int base ) ; 

long long str t o ll( 
const char * restrict str , cha r 

_. 
restrict ptr, int base ) ; 

unsigned l o ng strtoul ( 
c onst char * r e strict str, char •• r e stri ct ptr, i n t base ) ; 

unsigned l ong long strtoull( 
const char '* restrict str, char .- restrict ptr, i nt base ) ; 

The string-to-number conversion functions strtod and strtol originated in System V 
UNIX and were adopted by Standard C. The strtoul function was added to e89 for 
completeness. The strtof, strtold, strtoll , and strtoull functions were added in 
C99. In general, these functions provide more control over conversions than, say, the cor
responding faci lities of sscanf. C99 also has strto[u}imax functions (Section 21.8). 

For all of these functions, s tr points to the string to be converted, and ptr (if not 
null ) designates a char * pointer that is set by the functions to point to the first character 
in s tr immediately following the converted part of the string. If ptr is null , then it is ig
nored. If str begins with whitespace characters (as defined by the isspace function), 
then those whitespace characters are skipped before conversion is attempted. 

There are wide-character versions of these functions (see Sections 24.4 and 21.9). 

Floating-point number conversion The floating-point conversion functions 
strtod, strtof, and strtold expect the number to be converted to consist of an op
tional plus or minus sign followed by one of the following: 

1. a sequence of decimal digits possibly containing a single decimal point, followed by 
an optional exponent part as defined in Section 2.7.2; 

2. the characters Ox or OX, followed by a nonempty sequence of hexadecimal digits, 
followed by an optional binary exponent as defined in Section 2.7.2; 

3. the string INF or I NFIN:ITY, ignoring case; or 

4. the string NAN or NAN C .. ) , ignoring case, where" ... " may be any sequence of let
ters, digits, or underscore characters. 

The longes t sequence of characters matching one of these models is converted to a 
floating-point number, which is returned. The return type depends on which function is 
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chosen. The fonnat for the expected number differs from C's own floating-point constant 
syntax (Section 2.7.2) in that an optional - or + may appear, no decimal point is needed, 
the decimal point might not be a period (based on locale), and no floating suffix (f, F, 1, 
or L) may appear. 

If no conversion is possible because the string does not match the expected number 
model (or is empty), then zero is returned, *ptr is set to the value of str, and errno is 
set to ERANGE. If the number converted would cause overflow, then HUGE _VAL , 
HUGE_VALF, or HUGE_VALL (with the correct sign) is returned. If the number converted 
would cause underflow, then zero is returned. For both overflow and underflow, errno is 
set to ERANGE. According to this definition, an invalid number is indistinguishable from 
one that causes underflow, except perhaps by the value set in *ptr. Some traditional im
plementations may set ermo to EDOM when the string does not match the number modeL 

Conversion of hexadecimal floating-point numbers, infinity, and NaN with 
strtod is new in C99. The strings INF and INFINITY are interpreted as infinity. If in
finity is not representable in the return type, then those inputs are treated as if they caused 
overflow. The strings NAN and NAN C .. ) denote a quiet NaN. If NaN is not representable 
in the return type, then those inputs are treated as if they could not be converted. 

If the locale is not "C", additional floating-point input fonnats may be accepted. 

Integer conversion sThe integer conversion functions strtol , strtoll , 
strtoul, and strtoull convert the initial portion of the argument string to an integer 
of type long int, long long int, unsigned long int, or unsigned long long 

int, respectively. The expected fonnat of the number- which changes with the value of 
base , the expected radix-is the same in all cases and can include an optional - or + 
sign. No integer suffix (1, L, U , or U) may appear. 

If base is zero, then the number (after the optional sign) should have the fonnat of 
a decimal-constant, octal-constant, or hexadecimal-constant. The number's radix is de
duced from its fonnat. Ifbase is between 2 and 36, inclusive, the number must consist of 
a nonzero sequence of letters and digits representing an integer in the specified base. The 
letters a through z (or A through z ) represent the values IO through 35, respectively. Only 
those letters representing values less than base are pennitted. As a special case, if base 
is 16, then the number may begin (after any sign) with Ox or ox, which is ignored. 

If no conversion can be performed, then the functions return zero, *ptr is set to the 
value of str, and errno is set to ERANGE. If the number to be converted would cause an 
overflow, then the functions return LONG_ MAX, LONG_ MIN, LLONG _MAX, 
LLONG_ MIN, ULONG_MAX, or ULLONG_MAX (depending on the function ' s return type 
and the sign ofthe value); errno is set to ERANGE. 

If the locale is not "C", then additional integer input formats may be accepted. 

References decimal-constant 2.7; errno 11.2; floating -constant 2.7; h£xadecimal-con
stant 2.7; HUGE_ VAL Ch. 17; integer-constant 2.7; isspace funclion 12.6; LONG_MAX, 

LONG_ MIN, ULONG_ MAX 5.1.1; NaN 5.2; octal-constant 2.7; type-marker 2.7 
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16.5 abort, atexit, exit, _Exit, EXIT_FAILURE, EXIT_SUCCESS 

#include <stdlih.h> 
#define EXIT_ FAILURE 
#define EXIT_ SUCCESS 
void exit (int status); 
void _Exit(int status); 
void ahort(void) 1 

Synopsis 

int atex!t(void (*func) (void»; 

II e99 

Chap. 16 

The exi t , Exit, and abort functions cause the program to terminate. Control does 
not return to the caller of these functions. 

The function exi t terminates a program normally with these cleanup actions: 

I. (Standard C only) All functions registered with the atexi t function are called in 
the reverse order of their registration as many times as they were registered. 

2. Open output streams are flushed. All open streams are closed. 

3. Files created by the tmpfile function are removed. 

4. Control is returned to the host environment with a status value. 

By convention in many systems, a status value of 0 signifies successful program termi
nation, and nonzero values are used to signify various kinds of abnonnal termination. In 
Standard C the value 0 and the value of the macro EXIT SUCCESS will signify success
ful termination, and the value of the macro EXIT_FAILURE will signify unsuccessful 
tennination; the meaning of other values is implementation-defined. Returning an integer 
value from the function main acts like calling exi t with the same value. 

The function Exi t differs from exi t in that it does not call exit handlers registered 
by atexi t nor signal handlers registered by signal. Whether other cleanup operations are 
performed, such as closing open streams, is implementation-defined. _ Exi t is new in C99; 
traditionally some implementations provided similar functionality under the name _exit. 

The abort function causes "abnormal" program termination. Functions registered 
with atexit are not called. Whether abort causes cleanup actions is implementation
defined. The status value returned to the host system is implementation-defined, but must 
denote "unsuccessfuL " In Standard C and many traditional implementations, the call to 
abort is translated to a special signal (SIGABRT in Standard C) that can be caught. If 
the signal is ignored or if the handler returns, then Standard C implementations will still 
terminate the program, but other implementations may allow the abort function to return 
to the caller. Assertion failures (Section 19.1) also call abort. 

The a texi t function is new in Standard C. It "registers" a function so that the 
function will be called when exi t is called or when the function main returns. The func
tions are not called when the program tenninates abnormally, as with abort or raise. 
Implementations must allow at least 32 functions to be registered. The atexi t function 
returns zero if the registration succeeds and returns a nonzero value otherwise. There is no 
way to unregister a function. The registered functions are called in the reverse order of 
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their registration before any standard cleanup actions are performed by exi t. Each func
tion is called with no arguments and should have return type void. A registered function 
should not attempt to reference any objects with storage class auto or register (e.g., 
through a pointer) except those it defines. Registering the same function more than once 
will cause the function to be called once for each registration. Some Traditional C imple
mentations implemented similar functionality under the name onexi t . 

Example 

In the following example, the main function opens a file and then registers the cleanup 
function that will close the file in case ex! t is called. (In fact, exi t closes all files, but per
haps the programmer wants to close this one first.) 

#include <stdlib . h> 
#include <stdio.h> 
#include <assert.h> 
FILE *Open_ File; 

void cleanup(void) { 
if (Open_ File != NULL) fclose(Open_ File); 

} 

int main (void) 
( 

} 

int status; 

Open_File = fopen("out.dat","w") , 
status = atexit(cleanup); 
assert(status == 0); 

References assert 19. 1; fflush 15.2; atexit 19.5; main function 9.9; raise 19.6; 
return statement 8.9; signal 19.6; tmpfile 15.16; void type 5.9 

16.6 getenv 

Synopsis 

#include <stdlib.h> 
char * getenv( const char *name ); 

The getenv function takes as its single argument a pointer to a string that is interpreted 
in some implementation-defined manner as a name understood by the execution environ
ment. The function returns a pointer to another string, which is the "value" of the argument 
name, If the indicated name has no value, a null pointer is returned. The returned string 
should not be modified by the programmer, and it may be overwritten by a subsequent call 
to getenv. 

, 
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In traditional C. the set of (name, value) bindings may also be made available to the 
main function as a non-Standard third parameter to main named env (Section 9.9), 
There is often a setenv function, which can be used to set an environment variable. 

16.7 system 

Synopsis 

#include <stdlib.h> 
int system( const char *command )i 

The function system passes its string argument to the operating system's command pro
cessor (or shell) for execution in some implementation-defined way. The behavior and val
ue returned by ays tem is implementation-defined, but the return value is usually the 
completion status of the command. In Standard C, ays tem may be cal1ed with a null 
argument, in which case 0 is returned if there is no command processor provided in the im
plementation and a nonzero value is remrned if there is. 

16.7.1 exec 

Traditional C synopsis 

execl (char *name, char *argi, · .. , NULL) ; 
execlp(char *name, char *argi. · ... NULL) ; 

execle(char *name, char *argi, · .. , NULL, char *envp [] ) ; 
exec v (char *name, char *argv (]) ; 
execvp(char *name, char *argv[]) ; 
execve(char *name, char *argv [] , char *envp []) i 

The various fonns of exec are not part of Standard C-they are found mainly in UNIX 
systems. In all cases, they transfonn the current process into a new process by executing 
the program in file name. They differ in how arguments are supplied for the new process: 

1. The functions execl, execlp, and execle take a variable number of arguments, 
the last of which must be a null pointer. By convention, the first argument should be 
the same as name-that is, it should be the name of the program to be executed. 

2. The functions execv, execvp, and execve supply a pointer to a nul1-tenninated 
vector of arguments, such as is provided to function main. By convention, 
argv [0] should be the same as name-that is , it should be the name of the pro
gram to be executed. 

3. The functions execle and execve also pass an explicit "environment" to the new 
process. The parameter envp is a null-tenninated vec tor of string pointers. Each 
string is of the fonn "name=value" . (In the other versions of exec, the environ
ment pointer of the calling process is implicitly passed to the new process.) 
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4. The functions execlp and execvp are the same as execl and execv, respec
tively, except that the system looks for the file in the set of directories nonnally 
containing commands (usually the value of the environment variable path or 
PATH). 

When the new process is started, the arguments supplied to exec are made available to 
the new process's main function (Section 9.9). 

16.8 bsearch, qsor1 

#include <stdlib.h> 

void *bsearch( 
const void *key. 
const void *base, 
size t count, 
size_ t size, 

Synopsis 

int (*compar) (const void * the_ key, const void *a_ value»; 

void qsort( 
void *base, 
size_ t count, 
size_ t size, 
int (*compar) (const void *elementl, const void *element2) )i 

The function bsearch searches an array of coun t elements whose first element is point
ed to by base. The size of each element in characters is size. compar is a function 
whose arguments are a pointer to the key and a pointer to an array element; it returns a neg
ative, zero, or positive value depending on whether the key is less than, equal to, or greater 
than the element, respectively. The array must be sorted in ascending order (according to 
compar) at the beginning of the search. bsearch returns a pointer to an element of the 
array that matches the key or a null pointer if no such element is found. 

The function qsort sorts an array of coun t elements whose first element is point
ed to by base. The size of each element in characters is specified bysize. compar is a 
function that takes as arguments pointers to two elements and returns -1 if the first ele
ment is "less than" the second, 1 if the first element is "greater than" the second, and 0 if 
the two elements are "equaL" The array will be sorted in ascending order (according to 
compar) at the end of the sort. 

There is a sequence point before and after each call to compar within these func-
tions. 

Example 

The following func tion fetch uses bsearch to search Table, a sorted array of structures. 
The function key_compare is supplied to test the key values. Notice that fetch first em-
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beds the key in a dummy element (key e1em); this allows key compare to be used with - -
both bsearch and qsort (Section 20.6): 

#include <stdlib.h> 
#define COUNT 100 
struct e1am {int keY1 int data; } Table[COUNT]i 

int key_compare(const void * el, const void * e2) 
{ 

} 

int vl = «struct elem *)el)->keYi 
int v2 • «struct elam *)e2)->keYl 
return (vl<v2) ? -1 : (vl>v2) ? 1 : OJ 

tnt fetch(int key) 
/* Return the data item associated with key in 

the table, or 0 if no such key exists. */ 
{ 

} 

struct elam *result; 
struct elem key_ elem; 
key_elam.key • keYi 
result = (struct elam *) 

bsearch( 
(void *) &.key_elem, (void *) &.Table[O], 

(size_ t) COUNT, sizeof(struct elam), 
key_compare) ; 

if (result •• NULL) 
return 0; 

else 
return result->data; 

Example 

The fo llowing function sort_ table uses qsort to sort the table in the prior example. The 
same function, key_ compare, is used to compare table elements: 

void sort table(void} 
/* sorts Table according to the key values */ 
{ 

} 

qsort( 
(void *)Table, 
(size_ t) COUNT, 
sizeof(struct elam), 
key_ compare ) 1 

16.8.1 Traditional C Forms 

The signatures of bsearch and qsort in traditional Care: 
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char *bsearch ( 
char *key, 
char *base, 
unsigned count, 
int size, 
int (*compar) ( 

char * the_ key, 
char *a_value»; 

void qsort( 
char *base, 
unsigned count, 
int size, 
int (*compar) ( 

char *elementl, 
char *element2»; 

16.9 abs, labs, /labs, div, Idiv, I Idiv 

Synopsi~ 

#include <stdlib .h> 

int abs(int xl; 
l ong labs ( l ong int x l; 
long long llabs ( long long int xl; 
typedef '" div t, 

typ edef '" Idiv t, 

typedef ... Ildiv_ ti 

div t div{int n. int d) ; 

Idiv t Id!v(long n. long d) ; 

lldiv t Ild!v{lo ng long n, long l ong d) ; 

419 

II C99 

II C99 

II C99 

The functions in this section are integer arithmetic functions defined in stdlib. h in 
Standard C and in math . h in traditional C. The functions abs, labs, and (in C99) 
llabs all return the absolute value of their arguments. They differ only in the types of 
their arguments and results. A floating-point version is provided by the fabs functions in 
math.h, and a maximumMsized integer version is provided by imaxabs in inttypes.h. 
The absolute-value functions are so easy to implement that some compilers may treat 
them as built-in functions; this is permitted in Standard C. 

The three division functions div, Idiv, and (in e99) lldiv compute simulta
neously the quotient and remainder of the division of n by d . They differ only in the type 
of their arguments and results. The types di v _ t , ldi v _ t , and (in C99) lldi v _ t are 
structures containing two components, quot and rem (in unspecified order), of type int , 
long int, and long long into respectively. The returned quotient quot is the same as 
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nf d , and the remainder rem is the same as n\d. The behavior of the functions when d is 
zero, or when the quotient or remainder cannot be represented in the return types, is unde
fined (not necessarily a domain error) to allow for the most efficient implementation. A 
maximum-sized integer division function is provided by imaxdiv in inttypes. h . 

The division functions are provided because most computers can compute the quo
tient and remainder at the same time. Therefore, using this function-which could be 
expanded iuline- is faster than using / and % separately. 

References fabs 17.2; imaxabs 21.7; imaxdiv21.7 

16.10 mb/en, mbtowc, wctomb 

#include <stdlib.h> 
typede f ... wchar _ t; 
#define MB CUR MAX ... 

Synopsis 

int mblen(const char *8, size_ t n)i 

int mbtowc(wchar_t *pwc, const char *s, size t n); 
int wctomb(char *s, wchar t wchar); 

The Standard C language handles extended locale-specific character sets that are too large 
for each character to be represented within a single object of type char. For such charac
ter sets, Standard C provides both an internal and external representation scheme. Internal
ly, an extended character code is assumed to fit in a wide character, an object of the 
implementation-defined integral type wchar t. Strings of extended characters-wide 
strings-can be represented as objects of type wchar _ t [] . Externally, a single wide 
character is assumed to be representable as a sequence of normal characters-a multibyte 
character corresponding to the wide character. See the discussion of multibyte and wide 
characters in Section 2.1. 5 and of character sets and encoding in Section 2.9. 

The functions in this section for converting characters were enhanced in C89 
Amendment 1 by the addition of new "restartable" facilities , including mbrlen, btowc, 
we tob, mbrtowc, and wcrtomb. The new functions are more flexible, and their behav
ior is more completely specified. They are defined in wchar. h and described in Section 
24.2. 

16.10.1 Encodings and Conversion States 

This section discusses some characteristics of conversions between multibyte characters 
and wide characters. The terminology applies to many of the functions in this chapter. 

No particular representation for wide or multibyte characters is mandated or exclud
ed, but the single null character, I \0 I , must act as a tenninator in both nonnal and 
multibyte character sequences. Multibyte encodings are in general state-dependent, em
ploying sequences of shift characters to alter the meaning of subsequent characters. 
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The original Standard C functions in this chapter retain internal conversion state in
formation from the multibyte character they last processed. The new functions in Amend
ment 1 provide an explicit type, mbstate_t , to hold the conversion state, which allows 
several strings to be processed in parallel. However. if the new state argument is null , each 
function uses its own internal state. No other standard library calls are permitted to affect 
these internal shift states. 

The maximum number of bytes used in representing a multibyte character in the 
current locale is given by the (nonconstant) expression MB_CUR_MAX. Most functions 
that take as an argument a pointer s to a multi byte character also take an integer n that 
specifies the maximum number of bytes at s to consider. There is no reason for n to be 
larger than MB _ CUR_MAX, but it could be smaller to restrict the conversion. 

Given a current conversion state , a pointer s to a multibyte character, and a length 
n , there are several possibilities: 

1. The firstn or fewer bytes at s could form a valid multibyte character, which therefore 
corresponds to a single wide character wc. The conversion state would be updated 
accordingly. Ifwc happens to be the null wide character, we say that s yields the null 
wide character. 

2. All n bytes at s could form the beginning of a valid multibyte character, but not be a 
complete one in themselves. No corresponding wide character can be computed. In 
this case, we call s an incomplete multibyte character. (If n is at least 
MB _ CUR_MAX, this result might occur if s contains redundant shift characters.) 

3. The n bytes at s could form an invalid multibyte character. That is, it might be im
possible for them to form a valid, or incomplete , multibyte character in the current 
encoding. 

Changing the LC _ CTYPE category of the locale (Section 11.5) may change the 
character encodings and leave the shift state indeterminate. The value of MB _ CUR _ MAX 

will include enough space for shift characters. 

References mbstate t 1l.1 

16.10.2 Length Functions 

The mbl en function inspects up to n bytes from the string designated by s to see whether 
those characters represent a valid multibyte character relative to the current shift state. If 
so, the number of bytes making up the multi byte character is returned. The value - 1 is re
turned if s is invalid or incomplete. If s is a null pointer, mblen returns a nonzero value 
if the locale-specific encoding of multibyte characters is state-dependent; as a side effect, 
such a call resets any inLernal stale to a predefined "initial" condition. 

16.10.3 Conversions to Wide Characters 

The mbtowc function converts a multibyte character s to a wide character according to 
its internal conversion state. The result is stored in the object designated by pwc if pwc is 
not a null pointer. The return value is the number of characters that made up the multibyte 
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character. If B is an invalid or incomplete multi byte character, then -1 is returned. If B is a 
null pointer, mbtowc returns a nonzero value if the locale-specific encoding of multibyte 
characters is state-dependent; as a side effect, the conversion state is reset to the initial 
state. 

Example 

Here is an implementation ofmbstowcs (Section 16. 11) using the mbtowc function: 

#include <stdlih.h> 
size t mbstowcs(wchar_ t *pwcs, const char *pmbs, size t n) 
{ 

} 

size_ t i = 0; /* index into output array */ 
(void) mbtowc(NULL,NULL,O); /* Initial shift state */ 
while (*pmbs && i < n) { 

} 

int len = mbtowc(&pwcs[i++] , pmbs,MB_ CUR_ MAX); 
if (len == -1) return (size_ t) -1i 
pmbs +c len; /* to next multibyte character */ 

return i; 

References mbstate _ t Il.I; multi byte characters 2.1.5; size _ tiL I; WEOF 11.1 

16.10.4 Conversions From Wide Characters 

The we tomb function converts the wide character we to multi byte representation (accord
ing to its current shift state) and stores the result in the character array designed by s, 
which should be at least MB CUR MAX characters long. The conversion state is updated. - -
A null character is not appended. The number of characters stored at s is returned if we is 
a valid character encoding; otherwise - 1 is returned. If s is a null pointer, we tomb returns 
a nonzero value if the locale-specific encoding of multi byte characters is state-dependent; 
as a side effect, such a call resets any internal state to a predefined "initial" condition . 

16.11 mbstowcs, wcstombs 

Synopsis 

#include <stdlib.h> 
size t mbstowcs(wchar_ t *pwcs, const char *s, size_ t n); 
size t wcstombs(char *s, const wchar t *pwcs, size t n); 

The Standard C functions in this section convert between wide strings and sequences of 
multi byte characters. "Restartable" versions ofthese functions, mbsrtowes and wesr

tombs , were added in C89 Amendment 1 and are defined in wchar. h ; see Section 24.3. 



Sec. 16.11 mbstowcs, wcstombs 423 

16.11.1 Conversions to Wide Strings 

The functionmbstowcs converts a sequence of multi byte characters in the null-terminated 
string s to a corresponding sequence of wide characters, storing the result in the array des
ignated by pwcs. The multibyte characters in s must begin in the initial shift stale and be 
terminated by a null character. Each multi byte character, up to and including the terminat
ing null character, is converted as if by a call to mbtowc. The conversion stops when n 
elements have been stored into the wide character array, when the end of s is reached (in 
which case a null wide character is stored in the output), or when a conversion error occurs 
(whichever occurs first) . The function returns the number of wide characters stored (not in
cluding the terminating null wide character, if any)or - 1 (cast to aize_ t ) if a conversion 
error occurred. 

The output pointer pwca may be the null pointer, in which case no output wide 
characters are stored and the length argument n is ignored. 

The conversion of the input multibyte string will stop before the terminating null 
character is converted if n output wide characters have been written to pwca (and pwea 
is not a null pointer). In this case, the pointer designated by arc is set to point just after 
the last-converted multibyte character. The conversion state is updated-it will not neces
sarily be the initial state-and n is returned. 

The conversion of the input multibyte string will also stop prematurely if a conver
sion error occurs. In this case, the pointer designated by arc is updated to point to the 
multibyte character whose attempted conversion caused the error. The function returns-l 
(cast to aize_t), EILSEQ is stored in errno, and the conversion state will be indeter
minate. 

16.11.2 Conversions From Wide Strings 

The function wea tomba converts a sequence of wide characters beginning with the value 
designated by pwea to a sequence of multibyte characters, storing the result into the char
acter array designated by a . Each wide character is converted as if by a call to we tomb. 
The sequence of input wide characters must be terminated by a null wide character. The 
output multibyte character sequence will begin in the initial shift state. The conversion 
stops when n characters have been written to a , when the end of pwea is reached (in 
which case a null character is appended to a ), or when a conversion error occurs (which
ever occurs first). The function returns the number of characters written to a , not counting 
the terminating null character (if any). If a conversion error occurs, the function returns -1 
(cast to aize t). 

The output pointer a may be the null pointer, in which case no output bytes are 
stored and the length argument n is ignored. 

The conversion of the input wide string will stop before the terminating null wide 
character is converted if n output bytes have been written to a (and a is not a null pointer). 
In this case, the pointer designated by are is set to point just after the last-converted wide 
character. The conversion state is updated-it will not necessarily be the initial state-and 
n is returned. 

The conversion of the input wide string will also stop prematurely if a conversion 
error occurs. In this case, the pointer designated by arc is updated to point to the wide 
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character whose attempted conversion caused the error. The function returns - 1 (cast to 
size_ t ), EILSEQ is stored in errno. and the conversion state will be indetenninate. 

Example 

The following statements read in a multibyte character string (mba), convert it to a wide-char
acter string (wee), and then convert it back to a multibyte character string (mbs2 ). We COD
sider ilIa be an error if the conversion functions completely fill the destination arrays because 
then the converted strings will Dot be null-terminated: 

#include <stdlib.h> 
#include <stdio.h> 
#define MAX wes 100 
#define MAX_MES (lOO*MB_ CUR_ MAX) 
wchar_ t wcs[MAX_ WCS+IJ; 
char mba [MAX_MBsJ I mbs2 (MAX_MBS] ; 
size_ t len_weB, len_mbs; 

/* Read in multihyte string; check for error */ 
if (lfgets(mbB, MAX_MBS, stdin)} 

abort () ; 

/* Convert to wide character string; check for error */ 
len wcs = mbstowcs(wcs, mbs, MAX_NCS}; 
if (len_wcs == MAX_ NCS I I len_ wcs == (size_t)-l) 

abort () ; 

/* Convert back to multibyte string; check for error */ 
len_mbs = wcstombs(mbs2, weB, MAX_MBS); 
if (len_mbs == MAX MBS I I len mbs == (size t)-l) 

abort () i 

References conversion state 2.1.5; multibyte character 2. 1.5; wide character 2.1.5 
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Mathematical Functions 

The facilities described in this section are declared by the library header file ma th. h . In 
Standard C, a few more math facilities are in s tdl ib . h. Complex mathematical func
tions are declared by complex. h in e99. 

Here are some general rules about the math facilities in this chapter. 

Argument types Prior to e99, all of the C library operations on floating-point 
numbers were defined only for arguments of type daub! e. This was adequate even when 
using type float because of the automatic conversion of float arguments to type 
double before the call. e99 now defines parallel sets of mathematical functions for argu
ments of type float and long double, created by suffixing the letters f and 1 (ell), 
respectively, to the names of the original functions. 

Distinctly named mathematical functions for each floating-point argument type give 
the programmer control over perfonnance and type conversions, but at the cost of program 
portability. For example, changing a variable's type from double to long double will 
force you to edit many function names or else you will silently suffer precision problems 
as long double arguments are converted to double according to the double functions' 
prototypes. Therefore, C99 defines a set of type-generic macros in the header file 
tgmath.h (Section 17.12). These macros, which have the same names as the original 
type-double library functions, will call the proper function based on the type of the argu
ment(s),just as the built-in additive and multiplicative operators do. The programmer can 
#undef these macros (or simply not include tgtdef. h ) if access to the original func
tion is needed. The macros must be built into C99 implementations because it is not possi
ble to write type-generic macros in C. 

Error handling Two general kinds of errors are possible with the mathematical 
functions, although older C implementations may not handle them consistently. When an 
input argument lies outside the domain over which the function is defined, or when an 
argument has a special value such as infinity or NaN, then a domain error occurs. errno 
(Section 11.2) is set to the value EDOM and the function returns an implementation-defined 

425 
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value. Zero was the traditional error return value, but some implementations may have bet
ter choices, such as special "not a number" values. 

If the result of a function cannot be represented as a value of the function' s return 
type, then a range error occurs. When this bappens, errno should be set to the value 
ERANGE , and the function should return the largest representable floating-point value 
with the same sign as the correct result. In e89, this is the value of the macro HUGE_VAL; 
in e99, the macros HUGE_ VALF and HUGE_VALL are available. e99 allows considerable 
flexibility in controlling which situations represent errors and which simply continue with 
infinite or NaN values. 

If the result of a function is too small in magnitude to be represented, then the func
tion should return zero; whether errno is also set to ERANGE is left to the discretion of 
the implementation. 

17.1 abs, labs, lIabs, div, Idiv, IIdiv 

These functions are defined in stdlib. h (see Section 16.9). 

17.2 tabs 

Synopsis 

#include <math.h> 

double 
float 

fabs (double x) i 

fabsf(float x); II e99 
long double fabsl(long double X)i II e99 

The tabs functions return the absolute value of their argument. Integer absolute value 
functions (abs, labs, and llabs) are defined in stdlib. h. 

References abs, labs, llabs 16.9; type-generic macros 17.12 
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17.3 ceil, floor, Irint, IIrint, Iround, IIround, nearbyint, round, rint, trunc 

Synopsis 

#include <math.h> 

double ceil 

II All new to e99 except ceil, floor 

(double x) i 

float 
long double 

double 
float 
long double 

double 
float 

ceilf 
ceil1 

floor 
floorf 
floorl 

(float x); 
(long double xl; 

(double x) j 

(float x); 

(long double x l ; 

nearhyint (double x ) ; 
nearbyintf (float x); 

long double nearbyintl (long double x); 

double rint (double x ) ; 
float rintf (float x): 
long double rintl (long double x); 

long int lrint (double x) ; 
long int lrintf (float xl; 
long int lrintl (long double x); 

long long tnt llrint (double X l i 

long long int llrintf (float x l ; 
long long int llrintl (long double x ) ; 

double round (double x); 
float roundf (float x); 
long double roundl (long d o uble x l ; 

long int lround (double x); 
long int lroundf (float x ); 
long int lroundl (long double x); 

long long int llround (double xl ; 
long long int llroundf (float x) ; 
long long int llroundl (long double xl; 

double 
float 

trunc (double xl; 
truncf (float x); 

long double truncl (long double x ) ; 

All these functions calculate integers that are "nearby" their floating-point argument. 
Many functions have floating-point return types even though the values returned are inte
gers because the integers may be too large in magnitude to represent using the integer 
types. All the functions in this section except ceil and floor are new in e99. They all 
have type-generic macros. Those functions having floating-point return types will return 
infinity (with the correct sign) if their argument is infinite. 

• The ceil functions return the smallest integer not less than x . 
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• The floor functions return the largest integer not greater than x. 

• The round functions return the nearest integer to x; if x lies halfway between two 
integers, the round functions return the integer larger in absolute value (i.e., they 
round away from zero). 

• The trunc functions return the nearest integer to x in the direction of zero. They 
are floor (x) for positive numbers and ceil (x) for negative numbers. 

• The nearbyin t functions return the nearest integer to x according to the current 
rounding direction (see fenv. h). 

• The lrint and llrint functions are the same as nearbyint except that they 
return the rounded value as an integer type. If the rounded value cannot be repre
sented as that integer type, then the result is undefined. 

• The rint functions are the same as nearbyint except that the "inexact" float
ing-point exception will be raised if the value of the result differs from the argument 
(i.e., if the argument was not already an integer). 

References rounding direction 22.4; type-generic macros 17. 12 

17.4 (mod, remainder, rem quo 

Synopsis 

#include <math.h> II All new to Cgg except fmod 

double 
float 

fmod 
fmodf 

(double x, double y) ; 

(float x, float y); 

long double fmodl (long double X, long double y)j 

double 
float 

remainder (double x, double y); 
remainderf (float X, float y); 

long double remainderl (long double Xi long double y); 

double 
float 

remquo (double x, double y, tnt *quo); Cgg 
remquof(float x, float y, int *quo); egg 

long double remquol(long double X, long double y, int *quo); 

These functions return an approximation to the floating-point remainder of x/y-that is, 
an approximation to the mathematical value r:;; x - n*y for some integer n. They differ in 
how n is chosen, but in all cases the absolute value of r is less than the absolute value of y. 
All of these functions are new in e99 except fmod and have type-generic macros. 

• The fmod functions choose n as trunc (xly) . This means that r will have the same 
sign as x. 

• The remainder and remquo functions choose n to be round (xIy) , except that 
if xly is midway between two integers, then the even integer is chosen. The sign of r 
may not be the same as the sign of x. 
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The remquo functions return the same value as the remainder functions. In ad
dition, they store in *quo a value whose sign is the same as xly and whose magnitude is 
congruent modulo 2k to the magnitude of the integral quotient of xIy. The value k is an 
implementation-defined integer greater than or equal to 3. That is, *quo is set to some 
"low-order bits" of the integer quotient x/y. This can be of some use in certain argument 
reduction calculations, which are beyond the scope of the C library. 

If y is zero, then a Standard C-conforming implementation may generate a domain 
error or may return 0 from these functions. In some older C implementations, x is returned 
in this case. Although the remainder is mathematically defined in terms of xiy, the value 
x/y need not be representable for the remainder to be well defined. 

The function fmod should not be confused with modf (Section 17.5)-a function 
that extracts the fractional and integer parts of a floating-point number. 

References round 17.4; t:z:unc 17.4; type-generic macros 17.12 

17.5 frexp, Idexp, modf, scalbn 

Synopsis 

#include <math.h> II All new to e99 except frexp 

double 
float 

frexp (double x, int -nptr); 
frexpf(float x, int -nptr); 

long double frexpl(long double x, int -nptr)i 

double ldexp (double x, int n)i 
float ldexpf(float x, int n); 
long double ldexpl(long double x, int n)i 

double 
float 

modf (double x, double -nptr)i 
modff(float x, float -nptr); 

long double modfl(long double x, long double -nptr)i 

double 
float 

scalbn (double x, int n) ; 
scalbnf(float x, int n)i 

long double scalbnl(long double x, int n)i 

double scalbln (double X, long int n)i 
float scalblnf(float x, long int n); 
long double scalblnl(long double X, long int n)i 

The functions in this sec tion are mostly new in e99, and they have type-generic macros. 

The frexp functions split a floating-point number x into a fraction/and an exponent 
n, such that eitherfis 0.0 or 0.5 " If I < 1.0, andj"2n is equal to x. The fractionfis returned, 
and as a side effect the exponent n is stored into the place pointed to bynptr. If x is zero, 
then both returned values are zero. If x is not a floating-point number, then the results are 
undefined. 
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The Idexp functions are the inverse of frexp ; they compute the value x*2n. A 
range error may occur. 

The modf function s split a floating-point number into a fractional partf and an inte
ger part n, such that If I < 1.0 andf+n is equal to x. Bothfand n will have the same sign as 
x. The fractional part f is returned, and as a side effect the integer part n is stored into the 
object pointed to by nptr. The name modf is a misnomer; the value it computes is prop
erly called a remainder. The function modf should not be confused with fmod (Section 
17.3), a function that computes the remainder from dividing one floating-point number by 
another. Some older C implementations are reported to define modf differently; check 
your local library documentation. ]n e99, modf does not have a type-generic macro. 

The scalbn and scalbln functions scale a floating-point number x by multiply
ing it by bD

, where b is FLT_RADIX. They are expected to do this calculation more 
efficiently than actually computing bD and multiplying it by x. A range error can occur. 

17.6 exp, exp2, expml, ilogb, log, logl0, 10glp, log2,logb 

Synopsis 

#include <math . h> II All new in e99 except exp, log, 10g10 

double exp (double x); 
float expf (float x); 
long double expf(long double x) ; 

double exp2 (double x); 
float exp2f (float x) i 

long double exp2l(10ng double x); 

double expm1 (double x); 
float expmlf(float x); 
long double expmll(long double x) ; 

double log (double x); 
float logf(float x); 
long double logl(long double x) ; 

double 10g10 (double x); 
float 10glOf (float x); 
long double 10g10l(10ng double xl; 

double 10g1p (double x); 
float loglpf(float x); 
long double loglpl(long double x); 

double 
float 

10g2 (double x); 
10g2f(float x); 

long double 10g2l(10ng double x); 

int ilogb (double x); 
int ilogbf(float x); 
int !logbl(long double x); 
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The functions in this section are mostly new in C99and have type~generic macros. 
The exp functions compute eX, where e is the base of the natural logarithms. The 

exp2 functions compute 2x, The expml functions compute eX_I. (If x is small in mag
nitude, then expml (x) should be more accurate than exp (x) -1.) In all cases, a range 
error can occur for large arguments. Only theexp function was present before e99. 

The log functions compute the natural logarittun function of x . The 10g10 func
tions compute the base-lO logarithm. and the 10g2 functions compute the base-2 loga
rithm. If x is negative, a domain error occurs. Ifx is zero or close to zero, a range error may 
occur (toward -00), or the value - 00 may be returned without error. Some older C imple
mentations treat zero as a domain error and may name the log function In. Only the log 
and 10g10 functions were present before e99. 

The 10gb and i 10gb functions extract the exponent from the representation of the 
floating~point argument, x. Recall that the letter b is used for the radix of the floating-point 
representation in the standard model and is available as FLT RADIX in float.h. The 
argument x need not be normalized. The 10gb functions return the (integer) exponent as 
a floating-point number; if x is 0 then a domain error may occur. The i 10gb functions re
turn the exponent as an integer, as if casting the result of 10gb to type in t , except for the 
following cases: If x is 0, then ilogb returns FP _ILOGB ; if x is OQ or ---QQ, then ilogb 
returns INT_MAX; and if x is a NaN, then ilogb returns FP ILOGBNAN. 

References floating~point model 5.2; FLT_ RADIX 5.2; type-generic macros 17.12 
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17.7 cbrt, (ma, hypot, pow, sqrt 

Synopsis 

#include <math.h> II All new in e99 except pow, sqrt 

double cbrt (double x); 
float chrtf(float x); 
long double cbrtl(long double x); 

double hypot (double X, double Y)i 

float hypotf(float X, float y); 
long double hypotl(long double X, long double Y)i 

double fma (double x, double y, double z); 
float fmaf(float X, float y, float z); 
long double fmal(long double X, long double y, long double Z)i 

double pow{ double x, double y); 
float powf(float X, float y); 
long double powl(long double X, long double y); 

double 
float 

sqrt (double x); 
sqrtf (float x); 

long double sqrtl(long double x); 

The pow functions compute :e. When x is nonzero and y is zero, the result is 1.0. When x 
is zero and y is positive, the result is zero. Domain errors occur if x is negative and y is 
not an exact integer, or if x is zero and y is nonpositive. Range errors may a1so occur. 

The hypot functions compute the square root of x2+y2. They may be more clever 
about avoiding overflow or underflow than the C programmer who calculates it in the ob~ 

vious fashion. 
The fma functions compute (x * y) + z. They do this calculation as if by using infinite 

precision and then rounding the fina1 result once to the return type. 
The sqrt functions compute the non-negative square root of x . A domain error oc~ 

curs if x is negative. 
The cbrt functions compute the cube root of x. 

References type-generic macros 17. 12 

17.8 rand, srand, RAND_MAX 

These functions are defined in s tdlib. h (see Section 16.2). 
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17.9 cos, sin, tan, cosh, sinh, tanh 

Synopsis 

#include <math.h> 

double 
float 

cos (double x); 

cosf(float x); II e99 
long double cosl(long double x); 

double 
float 

sin (double x); 

sinf(float x); II e99 
long double sinl(long double x); 

double 
float 

tan (double x); 

tanf(float x); II e99 
long double tanl(long double Xli 

double 
float 
long double 

double 
float 

cosh (doubl.e x); 

coshf(float x); II e99 

coshl{long double x); 

sinh (double x); 
sinhf(float x); II e99 

long double sinhl(long double x); 

double 
float 

tanh (double x); 
tanhf(float x); II e99 

long double tanhl(long double Xli 

433 

II e99 

/I e99 

/I e99 

/I e99 

/I e99 

II e99 

The cos functions compute the trigonometric cosine function of x , which is taken to be in 
radians. No domain or range errors are possible, but the programmer should be aware that 
the result may have little significance for large values of x . 

The sin and tan functions compute the trigonometric sine and tangent functions, 
respectively. A range error may occur in the tan function if the argument is close to an 
odd multiple of n/2. The same caution about large-magnitude arguments applies to sin 
and tan. 

The cosh, sinh, and tanh functions compute the hyperbolic cosine, hyperbolic 
sine, and hyperbolic tangent function of x, respectively. A range error can occur if the ab
solute value of the argument to sinh or cosh is large. 

References type-generic macros 17.12 
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17.10 aeos, asin, atan, atan2, aeosh, asinh, atanh 

Synopsis 

#include <math.h> II New in e99 except aceS, asin, atan, atan2 

double acos (double x); 
float acosf(float x); 
long double ac081 (10n9 double x); 

double asin (double x); 
float &sinf(float Xli 

long double 8sin1(10n9 double x); 

double 
float 

atan (double Xli 

atan£ (float x); 

long double atanl(long double Xli 

double 
float 
long double 

double 

atan2(double y, double Xli 

atan2f(float y, float Xli 

atan21(long double ¥, long double x); 

acosh (double x); 
float acoshf(float Xli 

~ong double acoshl(long double x); 

double 
float 

asinh (double x); 
asinhf(float x); 

long double asinhl(long double x); 

double 
float 

atanh (double x); 
atanhf (float x); 

long double atanhl(long double x); 

The acos functions compute the principal value of the trigonometric arc cosine function 
of x. The result is in radians and lies between 0 and n. (The range of these functions is apM 
proximate because of the effect of round-off errors.) A domain error occurs if the argument 
is less than -1 .0 or greater than 1.0. 

The asin functions compute the principal value of the trigonometric arc sine func
tion of x. The result is in radians and lies between -n!2 and n!2. A domain error occurs if 
the argument is less than -1.0 or greater than 1.0. 

The a tan functions compute the principal value of the arc tangent function of x. 
The result is in radians and lies between -lrJ2 and n12. No range or domain errors are POSM 
sible. In some older implementations ofC, this function is called arctan. 

The atan2 functions compute the principal value of the trigonometric arc tangent 
function of the value y Ix. The signs of the two arguments are taken into account to deter
mine quadrant information. Viewed in terms of a Cartesian coordinate system, the result is 
the angle between the positive x-axis and a line drawn from the origin through the point 
(x, y). The result is in radians and lies between - n and n. If x is zero, then the result is either 
n!2 or - 7tl2 depending on whether y is positive or negative. A domain error occurs if both 
x and y are zero. 
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The acosh functions compute the (non ~negative) arc hyperbolic cosine of x. A do
main error occurs if x < 1. 

The asin functions compute the arc hyperbolic sin of x. 
The atan functions compute the arc hyperbolic tangent of x. A domain error oc

curs if x < - lor x > 1. A range error may occur if x is -lor 1. 

References type-generic macros 17.11 

17.11 (dim, (max, (min 

Synopsis 

#include <math.h> II All new in C99 

double 
float 
long double 

double 
float 

fdim (double x, double Y) i 

fdimf(float x, float y); 
fdiml{long double x, long double y); 

£max (double x, double Y)i 

fmaxf(float x. float y); 
long double fmaxl(long double x, long double y); 

double fmin (double x, double y); 

float fminf{float x, float y); 

long double fminl ( long double x, long double y); 

The fdim functions compute the positive difference between x and y . That is, they return 
x - y if x> y and +0 if x S y. 

The fmax functions return the larger (toward +00) of the two arguments; the fmin 
functions return the smaller (toward -00) of the arguments. In both instances, if one argu
ment is a number and the other is a NaN, then the number is returned. 

References NaN 5.2; type-generic macros 17.12 

17.12 TYPE-GENERIC MACROS 

C99 defines a set of type-generic macros that can improve the portability of C programs 
that use mathematical andlor complex functions. These macros expand to calls on particu
lar library functions depending on the type of their argument(s). The macros may be used 
by including the library header tgma th. h, which includes the library headers ma th. h 
and complex. h. 

Table 17- 1 lists the type-generic macros using a prototype notation in which T 
stands for the generic type: float , double, long double, float complex, dou
ble complex, or long double complex. The notation REAL (T) denotes the real 
type of the same size as the complex generic type. Although most functions take a single, 
generic argument, some functions take more than one generic argument and some func
tions take additional arguments of specific (nongeneric) types; those argument types will 
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be the same regardless of the generic type. The table also lists the real and/or complex 
functions that are actually called depending on the argument type. The functions are 
named using consistent rules based on the name of the original double version of the C 
library function: Complex functions are prefixed by the letter c , functions taking float 
or float complex arguments are suffixed by the letter f , and functions taking long 
double or long double complex arguments are suffixed by the letter 1. 

Example 

Implementations are free to treat the type-generic macros specially, but as an example the 
sqrt macro might also be implemented as: 

#define sqrt(x) \ 
«sizeof (x) == sizeof (float» ? sqrt (x) : 
(sizeof(x) ~= sizeof(double» ? sqrtf(x) sqrtl (x) ) 

If you "call" a type-generic macro from Table 17-1 with generic argument(s) of cer
tain type(s), then the following rules are used to determine which function is selected to be 
called. Once that function is selected, all arguments are converted to the appropriate types 
for that function, following the normal rules for converting arguments when function pro
totypes are present. 

1. If any of the generic arguments have type long double complex, then the long 
double complex version of the function is called. If there is no such function, 
then the result is undefined. 

2. Otherwise, if any ofthe generic arguments have type double complex, then the 
double complex version of the function is called. If there is no such function, 
then the result is undefined. 

3. Otherwise, if any of the generic arguments have type float complex, then the 
float complex version of the function is called. If there is no such function, then 
the result is undefined. 

4. Otherwise, if any of the generic arguments have type long double , then the 
long double version of the function is called. If there is no such function. but 
there is a long double complex version of the function, then that complex func
tion is called. 

5. Otherwise, if any of the generic arguments have type double or any generic argu
ment has an integral type, then the double version of the function is called. If there 
is no such function, but there is a double complex version of the function. then 
that complex function is called. 

6. Otherwise, the float version of the function is called. (All generic arguments 
would have to have type float for this rule to be reached.) If there is no such func
tion, but there is a float complex version of the function, then that complex 
function is called. 
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Table 17-1 Type-generic macros 

Type-generic macros 
(tgmath.h) 

T acos(T xl 

T acosb(T xl 

T asin {T xl 

T asinh{T xl 

T atan(T xl 

T atan2(T y, T xl 

T atanh(T xl 

T carg ( T xl 

T cbrt (T xl 

T ceil(T xl 

REAL (Tl cimag(T xl 

T conj(T x) 

T copysign(T x, T yl 

T cos ( T xl 

T cosh(T xl 

T cproj (T xl 

REAL (T) creal(T xl 

T erf(T xl 

T erfc(T xl 

T exp (T xl 

T exp2{T xl 

T expml (T xl 

T fabs(T xl 

T fdim(T x, T yl 

T floor (T xl 

T £ma ( T x, T y, T zl 

T £max(T x, T yl 

T fmin{T x, T yl 

T £mod{T x, T y l 

T frexp (T value, 

int *exp) 

T hypot(T x, T yl 

int ilogb (T xl 

T Idexp (T x, 

int exp) 

Real functions 
(math. h ) 

acos, acos£, acosl 

acosh, acoshf, acoshl 

asin, as!nf. asinl 

&sinh, asinhf, asinhl 

atan, atanf, atanl 

atan2, atan2f, atan21 

atanh, atanhf, atanhl 

cbrt, ebrtf, cbrtl 

ceil, ceilf, ceill 

copysign, copysignf, 

copysignl 

cos, cosf, cosl 

cosh, coshf, coshl 

arf, erff, erfl 

erfc, erfcf, erfcl 

exp, expf, expl 

exp2, exp2f, exp21 

expml, expmlf, expmll 

fabs, fabsf, fabsl 

fdim, fdimf, fdiml 

floor, floorf, floorl 

fma, fma f, fmal 

fmax. fmaxf. fmaxl 

fmin, fminf, fminl 

fmod, fmodf, fmodl 

frexp, frexpf, frexpl 

hypot, hypotf, hypotl 

ilogb. ilogbf, ilogbl 

ldexp, ldexpf, ldexpl 

Complex functions 
(complex. h ) 

cacos, cacosf, cacosl 
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cacosh, cacoshf, cacoshl 

casino casinf. casinl 

casinh, casinhf, casinhl 

catan, catanf, catanl 

catanh, catanhf, catanhl 

carg, cargf. cargl 

cimag, cimagf, cimagl 

conj, conjf, conjl 

ccos, ccosf, ccosl 

ccosh, ccoshf, ccoshl 

cproj, cprojf, cprojl 

creal, crealf, creall 

cexp, cexpf, cexpl 

cabs, cabsf. cabsl 
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Table 17-1 Type-generic macros 

Type-generic macros 
( tgmatb..h) 

T 19amma (T xl 

long long lnt 

llrint (T xl 

long long int 

llround(T xl 

T log(T xl 

T loglO(T xl 

T loglp(T xl 

T log2(T xl 

T logb{T xl 

long int lrint (T xl 

long int lround(T x) 

none 

T nearbyint(T xl 

T nextafter{T xl 

T nexttoward(T x, 

long double y) 

T pow(T x, T y) 

T remainder(T x, 

T yl 

T remquo(T X, Ty, 

lnt *quo) 

T rint (T xl 

T round(T xl 

T scalbln(T x, 

long lnt nJ 

T scalbn(T x, lnt nJ 

T sin(T xl 

T sinh(T xl 

T sqrt(T xl 

T tan(T xl 

Real functions 
(math. h) 

19amma, 19amnaf. 

19ammal 

llrint, llrlntf, 

llrintl 

llround, llroundf, 

llroundl 

log, 10g£, 10g1 

10910 , 10910£, 109101 

loglp, loglpf, loglpl 

1092, 1092£, 10921 

10gb, l ogbf, logbl 

lrlnt, lrlnt£, lrintl 

lround, lroundf, 

lroundl 

modi, modff, modfl 

nearbyint, nearbyintf, 

nearbyintl 

nextafter, nextafterf, 

nextafterl 

next toward, 

nexttowardf, 

nexttowardl 

pow, powf, powl 

remainder, r~ainderf, 

remainderl 

remquo, remquof, 

remquol 

rint, rintf, rintl 

round, roundf, roundl 

scalbln, scalblnf, 

seal bInI 

scalbn, scalbnf, 

scalbnl 

sin, sinf, sinl 

sinh, sinhf, sinhl 

sqrt, sqrtf, sqrtl 

tan, tanf, tanl 

Complex functions 
(complex. h ) 

clog, clogf, clogl 

cpow, cpowf, cpowl 

csin, csinf, csinl 

csinh, csinhf, csinhl 

csqrt, csqrtf, csqrtl 

ctan, ctanf, ctanl 
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Table 17-1 Type-generic macros 

Type-generic macros 
(tgmath.h) 

T tanh(T x) 

T tgamma(T x) 

T trunc(T x) 

Real functions 
(math.h) 

tanh, tanhf, tanhl 

tgamma, tgammaf, 

tgammal 

trune, truncf, truncI 

17.13 eri, eric, Igamma, tgamma 

Synopsis 

Complex functions 
(complex. h ) 

ctanh, ctanhf, ctanhl 

#include <math.h> II All new in e99 

double 
float 

er£ (double x) i 

erff(float x); 
long double erfl(long double x); 

double 
float 

erfc (double X)i 

erfcf(float x); 
long double erfcl(long double x); 

double 
float 

19amma (double x) ; 
19ammaf(float x); 

long double 19ammal(long double x}; 

double 
float 

tgamma (double x) ; 
tgammaf{float xl; 

long double tgammal(long double Xli 

The erf functions compute the error function 
x , 

2 f -' _ . e dt 

.fit 0 

The erfc functions compute l-erf (x) . which is 

2 [ -,' _. e dr 
.fit x 
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The 19amma functions compute the natural logarithm of the gamma function of the mag
nitude of x: 

log lr(x)1 
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The tgamma functions compute the gamma function of x , 

f(x) 

17.14 fpclassify, isfinite, isinf, isnan, isnormal, signbit 

Synopsis 

#include <math.h> II All new in e99 

int £pclassify (realfloating-type x) i 
#define FP INFINITE .. _ 
#define FP NAN ... 
#define FP NORMAL ,_, 
#define FP SUBNORMAL ... 
#define FP ZERO ... 

int iafini te (real-jloating-type x); 

tnt iainf (real-flooring-type x); 

int ianan (real-floaring-type x) ; 

int isnormal (real-jloating-type x) i 

int signbit (real-floaring-type x); 

Chap. 17 

The macros in this section whose arguments are listed as real-floating-type are type-generic; 
their argument can be an expression of any real floating-point type. Since floating-point ex
pressions may be evaluated using a greater precision than their actual "semantic" type, these 
macros must take care to convert the argument expression to the correct type representation 
before inspecting it. As the C standard points out, a normalized number in long double 
format could become subnormal in double format and could become zero in float 
format. 

The fpclassify macro returns one of the values FP_INFINITE, FP_NAN, 
FP_NORMAL, FP_SUBNORMAL, or FP_ZERO. Each of these macros is a distinct integer 
constant expression. Additional classification macros beginning with FP _ and a capital 
letter may be specified by C implementations. 

The isfini te macro returns a nonzero value if and only if its argument is neither 
infinite nor a NaN. Subnormal numbers are finite. 

The isinf macro returns a nonzero value if and only if its argument is infinite 
(with any sign). 

The isnan macro returns a nonzero value if and only if its argument is a NaN. 

The isnormal macro returns a nonzero value if and only ifits argument is normal. 
The macro returns zero for zero, subnormal, infinite. and NaN values. 

The signbi t macro returns a nonzero value if and only if its argument is negative. 
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17.15 copysign, nan, nextafter, nexttoward 

Synopsis 

#include <math.h> II All new in e99 

double copysign (double X, double y); 
float copysignf(float X, float y); 
long double copysignl(long double X, long double y), 

double nan (canst char *tagp ) i 
float nanf(const char *tagp)i 
long double nanl(const char *tagp); 

double nextafter (double X, double y); 

float nextafterf(float x, float y); 

long double nextafterl(long double X, long double y); 

double 
float 

nexttoward (double X, long double y); 
nexttowardf(float X, long double y}; 

long double nexttowardl(long double x, long double y); 

The functions in this section manipulate floating-point values. 
The copysign functions return x with the sign of y. 
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The nan functions return a "quiet" NaN with content indicated by the string desig
nated by tagp if the C implementation provides quiet NaNs. Otherwise nan returns zero. 
The calls 

nan (" char-sequence") 
nan("") 
nan (NULL) 

are equi valent to the calls 

strtod("NAN(char-sequence )", (char **) NULL) 
strtod("NAN() ", (char **) NULL) 

strtod("NAN" I (char **) NULL) 

respectively. Calls to nanf and nanl map to corresponding ca lls on strtof and str

todl. 
The nextafter functions return the next representable floating-point value to x 

in the direction ofy. A range error can occur if there is no such finite value. Ifx and y are 
equal , then y is returned. Care must be taken that the arguments and return value are in 
fact converted to the formal parameter and return types, even in a macro implementation, 
because the exact floating-point representations are important. 

The next toward functions are equivalent to the nextafter functions except 
that the type of y is always long double. 

References quiet NaN 5.2; strtod 13.8 
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17.16 isgreater, isgreaterequal, isless, islessequal, islessgreater, isunordered 

Synopsis 

#include <math . h> II All new in e99 

int isgreater (real-floating-type X, real-floaring-type y) i 

int isgreaterequal (real-floating-type x, real-floating-type y) i 

int isless (real-floating-type X, real-floaring-type y); 

int islessequal ( real-floaring-type x, real-floating-type y); 

int islessgreater (real-floating-type x, real-floaring-type y); 

int isunordered( real-floating-type x, real-floating -type Y) i 

Two floating-point values are unordered if one or both of them are NaNs. Using C's 
comparison operators on unordered values will normally cause the "invalid" floating-point 
exception to be raised. The type-generic comparison macros in this section will not raise 
the exception and sO are useful for certain kinds of careful floating-point programming. If 
the C implementation does not raise the invalid exception on the comparison operators, then 
those operators behave as these macros do. 

The isunordered macro returns true if and only ifits arguments are unordered. 
The isgreater macro returns 0 if its arguments are unordered and otherwise re

turns (x) > (y) . 

The isgreaterequal macro returns 0 if its arguments are unordered and other
wise returns (x) >= (y) . 

The isless macro returns 0 if its arguments are unordered and otherwise returns 
(x)«y) . 

The islessequal macro returns 0 if its arguments are unordered and otherwise 
returns (x) <= (y). 

The islessgrea ter macro returns 0 if its arguments are unordered and other
wise returns (x) < (y) II (x) > (y) (without evaluating its arguments twice). 

References NaN 5.2 
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Time and Date Functions 

The facilities in this section give the C programmer ways to retrieve and use the (calendar) 
date and time, and the process time-that is, the amount of processing time used by the 
running program. 

Calendar time may be used to record the date that a program was run or a file was 
written, or to compute a date in the past or future. Calendar time is represented in two forms: 
a simple arithmetic value returned by the time function and a broken-down, structured form 
computed from the arithmetic value by the gmtime and local time functions. Locale
specific formatting is provided by the Standard C function strftime. 

Process time is often used to measure how fast a program or part of a program exe
cutes. Process time is represented by an arithmetic value (usually integral) returned by the 
clock function. 

#include <time.h> 

typedef ... clock_ti 
#define CLOCKS PER SEC 
clock t clock(void}i 

Synopsis 

The clock function returns an approximation to the processor time used by the current 
process. The units in which the time is expressed vary with the implementation; microsec
onds are customary. The Standard C version of clock allows the implementor freedom 
to use any aritlunetic type, clock _ t , for the process time. The number of time units 
("clock ticks") per second is defined by the macro CLOCKS_PER _SEC. If the processor 
time is not available, the value - 1 (cast to be of type clock t) will be returned. 

443 
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Programmers should be aware of "wrap-around" in the process time. For instance, if 
type clock t is represented in 32 bits and clock returns the time in microseconds, the 
time returned will "wrap around" to its starting value in about 36 minutes. 

Example 

Here is how the c lock function can be used to time a Standard C program: 

#include <time.h> 
clock t start, finish; 

start = clock(); 
process () ; 
finish = clock()i 
printf("process() took %f seconds to execute\n", 

«double) (finish - start» / CLOCKS PER SEC); 

The cast 10 type double allows clock_t and CLOCKS_ PER_SEC to be either floating
point or integral. 

In traditional C, the return type of clock is long, but the value returned is really 
of type unsigned long; the use of long predates the addition of unsigned long 
to the language. Unsigned arithmetic should always be used when computing with process 
times. The times function is also found in some non-Standard implementations instead 
of clock; it returns a structured value that reports various components of the process 
time, each typically measured in units of 1/60 of a second. The signatures are: 

#include <sys/types.h> 
#include <sys/times.h> 
long clock(void}i 
void times(struct tms *}; 
struct tms { ... }; 

Example 

A rough equivalent to the (Standard C) clock function can be written using (non-Standard) 
times: 

#include <sys/types.h> 
#include <sys/times.h> 
#define CLOCKS PER SEC 60 
long clock (void) 
{ 

} 

struct tms tmsbuf; 
times(&tmsbuf); 
return (tmsbuf.tms_utime + tmsbuf.tms_stime); 
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There is a type, time_ t , used in the prior structure; it is a "process time" unit and therefore 
is not the same as the "calendar time" type time _ t defined in Standard C. 

References time 18.2; time_ t 18.2 

18.2 time, time_t 

#include <time.h> 

typedef ... time_ti 
time_t time(time_t *tptr); 

Synopsis 

The Standard C function time returns the current calendar time encoded in a value of 
type time _ t, which can be any arithmetic type. If the parameter tptr is not null, the re
turn value is also stored at *tptr. If errors are encountered, the value - 1 (cast to type 
time_t) is returned. 

Typically, the value returned by time is passed to the function asctime or 
ctime to convert it to a readable fonn, or it is passed to local time or gmtime to con
vert it to a more easily processed fonn. Computing the interval between two calendar 
times can be done by the Standard C function difftime; in other implementations, the 
programmer must either work with the broken-down time from gmtime or depend on a 
customary representation of the time as the number of seconds since some arbitrary past 
date. (January I . 1970 seems to be popular.) 

In traditional implementations. type long is used in place of time_to but the val
ue returned is logically of type unsigned long. When errors occur, -lL is returned. In 
System V UNIX. errno is also set to EFAULT. 

References asctime 18.3; ctime 18.3; difftime IS.5; errno 11.2; gmtime IS.4; 
local time IS.4 

18.3 asctime, ctime 

Synopsis 

#include <time.h> 

char *asctime( const struct tm *ts )i 

char *ctime( const time_t *timptr ); 

The asctime and ctime functions both return a pointer to a string that is a printable 
date and time of the fonn 

"Sat May 15 17:30:00 1982\n" 
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The asctime function takes as its single argument a pointer to a structured calendar 
time; such a structure is produced by local time or gmtime from the arithmetic time 
that is returned by time. The ctime function takes a pointer to the value returned by 
time, and therefore ctime (tp) is equivalent to asctime (local time (tp». 

In most implementations-including many Standard C-confonning implementa
tions-the functions return a pointer to a static data area, and therefore the returned string 
should be printed or copied (with strcpy) before any subsequent call to either function. 

In traditional C, type long is used in place of time_ t and the functions may be 
found in the header file eye/ time. h. 

Example 

Many programs need to print the current dale and time. Here is how to do it using time and 
ctime: 

#include <time.h> 
#include <stdio.h> 
time_t nOWi 

now = time(NULL)i 
printf("The current date and time is: %s",ctime(&now»; 

References gmtime 18.4; local time 18.4; strcpy 13.3; struct tm. 18.4; 
time 18.2 

18.4 gmtime, localtime, mktime 

#include <time.h> 

struct tm { "'" }; 

Synopsis 

struct tm *gmtime( const time_t *t ); 
struct tm *localtime( const time_t *t ); 
time t mktime( struct tm *tmptr ); 

The functions gmtime and local time convert an arithmetic calendar time returned by 
time to a "broken-down" form of type struct tm. The gmtime function converts to 
Greenwich mean time (GMT) while local time converts to local time, taking into ac
count the time zone and possible Daylight Savings Time. The functions return a null 
pointer if they encounter errors and are portable across UNIX systems and Standard C. 
The structure struct tm includes the fields listed in Table 18- 1. All fields have type 
into 

In most implementations- including many Standard ones-gmtime and local
time return a pointer to a single static data area overwritten on every call. Therefore, the 
returned structure should be used or copied before any subsequent call to either function. 

The function mktime (Standard C) constructs a value of type time_t from the 
broken-down local time specified by the argument tmptr. The values of 
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Table 18-1 Fields in s truc t t m type 

Name Units 

tm_ s e c seconds after the minute 

tm_min minutes after the hour 

t m h our hours since midnight 

tm_mday day of month 

tm mon month since January 

tm_year years since 1900 

tm_wday day since Sunday 

tm_yday day since January I 

t m i s dst daylight saving time flag 

O .. 61 a 

0 .. 59 

0 .. 23 

1..31 

0 .. 11 

0 .. 6 

0 .. 365 

Range 

>0 if daylight saving time; 
o if not; <0 if don't know 

a This allows up lo two leap-seconds (C89), although C99 only requires one. 
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tmptr -> tm_wday and tmptr- >tm_yday are ignored by mktime. If successful , 
mktime returns the new time value and adjusts the contents of *tmptr , setting the 
tm _ wday and tm _yday components. If the indicated calendar time cannot be represent
ed as a value of time_ t , then mktime returns the value -1 (cast to time_ t ). Section 
18.5 shows an example. 

The traditional C signatures of the time functions are 

#include <sys / time.h> 
struct tm { ... }; 
struct tm *gmtime(long *t); 
struct tm *localtime (long *t)i 

18.5 difftime 

Synopsis 

#i nclude <time.h> 

double difftime( time ttl, time t to ) ; 

The difftime function is only found in Standard C. [t subtracts calendar time to from 
calendar time tl, returning the difference in seconds as a value of type double. Pro
grammers cannot assume that calendar time is encoded in time_ t as a scalar value (such 
as a number of microseconds), and so difftime must be used rather than simply sub
tracting two values of type time _ t . 

Example 

The following function returns the number of seconds between midnight on April 15, 1990 
and the current date and time. 
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#include <time.h> 

double Secs_Since_Apr_lS(void) 
{ 

struct tm Apr_ 15_struct = {O}i / * Set all fields to 0 */ 
time t Apr_ 1S ti 
Apr_ 15_struct.tm_year = 90; 
Apr_ lS_ struct.tm_ mon = 3; 
Apr_ IS struct.tm_ mday = 15; 
Apr_ 1S_ t - mktime(&Apr_ lS_ struct)i 
if (Apr_lS_t •• (time_t}-l) 

return 0.0; / * error */ 
else 

return difftime( time (NULL) , Apr_ lS_ t); 
} 

References time t 18.2 

18.6 strftime, wcsftime 

#include <time.h> 

size_ t strftime{ 
char *8 , size_ t maxsize, 
const char *format, 
const struct tm *timeptr), 

#include <wchar.h> 

size_t wcsftime( 

Synopsis 

wchar t *8, size t maxsize, 
const wchar_ t * format, 
const struct tm *timeptr); 

These functions are only found in Standard C. Like sprintf (Section 15.11), strftime 
stores characters into the character array pointed to by the parameter s under control ofthe 
multi byte string format . However, strftime only fonnats a single date and time 
quantity specified by timeptr (Section 18.4), and the formatting codes in format are 
interpreted differently from sprintf. No more than maxsize characters (including the 
terminating null character) are placed into the array designated by s . The actual number of 
characters stored (not including the tenninating null character) is returned. Ifmaxsize is 
not large enough to hold the entire fonnatted string, then zero is returned and the content 
of the output string is undefined. The fonnatting of strftime is localeMspecific using the 
LC_TIME category (see setloeale, Section 20.1). 

Amendment 1 to C89 adds the we s f time function for fonnatting the date and time 
as a wide string. The function is analogous to wsprintf (Section 15.11). 
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18.6.1 Formatting Codes 

The format string consists of an arbitrary mixture of conversion specifications and other 
multibyte characters. In the formatting process, the conversion specifications are replaced 
by other characters as indicated in Table 18-2, and the other multi byte characters are sim
ply copied to the output. A conversion specification consists of the character t, optionally 
followed by one of the modifier letters E or 0 (uppercase ah), followed by a single charac
ter that specifies the conversion. 

Table 18-2 Fonnatting codes for strftime 

L" Replaced by 
timeptr 
fields used 

• abbreviated weekday name; in the ·C· locale it is always the first tm_ wday 
three letters of %A. "Mon " (etc.) 

A full weekday name; in the "C" locale "Monday" (etc.) tm_wday 

b abbreviated month name; in ·C" locale, it is always the first three tm mon 
letters of%B:"Feb " (etc.) 

• full month name; in "C· locale" February· (etc.) tm mon 

c locale-specific date and time; in the ·C· locale, it is the same as any or all 
%a %b %e %T %Y 

C (C99) the last two digits of the year (00-99) tm_year 

d day of the month as a decimal integer (01-3 1) tm_mday 

D equivalent to %m/%d/%y tm_ mon, tm_mday, 

tm_year 

e the day of the month (1 -3 1), with single digits preceded by a space tm_ mday 

F ISO 8601 date format: %Y-%m-%d tm_mon, tm_mday, 

tm_year 

9 the last two digits of the week-based year (00-99)a tm_year, tm_wday, 

tm_yday 

G the week-based year (0000--9999) tm_year, tm_ wday, 

tm_yday 

h same as %b tm mon 

H the hour (24-hour clock) as a decimal integer (00-23) tm hour 

I me hour (12-hour clock) as a decimal integer (01-12) tm hour 

j day of the year as a decimal number (001-366) tm_yday 

m month as a decimal number (01-12) tm mon 
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Table 18-2 Fonnatting codes for strftime 

L~ 

M 

n 

p 

r 

R 

S 

t 

T 

u 

u 

v 

w 

w 

x 

x 
y 

y 

z 

z 

• 

Replaced by 

minute a~ a decimal number (00--59) 

(e99) replaced by a newline character 

the locale's equivalent of AMlPM designation for 12-hour clock; in 
the n e" locale, it is AM or PM 

(e99) the locale's 12-hourclock time; in the · e" locale, it is 
%I:%M:%S %p 

(e99) same as %H: %M 

second as a decimal number (OO-6O)b 

(C99) replaced by a horizontal tab character 

(e99) ISO 8601 time fonnat: %H: 'tiM: %S 

(e99) ISO 8601 weekday number ( 1-7), with Monday being 1 

week number of the year (00_53)C 

(e99) ISO 8601 week number (01-53) in the week-based year 

weekday as a decimal number (0--6, with Sunday = 0) 

week number of the year (OO_53)d 

locale-specific date; in the "e· locale, itis %m/%d/%y 

local-specific time; in the "C" locale, it is %T 

last two digits of the year (00-99) 

year with century as a decimal number (e.g., 1952) 

(C99) ISO 8601 offset of time zone from UTe, or nothing; 
- 530 means 5 hours 30 minute.. .. behind (west of) Greenwich 

time zone name or abbr eviation, or nothing if no time zone is 
known; in the II C· locale it is implementation-defined 

a single % 

a See the definition of week-based year in the text. 
b Allows for a leap-second (60). 

e Week number 1 ha .. the first Sunday; previous days are week O. 
d Week number I has the first Monday; previous days are week O. 

timeptr 
fields used 

tm min 

none 

tm_ hour 

tm_hour, tm_min, 

tm_ sec 

tm_ hour, tim min 

tm sec 

none 

tm hour, tim_min, 

tm sec 

tm_wday 

tm_year, t.m_wday, 

tm_ yday 

tm_ year, tm_wday, 

tm_ yday 

tm_ wday 

tm_year, tm._wday, 

tm_ yday 

any or all 

any or all 

tm_ year 

tm_ year 

tm isdst 

tm isdst 

none 

The modifier and many of the conversion letters are new in C99. The modifier E 
may be applied to the conversions 0 , C, x , x, y , and Y; it specifies that the locale's alterna
tive representation (not specified) is to be used. The modifier 0 may be applied to d , e , H, 
I , M, m, s , u , U, v, w, W, and y; it specifies that the locale 's alternative numeric symbols 
(not specified) are to be used. In the ·C· locale, the modifiers are ignored. 
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Some of the e99 conversion letters specify conversions according to the ISO 8601 
week-based year. In this system, weeks begin on Monday, and week 1 of the year is the 
week containing January 4 (equivalently, the first week to contain at least4 days of the new 
year). This means that January 1.2, or 3 could be considered part of the last week of the 
preceding year, or that December 29, 30, or 31 could be considered part of the first week 
of the following year. For example, Saturday, January 2, 1999 is in week 53 of year 1998. 
Contrast this with %U and tw, which introduce a partial "week 0" if needed. 

Example 

A plausible implementation of asctime (Section 18.3) using strftime is shown below. 
Since the formatting is locale-specific, the length of the output string (including the terminat
ing null character) is not easily predictable (which is (he case for the output from asctime): 

#include <time.h> 
#define TIME SIZE 80 /* hope this is big enough */ 
char *asctime2( const struct tm *tm ) 
{ 

} 

static char time_buffer[TIME_SIZE]; 
size_ t len; 
len", strftime( time_ buffer, TIME_ SIZE, 

"\a \b %d %H:%M:%S \Y\n-, tm); 
if (len .'" 0) 

return NULL; /* time_buffer is too short */ 
else 

return time_ buffer; 
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Control Functions 

The facilities in this chapter provide extensions to the standard flow of control in C pro
grams. They are provided in the header files assert.h, setjmp . h , and signa1.h. A 
few control functions described in this chapter in earlier editions of the book have been 
moved to Chapter 16, including liIystem and the exit-related functions. 

19.1 assert, NDEBUG 

Synopsis 

#include <assert.h> 

#ifnde£ NDEBUG 
void assert( tnt expression ); 
#else 
#define assert (x) «void) 0) 
#endif 

The macro assert takes as its single argument a value of any integer type. (Many 
implementations permit any scalar type.) If that value is 0 and if the macro NDEBUG is not 
defined, then assert will print a diagnostic message on the standard output stream and 
halt the program by calling abort (in Standard C) or exi t (in traditional C). The as
sert facility is always implemented as a macro, and the header file assert. h must be 
included in the source file to use the facility. The diagnostic message will include the text 
of the argument. the file name (_FILE~, and the line number (_LINE_). C99 im
plementations can also use the function name (_ func->. 

If the macro NDEBUG is defined when the header file assert.h is read, the 
assert facility is disabled usually by defining assert to be the empty statement. No 
diagnostic messages are printed, and the argument to assert is not evaluated. 

453 
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Example 

The assert facility is typically used during program development to verify that certain con
ditions are true at run time. It provides reliable documentation to people reading the program 
and can greatly aid in debugging. When a program is operational, assertions can easily be dis
abled, after which they have no run-time overhead. In the following example, the assertion is 
bener documentation than the English comment, which can be misinterpreted: 

#include <assert.h~ 
int f (int x) 
{ 

} 

/* x should be between 1 and 10 */ 
assert (x>O && X<10)i 

/* I? * / 

References abort 19.3; exit 19.3; func 2.6.1; LINE 3.3.4 

19.2 system, exec 

See Section 16.7. 

19.3 exit, abort 

See Section 16.5. 

19.4 setjmp, longjmp, imp_but 

#include <setjmp.h> 

typedef ... jmp_ hu£; 
int setjmp( jmp buf env ); 

Synopsis 

void longjmp( jmp buf env, int status ); 

The setjmp and longjmp functions implement a primitive form of nonlocal jumps, 
which may be used to handle abnormal or exceptional situations. This facility is tradition
ally considered more portable than signal (Section 19.6), but the latter has also been 
incorporated into Standard C. 

The macro setjmp records its caller's environment in the "jump buffer" env, an 
implementation-defined array, and returns 0 to its caller. (The type jmp _ buf must be im
plemented as an array type so that a pointer to env is actually passed to setjmp.) 

The function longjmp takes as its arguments a jump buffer previously filled by 
calling setjmp and an integer value, status , that is usually nonzero. The effect of call
ing longjmp is to cause the program to return from the call to setjmp again , this time 
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returning the value status. Some implementations, including Standard C, do not permit 
longjmp to cause 0 to be returned from setjmp and will return 1 from setjmp if 
longjmp is called with status O. 

The setjmp and longjmp functions are notoriously difficult to implement, and 
the programmer would do well to make minimal assumptions about them. When setjmp 
returns with a nonzero value, the programmer can assume that static variables have their 
proper value as of the time longjmp was called. Automatic variables local to the func
tion containing setjmp are guaranteed to have their correct value in Standard C only if 
they have a vOlatile-qualified type or if their values were not changed between the 
original call to setjmp and the corresponding longjmp calL Furthermore, Standard C 
requires that the call to setjmp either be an entire expression statement (possibly cast to 
void), the right-hand side of a simple assignment expression, or be used as the control
ling expression of an if, swi tah, do, while, or for statement in one of the following 
fonns: 

(setjmp ( ... )) 
(I setjmp ( ... ) ) 
(exp relop setjmp ( ... ) ) 
(setjmp ( ... ) relop exp) 

where exp is an integer constant expression and relop is a relational or equality operator. 
Standard C requires that longjmp operate correctly in un nested signal (interrupt) han
dlers, but in some older implementations a call to setjmp or longjmp during interrupt 
processing or signal handling will not operate correctly. 

If the jump buffer argument to longjmp is not set by setjmp, or if the function 
containing setjmp is terminated before the caU to longjmp, the behavior is undefined. 

Example 

#include <setjmp.h> 
jmp buf ErrorEnVi 

int guard(void) 

( 

} 

/* Return 0 if successful; else longjmp code. */ 

int status = setjmp(ErrorEnv); 
if ( status 1= 0) return status; /* error */ 
process () ; 
return 0; 

int process(void) 
{ 

if (error_happened) longjmp(ErrorEnv, error_ code)i 

} 



456 Control Functions Chap. 19 

The longjmp function is to be called when an error is encountered in function process. 
The function guard is the "backstop," to which control will be transferred by longjmp. 

The function process should be called directly or indirectly from guard; this ensures that 
longjmp cannot be called after guard returns, and that no attempt is made to depend on the 
values of local variables in the function process containing longjmp. (This is a conserva
tive policy.) Note that the return value from setjmp must be tested to determine if the return 
was caused by longjmp or not. 

19.5 atexit 

See Section 16.5. 

19.6 signal, raise, gsignal, sSignal, pSignal 

Synopsis 

#include <signal.h> 

#define SIG IGN .. . 

#define SIG DFL .. . 
#define SIG ERR .. . 
#define SIGxxx ... 

void (*signal{ int aig, void (-func) (int) » (int); 
int raise( int sig )i 

typedef ... sig_ atomic_ t; 

/* Non-Standard extensions: */ 
int kill( int pid, intsig ); 
int (*ssignal( int softsig, int (*func) (int) » (int); 
int gsignal( int softsig ); 
void psignal( int sig, char *prefix ); 

Signals are (potentially) asynchronous events that may require special processing by the 
user program or by the implementation. Signals are named by integer values, and each im
plementation defines a set of signals in header file signal. h, spelled beginning with the 
letters SIG. Signals may be triggered or raised by the computer's error-detection mecha
nisms, by the user program via kill or raise, or by actions external to the program. 
Software signals used by the functions ssignal and psignal are user-defined, with 
values generally in the range 1 through 15; otherwise they operate like regular signals. 

A signal handler for signal sig is a user function invoked when signal sig is 
"raised." The handler function is expected to perform some useful action and then return, 
generally causing the program to resume at the point it was interrupted. Handlers may also 
call exi tor longjmp. Signal handlers are normal C functions taking one argument, the 
raised signal: 
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void my_handler (int the signal) { ... } 

Some non-Standard implementations may pass extra arguments to handlers for certain 
predefined signals. 

The function signal is used to associate signal handlers with specific signals. In 
the normal case, signal is passed a signal value and a pointer to the signal handler for 
that signal. If the association is successful, then signal returns a pointer to the previous 
signal handler; otherwise it returns the value-l (SIG ERR in Standard C) and sets errno. 

Example 

void new_ handler (int sig) { ... } 
void (*old_handler) ()i 

/* Set new handler, saving old handler */ 
old_handler = signal ( sig, &new_handler ); 
if (old_handler==SIG_ ERR) 

printf("?Couldn't establish new handler.\n ft ); 

/* Restore old handler */ 
if (signal (sig,old handler)==SIG_ ERR) 

printf("?Couldn't put back old handler.\n"); 

The function argument to signal-and the returned value-may also have two 
special values, SIG_IGN and SIG_DFL. A call to signal of the fonn 
signal (sig, SIG_IGN) means that signal sig is to be ignored. A call to signal of 
the fonn signal (sig, SIG DFL) means that signal sig is to receive its "default" 
handling, which usually means ignoring some signals and terminating the program on oth
er signals. 

The ssignal function (found in UNIX System V) works exactly like signal , 
but is only used in conjunction with gsignal for user-defined software signals. Handlers 
supplied to ssignal return integer values that become the return value of gsignal. 

The raise and gsignal functions cause the indicated signal (or software signal) 
to be raised in the current process. The kill function causes the indicated signal to be 
raised in the specified process; it is less portable. 

When a signal is raised for which a handler has been established by signal or 
gsignal, the handler is given control. Standard C (and most other implementations) either 
reset the associated handler to SIG _ DFL before the handler is given control or in some oth
er way block the signal; this is to prevent unwanted recursion. (Whether this happens for 
the signal SIGILL is implementation-defined for historical and perfonnance reasons.) The 
handler may return, in which case execution continues at the point of interruption with the 
following caveats: 

1. If the signal were raised by raise orgsignal, then those functions return to their 
caller. 

2. If the signal were raised by abort, then Standard C programs are tenninated. Other 
implementations may return to the caller of abort. 
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3. If the handled signal were SIGFPE or another implementation-defined computa
tional signal, then the behavior on return is undefined. 

Signal handlers should refrain from calling library functions other than signal , since 
some signals could arise from library functions and library functions (other than signal) 
are not guaranteed to be reentrant. 

Standard C defines the macros listed in Table 19-1 to stand for certain standard sig
nals. These signals are common to many implementations of C. 

Table 19-1 

Macro 
name 

SIGABRT 

SIGFPE 

SIGILL 

SIGINT 

SIGSEGV 

SIGTERM 

Standard signals 

Signal meaning 

abnormal termination. such a~ is caused by the abort facility 

an erroneous arithmetic operation, such as an attempt to divide by 7..ero 

an error caused by an invalid computer instruction 

an attention s ignal. as fro m an interactive user striking a special keystroke 

an invalid memory access 

a tennination signal from a user or another program 

The psignal function (not in Standard C) prints on the standard error output the 
string prefix (which is customarily the name of the program) and a brief description of 
signal sig. This function may be useful in handlers about to call exi t or abort. 

References exit 19.3; longjmp 19.4 

19.7 sleep, alarm 

Non-Standard synopsis 

void sleep( unsigned seconds ); 

unsigned alar.m( unsigned seconds )i 

These functions are not part of Standard C. The alarm function sets an internal system 
timer to the indicated number of seconds and returns the number of seconds previously on 
the timer. When the timer expires, t.he signal SIGALRM is raised in the program. If the ar
gument to alarm is 0 , then the effect of the call is to cancel any previous alarm request. 
The alarm function is useful for escaping from various kinds of deadlock situations. 

The sleep function suspends the program for the indicated number of seconds, at 
which time the sleep function returns and execution continues. Sleep is typically imple
mented using the same timer as alarm. If the sleep time exceeds the time already on the 
alarm timer, sleep will return immediately after the SIGALRM signal is handled. If the 
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sleep time is shorter than the time already on the alarm timer, then sleep will reset the 
timer just before it returns so that SIGALRM will be received when expected. 

Implementations will generally terminate sleep when any signal is handled; some 
supply the number of unslept seconds as the return value of sleep (of type unsigned). 

Some implementations may define these functions as taking arguments of type 
una igned long. 

References signal 19.6 
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Locale 

Standard C was designed for an international community whose members have different 
alphabets and different conventions for fonnatting numbers, monetary quantities, dates, 
and time. The language standard allows implementations to adjust the behavior of the run
time library accordingly while still pennitting reasonable portability across national 
boundaries. 

The set of conventions for nationality, culture, and language is termed the locale, 
and facilities for it are defined in the header file locale. h. The locale affects such things 
as the format of decimal and monetary quantities, the alphabet and collation sequence (as 
for the character handling facilities in Chapter 12), and the format of date and time values. 
The "current locale" can be changed at run time by choosing from an implementation
defined set of locales. Standard C defines only the "C" locale, which specifies a minimal 
environment consistent with the original definition of C. 

20. 1 set/oca/e 

#include <locale.h> 
#def ine LC ALL ... 
#define LC COLLATE ... 
#define LC CTYPE ... 
#define LC MONETARY .. . 

#define LC NUMERIC .. . 
#define LC TIME ... 

Synopsis 

char *setlocale( int category. const char *locale )i 

The setlocale function is used to change locale-specific features of the run-time library. 
The first argument, category, is a code that specifies the behavior to be changed. The 
pennitted values for ca tegory include the values of the macros in Table 20- 1, possibly 
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augmented by additional implementation-defined categories spelled beginning with the let
ters LC . 

Table 20--1 Predefined set locale categories 

Name Behavior affected 

LC ALL all behavior 

LC COLLATE 

LC CTYPE 

LC MONETARY 

LC NUMERIC 

LC TIME 

behavior of streoll and strxfrm facilities 

character handling functions (Chapter 12) 

monetary information returned by localeconv 

decimal-point and norunonetary information 
returned by localeconv 

behavior of strftime facility 

The second argument, locale, is an implementation-defined string that names the 
locale whose conventions are to be used for the behavior designated by category. The 
only predefined values for locale are "C" for the Standard C locale, and the empty 
string, "" , which by convention means an implementation-defined native locale. The run
time library always uses the C locale until it is explicitly changed with set1oca1e. 

If the locale argument to set10ca1e is a null pointer, the function does not 
change the locale, but instead returns a pointer to a string that is the name of the current 
locale for the indicated category. This name is such that if set10ca1e were to be later 
called using the same value for category and the returned string as the value for 
locale, the effect would be to change the behavior to the one in effect when 
set10ca1e was called with the null locale. For example, a programmer who was about 
to change locale-specific behavior might first call set10ca1e with arguments LC_ALL 
and NULL to get a value for the current locale that could be used later to restore the previous 
locale-specific behavior. The string returned must not be altered, and may be overwritten 
by subsequent calls to set1oca1e. 

If the locale argument to set10ca1e is not null, set1oca1e changes the cur
rent locale and returns a string that names the new locale. A null pointer is returned if 
set10ca1e cannot honor the request for any reason. The string returned must not be al
tered and may be overwritten by subsequent calls to set1oca1e. 

Example 

The function original_ locale below returns a description of the current locale so that it 
can be later restored if necessary. There is no fixed maximum length for the string returned by 
setlocale, so space for it must be dynamically allocated. 

#include <locale . h> 
#include <string.h> 
#include <stdlib.h> 
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char *original_ locale(void) 
( 

char -temp, .copy; 
temp = setlocale(LC_ ALL, NULL); 
if (temp == NULL) return NULL; /* setlocale() failed */ 
copy = (char *)malloc(strlen(temp)+l)i 

} 

if (copy == NULL) return NULL; /* malloe() failed */ 
strcpy(copy,temp)i 
return copy; 

The following code uses original_ locale to change and then restore the locale: 

#include <locale.h> 
extern char *original_ locale(void)i 
char ·saved_ Iocale; 

saved_ locale = original_ locale(); 
setlocale(LC_ALL,nn)i /* Change to native locale */ 
setlocale(LC_ALL,saved_ locale)i/* Restore former locale */ 

References malloe 16.1; localeconv 20.2; streoll 13.10; strcp¥ 13.3; 
strftime 18.6; strlen 13.4; strxfrm l3.10 

20.2 localeconv 

#include <locale.h> 
struct lconv { ... }; 

Synopsis 

struct lconv *localeconv(void); 

The localeconv function is used to obtain information about the conventions for for
matting numeric and monetary quantities in the current locale. This allows a programmer 
to implement application-specific conversion and formatting routines with some portabili
ty across locales and avoids the necessity of adding locale-specific conversion facilitie s to 
Standard C. The localeconv function returns a pointer to an object of type 
struct lconv, whose components must include at least those in Table 20- 2. The re
turned structure must not be altered by the programmer, and it may be overwritten by a 
subsequent call to localeconv. In struct lconv, string components whose value is 
the empty string and character components whose value is CHAR MAX should be inter
preted as "don' t know." 

Example 

The following function uses localeconv to print a floating-point number with the correct 
decimal point character: 
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#include <locale.h> 
#include <stdio.h> 

Locale 

void P(int int_part, int fract-part, int fract_digits) 
{ 

} 

struct lconv -leonv = localeconv()i 
char *pt = lconv->decimal-pointi 
/* If *pt is the empty string, use" " */ 
if (l*pt) pt = ".n; 

printf(n%d%s%O*d\nn, 
int_part, pt, fract_digits, fract_part); 

Chap. 20 

Other contents of struct leonv are listed in Table 20- 2 and discussed herein. 

Digit groupings The grouping and mon grouping components of 
struct leonv are sequences of integer values of type char. Although they are de
scribed as strings. the string is just a way to encode a sequence of small integers. Each in
teger in the sequence specifies the number of digits in a group. The first integer 
corresponds to the first group to the left of the decimal point, the second integer corre
sponds to the next group moving leftward, and so on. The integer 0 (the null character at 
the end of the string) means that the previous digit group is to be repeated; the integer 
CHAR_MAX means that no further grouping is to be perfonned. The conventional group
ing by thousands would be specified by • \3 ft - three digits in the first group repeated for 
subsequent groups-and the string "\1\2\3\127" would group 1234567890 as 
1234 567890 (CHAR_MAX is assumed to be 127). 

Sign positions The p_sign_posn and n_sign-'posn components of 
struct lconv detennine where positive_sign and negative_ sign, respec
tively, are placed. The possible values and their meaning are 

o 

2 

3 

4 

Parentheses surround the number and currency_symbol. 

The sign string precedes the number and currency symbol. 

The sign string follows the number and currency_symbol. 

The sign string immediately precedes the currency_symbol. 

The sign string immediately follows the currency_symbol. 

Complete examples of monetary formatting are shown in Tables 20- 3 and 20-4, which 
were taken from the Standard C standard. Table 20- 3 shows typical monetary fonnatting 
in four countries. Table 20- 4 shows the values of the components of struct lconvthat 
would specify the formatting illustrated in Table 20-3. 
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Thble 20--2 loonv structure components 

Type Name 

cbar '* decimal-point 

char * thousands sep 

cbar '* grouping 

char * int~curr_symbol 

char * currency_ symbol 

char * mOD_ decimalyoint 

char * mon thousands_ sap 

char * mOD_grouping 

char '* positive_ sign 

char '* 
char 

char 

char 

char 

char 

char 

char 

char 

negative_sign 

int_ frac_ digits 

p _ cs_ precedes 

D_ csyrecedes 

D_ sep_ by_ space 

p_ signyosn 

Use 

Decimal point character (nonmonetary) 

Nonmonetary digit group separator character(s) 

Nonmonetary digit groupings 

The three-character international currency sym
bol, plus the character used to separate the inter
national symbol from the monetary quantity 

The local currency symbol for the current locale 

Dec imal point character (monetary) 

M onetary digit group separator character(s) 

Monetary digit groupings 

Sign character(s) for non-negative monetary 
quantities 

Sign character(s) for negative monetary quantities 

Digits shown to the right of the decimal point for 
international monetary fonnats 

Digits shown to the right of the decimal point for 
other than international monetary formats 

I if currency_ symbol precedes non-negative 
monetary values; 0 if it follows 

J if currency_ symbol is separated from non· 
negative monetary values by a space or else 0 

Like p _ cSj)recedes for negative values 

Like p _ sep_by _ space for negative values 

The positioning of posi tive_ sign fo r a non
negative monetary quantity (Plus it'> 
currency_ symbol ) 

The positioning of negative_ sign for a nega· 
tive monetary quantit y(plus its curren
cy_ symbol ) 

Value in 
C locale 

• •• 
•• 
• • 
•• 

• • 
• • 
• • 
• • 

•• 

•• 

CHAR MAX 

CHAR MAX 

CHAR MAX 

CHAR MAX 

CHAR MAX 

CHAR MAX 

CHAR MAX 

CHAR MAX 

Thble 20-3 Examples of fonnatted monetary quantities 

Fonnat 

Country Positive Negative International 

Italy L.1.234 - L.1.234 ITL . l.234 

The Netherlands F 1.234,56 F -1.234,56 NLG 1.234,56 

Norway kr1.234,56 kr1.234,56- NOK 1.234,56 

Switzerland SFrs.l,234.56 SFrs.l,234.56C CHF 1,234.56 
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Table 20-4 Examples of lconv structure content'> 

Component 

int_ curr_ symbol 

currency_ symbol 

mOD_ decimal-point 

mo n thousands_ sap 

mOD_ grouping 

positive_ sign 

negativ e sign 

int_ frac_diglts 

frac_digits 

p_csyrecedes 

p_ sep_by_ space 

D_ csyrecedes 

D_sep_ by_space 

p_signJ>osn 

D_ signJ>0sn 

Italy 

"ITL. II 

" " 
" . " 

" " 
". " 
o 
o 

1 

o 

1 

o 
1 

1 

The Netherlands 

"NLG II 

"F" 

" . " 
" ." 

" " 
"." 
2 

2 

1 

1 

1 

1 

1 

4 

Norway 

"NOK II 

" . " 
" . " 
",3" 

" " 
". " 
2 

2 

1 

o 
1 

o 
1 

2 
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Switzerland 

"CHF II 

"SFrs." 

" . " 
" " • 

" " 
"C" 

2 

2 

1 

o 

1 

o 
1 

2 
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Extended Integer Types 

The e99 facilities of this section provide additional declarations for integer types having 
various characteristics. The facilities are provided by the headers stdint. hand 
int types. h. The B tdin t . h header contains basic definitions of integer types of cer
tain sizes and is required in both hosted and freestanding implementations. The 
inttypes. h header file includes stdint. h and adds portable formatting and conver
sion functions ; it is only required in hosted implementations. 

The "spirit of C" is to leave the choice of the sizes for the standard types up to the 
implementor. Unfortunately. this makes it hard to write portable code. The facilities in this 
chapter address portability, but the number of definitions in these headers is somewhat 
daunting. 

References hosted and freestanding implementations 1.4 

21.1 GENERAL RULES 

These libraries contain a large number of types, macros, and functions all constructed in a 
regular fashion. This section discusses the general rules that apply to the libraries. 

21.1.1 Type Kinds 

The libraries contain a number of different "kinds" of integer types and macros, some pa
rameterized by the width N of the types. N must be an unsigned decimal integer with no 
leading zeros and represents a type's width in bits. 
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Example 

The exact-size 8-bit integer types are named intB_ t and uintB_ t (not int08_ t and 
uintOB _ t). The fas test integer types that are at least 8 bits wide are named int _ fastS _ t 
and uint _ fastS _ t. "Exact-sized" and "fastest" are two different "kinds" of types. 

21.1.2 Define All or None 

Which types are defined (i.e., for which values of N) is implementation-defined in some 
cases. However, if a particular kind of type for some value of N is defined, then both 
signed and unsigned types and all the macros for that kind and size of type must be de
fined. If a particular kind and size of type is optional and the implementation chooses not 
to define it, then none of the associated types or macros is defined. 

Example 

If the implementation has an exact-size 16-bit integer type, then the types int16_ t and 
uint16 t and the macros INT16_ MIN, INT16 _ MAX, UINT16 _ MAX, PRId16 , 
PRIi16, PRIo16, PRIu16, PRIx16, PRIX16, SCNd16 , SCNi16 , SCNo16 , SCNu16, 
and SCNx16 must all be defined. If the implementation does not have an exact-size 16-bit in
teger type, then none of these macros or types is defined. 

21.1.3 MIN and MAX Limits 

The ... MIN and ... MAX macros define the ranges of the defined types by specifying maxi
mum and minimum values representable in those types, just as do the ... MIN and ... MAX 

macros in limits.h for the standard types. In most cases, the minimum magnitudes of 
the ranges are specified by C99. 

Example 

Types int16 t and uint16 t are exact-size 16-bit integer types. Their ranges are: - -

#define INT16 MIN -32768 
#define INT16 MAX 32767 
#define UINT16 MAX 65535 

References limits . h Table 5-2 

21.1.4 PRI ... and SeN ... Format String Macros 

The macros PRIeKN and sCNeKN are format control strings for the printf and scanf 

families of functions, respectively.The c stands for a particular conversion operator letter: 

d , i , 0 , u , x, or X. The K represents the kind of type: empty or LEAST, FAST, PTR, or MAX. 

The N is the width in bits. The full set of macros is listed in Table 21-1. 

The PRI. .. macros expand to string literals containing the printf conversion oper
ation character e (d, i , 0 , U, x, or x) preceded by an optional size specification suitable for 
outputting values of the particular kind and size of type. The SCN ... macros similarly expand 
to string literals containing the scanf conversion operation character c (d, i , 0, u , or x) 



Sec. 21.1 General Rules 469 

preceded by an optional size specification suitable for converting numeric input and storing 
it in objects designed by pointers to types of the particular kind and size. 

Example 

The smallest integer types at least 64-bits wide are named int _ least64 _ t and 
uint_ least64_ t (the kind, K, is LEAST). If these types are defined to be long and un
signed long, respectively, then you would expect to find in inttypes . h the definitions 

#define PRldLEAST64 !lld" 

#define PRliLEAST64 II li" 

#define PRloLEAST64 "10" 
#define PRluLEAST64 "lu" 
#define PRlxLEAST64 n lx " 
#define PRIXLEAST64 nlX" 
#define SCNdLEAST64 " ld" 
#define SCNiLEAST64 IIli" 
#de£ine SCNoLEAST64 "10" 
#define SCNuLEAST64 "lu" 
#define SCNxLEAST64 nlx" 

Now suppose that variable ahas type long and b has type int_ Ieast64_ t. The follow
ing two statements show two ways of printing these values. The second way is more portable 
in that it works regardless of which integer type is assigned to int _ leas t6 4_ t . 

printf(-a=%2Sld\ n", a l i / * usual * / 
printf("b=%2 S - PRIdLEAST64 "\n", b); / * portable * / 

References limi ts • h Table 5- 2; printf converSIOns 15. 11.7; scanf conversions 

15.8.2 

Table 21-1 Format control string macros for integer types (N = width of type in bilS) 

Exact-size Least-size Fast-size Pointer Maximum 
kind kind kind kind kind 

Signed PRIdN PRIdLEASTN PRIdFASTN PRIdPTR PRIdMAX 
printf PRIiN PRIiLEASTN PRIiFASTN PRIiPTR PRIiMAX 
formats 

Unsigned PRIoN PRIoLEASTN PRIoFASTN PRIoPTR PRIoMAX 
printf PRIuN PRIuLEASTN PRIuFASTN PRIuPTR PRIuMAX 
fonnats PRIxN PRIxLEASTN PRIxFASTN PRIxPTR PRIxMAX 

PRIxN PRIXLEASTN PRIXFASTN PRXXPTR PRXXMAX 

Signed SCNdN SCNdLEASTN SCNdFASTN SCNdPTR SCNdMAX 
scanf SCNiN SCNiLEASTN SCNiFASTN SCNiPTR SCNiMAX 
fonnats 

Unsigned SCNoN SCNoLEASTN SCNoFASTN SCNoPTR SCNoMAX 
scanf SCNuN SCNuLEASTN SCNuFASTN SCNuPTR SCNuMAX 
formats SCNxN SCNxLEASTN SCNxFASTN SCNxPTR SCNxMAX 
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21.2 EXACT-SIZE INTEGER TYPES 

#include <stdint.h> 
typede£ ... intN t 

typedef 

#define 
#define 
#define 

... uintN t 

INTN MIN 
INTN MAX 

UINTN MAX 

#include <inttypes.h> 
#define PRIeN n " 

#define SCNcN n. ,, " 

Extended Integer Types Chap. 21 

Synopsis 

/ / All e99 

These types and macros define integer types having certain exact sizes with no padding 
bits. The ... MIN and ... MAX macros must have the exact values shown. 

These types are optional in stdint .h. except that if the implementation has integer 
types of exact widths 8, 16, 32, or 64 bits, then the corresponding types and macros must 
be defined. An implementation is free to define additional exact-width integer types. 

Example 

The following definitions would be expected in many C implementations for byte-addressed 
computers: 

#include <limits.h> / * SCHAR_ MIN, SCHAR_MAX, UCHAR MAX */ 
typedef signed char intB t; 
typedef unsigned char uintB_ ti 
typedef short int16 t; 
typedef unsigned short uint16 t; 
typedef int int32_ ti 
typedef unsigned int uint32 t; 
typedef long long int int64_ t ; 
typedef unsigned long long int uint64 ti 
#define INTB MIN SCHAR MIN 
#define INTB MAX SCHAR MAX 
#define UINTa MAX UCHAR MAX 
#define PRIdB "hhd" 
#define SCN064 "llon 
/ / etc. 

As computer word sizes increase in the future, we might expect long to be named int64_ t 
and long long int to be named int12B_ t. 
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21.3 LEAST-SIZE TYPES OF A MINIMUM WIDTH 

#include <stdint.h> 
typedef int leastN t 
typede£ ... uint leastN t -
#define INT LEASTN MIN 

#define INT LEAS TN MAX 

#define UINT LEAST N MAX 

#define INTN _ C (constant) 
#define UINTN _ c (constant) 

#include <inttypes.h> 
#define PRICLEASTN" II 

#define SCNCLEASTN n .•• " 

Synopsis 

_}IN-I_1) 
2 -1-1 
2N_1 

/ / All e99 
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These types and macros define integer types that are the smallest having certain minimum 
sizes. The ... MIN and .. . MAX macros must have the same sign and at least the magnitude of 
the values shown. Since these types must be the smallest having the designated width, it 
follows that if an exact-width type (Section 21.2) exists for a certain N, then that exact
width type must also be the least-sized type for the same value of N. 

All e99 implementations must define these types and macros for N=8, 16,32, and 
64. Definitions for other values of N are optional, but if any other N is provided, then all 
the types and macros for that value of N must be defined. 

Example 

A C implementation for a 32-bit word-addressed computer might define char, short and 
int to be all 32-bit types. In that case, the exact-width types int8 _ t and int16 _ t (and their 
unsigned counterparts) would not be defined, and the least -width types int8 t and 
int16 _ t would have to be defined as one of the 32-bit type, such asint. 

Macro INTN _ C takes as an argument a decimal, hexadecimal, or octal constant and 
expands to a signed integer constant of type int_ leastN_t with the same value. Macro 
UINTN _ C expands to an unsigned integer constant of type uint_ leastN_t. The macros 
add the appropriate suffix letter to the constant. 

Example 

If int_ least64 _ tis defined to be long long int, then INT64 C (1) would be lLL 
and UINT64_C(l) would be lULL. 
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21.4 FAST TYPES OF A MINIMUM WIDT H 

#include <stdint.h> 
typedef int fastN t 

typede£ 
#define 
#define 
#define 

... uint fastN t - -
INT FASTN MIN - -
INT FASTN MAX - -

UINT FASTN MAX 

#include <inttypes . h > 
#define PRICFASTN n n 

#def i ne SCNCFASTN n ". n 

Synopsis 

Extended Integer Types Chap. 21 

II All e99 

These types and macros define integer types that are the fastest having certain minimum 
sizes. The ... MIN and ... MAX macros must have the same sign and at least the magnitude of 
the values shown. All e99 implementations must define these types and macros for N=8, 
16, 32, and 64. Definitions for other values of N are optional, but if any other N is provid
ed, then all the types and macros for that value of N must be defined. 

Determining which type is "fastest" might be a judgment call on the part of the im
plementor, and it might not be correct for all possible uses of a type. For example, the fastest 
type for scalar arithmetic might not be the fastest type for accessing arrays elements. 

Example 

On a byte-addressed computer optimized for 32-bit arithmetic, a C implementation might 
choose to recommend 32-bit types even if fewer bits were needed. Here is a possible set of 
definitions from stdint . h . Only the signed types are shown in this example. 

typedef char inte t , 
typedef char int least8 t, - -
typedef int int faste t, -

typedef short int16 t, 
typede£ short int least16 t , 
typede£ int int fast16 t , - -
typede£ int int32 t, 
typede£ int int least32 t, 
typede£ int int £ast32 t, 
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21.5 POINTER-SIZE AND MAXIMUM-SIZE INTEGER TYPES 

#include <stdint.h> 
typede£ ... intptr_ ti 
typede£ ... uintptr t; 

#define INTPTR MIN ::<..2 15_1) 
#define INTPTR MAX 2 5_ 1 
#define UINTPTR MA X 2 16_1 

typede£ intmax ti 
typede£ uintmax ti 
#define INTMAX MIN -F63_1) 
#define INTMAX MAX 2 3_ 1 
#define UINTMAX MA X 264_1 
#define INTMAX_ C (constant) 
#define UINTMAX_ C (constant) 

#include <inttypes.h> 
#define PRICPTR " " 
#define SCNCPTR " " 
#define PRICMAX " " 
#define SCNCMAX • • 

Synopsis 

/ / All e99 
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The types intptr_ t and uintptr_ t are signed and unsigned integer types, respectively, 
that can hold any object pointer. That is, if P is a value of type void * , P can be converted 
to intptr_ t or uintptr _ t and then converted hack to void *. and the result is the orig
inal pointer P. The ... MIN and ... MAX macros must have the same sign and at least the 
magnitude of the values shown. These types are optional because it is possible (but unusu
al) for there to be no such integer type. 

Types intmax _ t and uintmax _ tare the largest signed and unsigned integer types 
defined in the implementation, respectively. These types must be defined by all C imple
mentations. Since C99 implementations are permitted to provide extended integer types, 
the intmax_ t type might not be one of the standard C types, such as long long into The 
... MIN and ... MAX macros must have the same sign and at least the magnitude of the values 
shown. 

The INTMAX _ C macro takes a decimal, hexadecimal, or octal constant and expands 
it to an integer constant of type intmax_ t with the same value. The UINTMAX_ C macro 
expands to an integer constant of type uintmax_t . 

References lim! ts . h Table 5- 2 
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21.6 Ranges of plrdlfCI, size_I, wchar_', wlnl-'. and sig_a'omlc_ ' 

Synopsis 

#include <stdint.h> 
#define PTRDIFF MIN II All C99 
#define PTRDIFF MAX 
#define SIZE MAX 
#define WCHAR MIN 
#define WCHAR MAX 
#define WINT MIN 
#define WINT MAX 

#define SIG ATOMIC MIN 
#define SIG ATOMIC MAX 

The macros in this section expand to preprocessor constant expressions that are the nu
meric ranges of various types defined in stddef. h and wchar. h. They must all be de
fined by all implementations. 

PTRDIFF_ MIN and PTRDIFF_ MAX specify the range of type ptrdiff_t, which 
must be a signed type of at least 16 bits. 

SIZE_ MAX is the largest value that can be represented in type size_ t o 

WCHAR _MIN and WCHAR _MAX specify the range of wchar _ t , which can be a signed 
or unsigned type of at least 8 hi ts. 

WINT_MIN and WINT_MAX specify the range of wint_ t , which can be a signed or 
unsigned type of at least 16 bits. 

SIG_ATOMIC_MIN and SIG_ATOMIC_MAX specify the range of sig_ atomic_ t , 
which can be a signed or unsigned type of at least 8 bits. 

References ptrdi££ tiLl ; sig_ atomic_ t 19.6; size tiLl ; wchar_ t 24.1; 
wint t 24.1 

21.7 imaxabs, imaxdiv, Imaxdiv _ I 

#include <inttypes.h> 
typede£ . .. imaxdiv_ ti 

Synopsis 

intmax t imaxabs( intmax_ t x ); 
II All C99 

imaxdiv t imaxdiv( intmax t n, intmax t d ); 

The facilities in this section support basic arithmetic on maximum-size integer types, sim
ilar to the abs and div functions defined in atdlib.h. The imaxaba function computes 
the absolute value of its argument. If the absolute value is not representable, then the result 
is undefined. 
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The imaxdi v function computes both n / d and n % d in a single operation. The 
results are stored in the quot and rem components, respectively, of the structure type 
imaxdiv_ t . The order of the components in imaxdiv_ t is not specified. 

References aba 16.9; div 16.9 

21.8 strtoimax, strtouimax 

#include <inttypes.h> 
intmax_ t strtoimax( 

canst char * restrict str, 
char .* restrict ptr, 
int base) i 

uintmax_ t strtoumax( 
const char * restrict str, 
char .* restrict ptr, 
int base); 

Synopsis 

These functions convert strings to maximum-size integers in the same way as the strtol 
and strtoul functions in stdlib . h. If the result would cause overflow, then one of 
INTMAX_MAX, INTMAX_ MIN, or UINTMAX_MAX, as appropriate, is returned and errno i s 

set to ERANGE. 

References errno and ERANGE 11.2; strtol and strtoul 16.4 

21.9 wcstoimax, wcstoumax 

#include <stddef.h> 
#include <inttypes . h> 
intmax t wcstoimax( 

Synopsis 

II wchar t 

const wchar t * restrict str, 
wchar t ** restrict ptr, 
int base); 

uintmax_ t wcstoumax( 
const wchar t * restrict str, 
wchar t ** restrict ptr, 
int base); 

These functions convert wide strings to maximum-size integers in the same way as the 
wcstol and wcstoul functions in wchar . h. If the result would cause overflow. then one 
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of INTMAX _ MAX, INTMAX _ MIN, or UINTMAX _ MAX, as appropriate, is returned and errno 
is set to ERANGE. 

References errno and ERANGE 11.2; wcstol and westoul Ch. 24 
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Floating-Point Environment 

The facilities of this section are new in C99 and supplement the information in float. h. 

They provide access to the floating-point environment for those applications that require a 
high degree of control over the precision or performance of floating-point operations. The 
facilities are provided in the header file fenv. h. 

References float. h Table 5- 3 

22. 1 Overview 

Programmers who code high-precision floating-point algorithms need control over various 
aspects of the floating-point environment: how rounding of results occurs; how floating
point expressions can be simplified or transformed; and whether certain floating-point 
events like underflow are ignored or cause a program error. Control is exerted by setting 
floating-point control modes, which affect how floating-point operations are carried out. 
The operations communicate back to the programmer by causingfloating-point exceptions, 
which can interrupt the flow of control in the C program and which are also recorded in 
status flags that the programmer can read. The C99 programmer can also control floating
point behavior by using the specialized floating-point math functions listed in Chapter 17. 

Floating-point operations can be perfonned at two times. When the C program is 
translated, constant (compile-time) floating-point operations are performed, whereas when 
the C program runs dynamic (execution-time) floating-point operations may be performed. 
The C99 standard provides explicit control over run-time operations only. Implementations 
may provide their own facilities to control translation-time arithmetic. 

The international floating-point standard referenced by C99 is IEC 60559:989, 
Binary floating-point arithmetic for microprocessor systems, second edition. Previous des
ignations of this standard were IEC 559: 1989 and ANSIIIEEE 754-1985. IEEE Standard 
for Binary Floating-point Arithmetic. (The IEEE 754 was later generalized to remove 
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478 Floating-Point Environment Chap. 22 

dependencies on radix and word length in ANSI/IEEE 854-1987, IEEE Standardfor Radix
Endependent Floating-point Arithmetic.) Appendix F of the C99 standard details the map
ping of the C language to IEC 60559, which is optional unless the C implementation defines 
the macro STDC lEe 559 

22.1.1 Programming Conventions 

The facilities to control floating-point behavior are dynamic. That is. once changed during 
program execution by the functions in this chapter, the changes persist until another explicit 
change is made. How a particular function performs floating-point operations will depend 
on what functions from fenv. h were most recently called and so cannot be determined 
when the C program is compiled. This is all right when the underlying hardware uses global 
control registers to control floating-point arithmetic; it is more difficult to implement if the 
actual opcodes emitted by the compiler control the behavior. 

The C99 standard recommends that programmers always assume that any called 
function will expect the default floating-point behavior unless it is documented otherwise. 
Likewise, called functions should not alter the environment unless they are documented to 
do so. That is, a function should not depend on any status flags nor alter the flags in effect 
when called. It can (if needed) expect the default control mode to be in effect, and it 
should not change the caller's mode. Any function may raise a floating-point exception. 

22.2 Floating-Point Environment 

Synopsis 

#include <fenv.h> 
#pragma STDC FEW ACCESS on-off-switch 
typede£ ... £env_ ti 
#define FE DEFL ENV 
int fegetenv(fenv_ t *envp)i 
int fesetenv(fenv t *envp); 
int feholdexcept(fenv_ t *envp)i 
int feupdateenv(const fenv t *envp)i 

The standard pragma FENV_ ACCESS is used to indicate whether the C program will set 
floating-point control modes, test status flags, or even run under nondefault control 
modes. The behavior of those actions when FENV ACCESS is "off' is undefined. The 
pragma is provided in case such knowledge makes a significant difference in how the C 
program is translated or optimized. The default setting is implementation-defined, so the 
programmer concerned with portability should always assume it is "off." The 
FENV ACCESS pragma follows the nonnal placement rules for standard pragmas. 

The fenv t type is implementation-defined to hold the entire floating-point state , 
including control modes and exception status bits. 

The FE _ DEFL _ ENV macro expands to specify the default floating-point environ
ment as a value of type fenv _ t* . C implementations may define additional environment 
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macros spelled beginning with FE_and an uppercase letter. Programmers should treat 
these macros as designating read-only objects. 

The fegetenv function retrieves the current floating-point environment and stores 
it in the object pointed to by envp. It returns zero if successful and otherwise returns a 
nonzero value. 

The fesetenv function replaces the current floating-point environment with the 
environment pointed to by envp. That environment must have previously been set by 
fegetenv or feholdexcept, or it must be a predefined environment such as 
FE DEFL ENV. It returns zero if successful and otherwise returns a nonzero value. 

The feholdexcept function is typically used to turn off floating-point excep
tions for a period of time. The function saves the current floating-point environment in the 
object pointed to by envp and then installs an environment that ignores all floating-point 
exceptions. The function returns zero if such a "nonstop" environment was successfully 
installed; otherwise it returns a nonzero value. Some implementations may not be able to 

ignore all exceptions. 

The £eupdateenv function saves the currently raised floating-point exceptions in 
some local storage, stores the environment pointed to by envp as the new environment, 
and finally raises the saved exceptions. It returns zero if successful and otherwise returns a 
nonzero value. 

References pragmas and placement rules 3.7; raising floating-point exceptions 22.3 

22.3 Floating-Point Exceptions 

#include <fenv.h> 

macro FE DIVBYZERO 
macro FE INEXACT .. . 
macro FE INVALID .. . 
macro FE OVERFLOW .. ' 
macro FE UNDERFLOW ... 

macro FE ALL EXCEPT ... 

typedef ... fexcept_ t; 

Synopsis 

int fegetexceptflag(fexcept_ t *flagp, int excepts}; 
int fesetexceptflag(const fexcept_ t *flagp, int excepts}; 
int fetestexcept(int excepts}; 
int feraisQexcQpt(int excepts); 
int feclearexcept(int excepts}; 

A floating-point exception is a side effect of certain floating-point operations. All excep
tions set a status flag indicating that the exception has occurred. Whether the exception 
also interrupts the program's flow of control depends on the floating-point control mode 
settings. 
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The fexcept _ t type is implementation-defined to hold all the floating-point status 
flags supported by the implementation. This is often an integer type whose bits represent 
the different exceptions, but it could be more elaborate. For example, £except_ t could 
hold infonnation about where the status flags were raised. 

C implementations may support different floating-point exceptions. For each sup
ported exception, the implementation must define a macro such as FE _ DIVBYZERO, 
FE_INEXACT, FE_ INVALID, FE_ OVERFLOW, and FE_UNDERFLOW. Unsupported ex
ceptions must be left undefined (e.g., not just defined as zero). Each defined macro expands 
to an integer constant expression, and it must be possible to bitwise-or these values together 
to represent any subset of the exceptions. Typically the macros each expand to a different 
power of two. The macro FE_ ALL _ EXCEPT is the bitwise-or of all the supported excep
tions. It follows from the signatures of the functions in this section that there cannot be more 
exceptions than there are bits in type int, which contains at least 16 bits. 

The fegetexceptflag function stores the current setting of the floating-point 
status flags into the object pointed to by flagp . Not all the status flags are stored into 
flagp* ; rather, only those exceptions listed in excepts argument are set; the others 
remain unchanged in flagp* . The excepts argument acts as a mask of "interesting" ex
ceptions. The function returns zero if successful and otherwise returns a nonzero value. 

The fesetexceptfl.ag function sets the current floating-point status flags to the 
values held in the object pointed to by flagp . Not all the status flags are set; rather only 
those exceptions listed in excepts argument are set; the others remain unchanged. The 
excepts argument acts as a mask of "interesting" exceptions. The function returns zero 
if all specified flags were set to the appropriate state and otherwise returns a nonzero val
ue. 

The fetestexcept returns the bitwise-or of the exception macros corresponding 
to the exception flags, which are currently set in the environment and which are present in 
the excepts argument. Thus, fetestexcept returns the subset of the exceptions in 
excepts that are currently set. 

The feraiseexcept function raises the exceptions represented in the excepts 
argument. The order in which the exceptions are raised is not specified, and it is possible 
that some exceptions will, as a side effect. raise other exceptions. FE_INEXACT, for ex
ample, is often combined with other exceptions. 

The feclearexcept function clears the current exception status flags corre
sponding to the exceptions represented in excepts . It returns zero if all of the exceptions 
in excepts were cleared and otherwise returns a nonzero value. 
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22.4 Floating-Point Rounding Modes 

#include <fenv.h> 

macro FE DOWNWARD 
macro FE UPWARD .. ' 

macro FE TONEAREST .. . 

macro FE TOWARDZERO .. . 

int fegetround(void)i 
int fetestround(int rounds}; 

Synopsis 

481 

C99 implementations must define macros such as FE_DOWNWARD, FE_UPWARD, 
FE_ TONEAREST, or FE_ TOWARDZERO for each rounding direction that can be set and 
gotten by the functions in this section. The macros expand to distinct non-negative integer 
constant expressions representable in type into Unsupported rounding directions will not 
have their corresponding macros defined. 

The fagetround function returns the current rounding direction, represented as 
one afthe values of the rounding direction macros. Similarly, the fesetround function 
sets the current rounding direction and returns zero if successful. The functions return a 
negative value if they cannot get or set, respectively, the rounding direction. 



23 

Complex Arithmetic 

The facilities of this section support complex arithmetic. They are defined in the C99 
header file complex.h. 

23.1 COMPLEX LIBRARY CONVENTIONS 

All angular measurements are in radians. The complex number z is also written as x+yi, 
where x and yare real numbers. Similarly, w = u+vi and c = a+bi. 

For complex functions having branch cuts across which the functions are discontin
uous, one of the following implementation-defined conventions should be adopted. If the 
implementation has a signed zero, the sign of zero distinguishes the two sides of the 
branch cut. Otherwise the library implementation should treat the cut so that the functions 
are continuous when approaching the cut counter-clockwise around the finite end of the 
branch cut. 

References complex types 5.2.1 
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23.2 complex, _Complex_I, imaginary, _Imaginary_I, I 

#include <complex.h> 
#define complex _Complex 
#define imaginary _ Imaginary 
#define _Complex_I 
#define _ Imaginary_ I 
#define I ... 

Synopsis 

Complex Arithmetic Chap. 23 

II All e99 

If complex types are supported, then the macro complex is defined as a synonym for the 
keyword _Complex. If the imaginary types are supported, then the macro imaginary 
is defined as a synonym for the keyword _Imaginary. If their respective types are sup
ported, then the macros _ Complex _ I and _ Imaginary _I are defined as constant ex
pressions of type const float _Complex and const float _Imaginary, 
respectively, whose values are the imaginary unit, -Y(-l) or i. 

If complex types are supported. then the macro I expands to _Complex_I. If the 
imaginary type is defined, I may alternatively expand to _ Imaginary_ I . 

Because the identifiers complex, imaginary, and I may be used in programs 
written before C99, it is permitted to #undefine and possibly redefine these macros. 

References complex types 5.2.1 

Synopsis 

#include <complex.h> II All C99 
#pragma STDC CX LIMITED RANGE on-or-off-switch 

The standard pragma CX_LIMITED_RANGE, if "on," informs the implementation that 
using the "obvious" implementations of complex multiply, divide, and absolute value is 
acceptable. The default state of the pragma is "off." The eX_LIMITED _RANGE pragma 
follows the placement rules for standard pragmas. The "obvious" implementations are: 

multiplication: z*w; (x+iy) (u +iv); (xu-yv) + i(yu+xv) 

division: z/w; (x+iy) /(u+iv); «xu+yv) + i(yu-xv» / (u2+v2) 

absolute value: Izl; I x+ iy I; ,f(x'2+y2) 

These implementations are "numerically challenged" because of their potential for 
unnecessary underflow and overflow and because they do not handle infinities well. How
ever, they may be faster, if the programmer knows that they are safe in the current program. 

References standard pragmas, on-off-switch, and placement rules 3.7 
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23.4 cacos, casin, catsn, ccos, cSin, ctan 

Synopsis 

#include <camplex.h> II All e99 

double complex c aeoa (double complex Z ) i 

float complex caccsf(float complex z ) ; 
long double complex cacosl(long double complex Z)i 

double complex c asin (double complex z); 
float complex casinf(float complex z) ; 
long double complex casinl(long double complex z); 

double complex catan (double complex z ) ; 
float complex catanf(float complex z) ; 
long double complex catanl(long double complex z); 

double complex ceos (double complex z ) ; 
float complex ccosf(float complex z); 
long double complex c a osl ( long d ouble complex z ); 

double complex cain (double complex z ) i 

float c omplex c sinf (float c omplex z }; 
long double complex csinl ( long d ouble c omplex z }; 

double complex ctan (double c omplex z) ; 
float complex c tanf (float complex z }; 
long double complex c tanl{long double c omplex z }; 

The domain and range of the functions are listed in Table 23-1 assuming the notation 
(a + b i)=f(x + yi). 

Table 23-t Domain and range of complex trigonometric functions 

Cname Function Branch cuts Range 

cac oa complex arc cosine y=O,x>+ l and 0:5: a:5: 1t 

y=O,x<- l 

casin complex arc sine y=O,x>+ l and -Tt/2:S; a :s; +11:/2 
y=O,x<- l 

cata n complex arc tangent x=O,y>+ l and -Tt/2 :s; a:S; +1t/2 
x = 0, y <-1 

c cos complex cosine 

cs i n complex sine 

ctan complex tangent 
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23.5 cacosh, casinh, catanh, ccosh, csinh, ctanh 

Synopsis 

#include <complex.h> / / All C99 

double complex cacosh (double complex z); 
float complex cacoshf(float complex z); 
long double complex cacoshl(long double complex z )} 

double complex casinh (double complex Z } i 

float complex c8sinhf{float complex z); 
long double complex casinhl(long double complex z) ; 

double complex catanh (double complex z); 
float complex catanhf(float complex Z)i 

long double complex catanhl(long double complex z); 

double complex ccosh (double complex z); 
float complex ccoshf(float complex z); 
long double complex ccoshl(long double complex z}; 

40uble complex csinh (double complex z); 
float complex csinhf(float complex z); 
long double complex csinhl(long double complex z); 

double complex ctanh (double complex z); 
float complex ctanhf(float complex z) i 

long double complex ctanhl(long double complex Z)i 

Chap. 23 

The domain and range of the functions are listed in Table 23-2 assuming the notation 
(a+bi)=/(X+YI). 

Table 23--2 Domain and range of complex hyperbolic func tions 

C name Function Branch cuts Range 

cacosh complex arc hyper- y=O,x<+1 OS a,-ttSb'::;;+tt 

bolic cosine 

casinh complex arc hyper- x=O,y>+1 and -tt/2.::;;b'::;;+1t/2 
bolic sine x=O,y<-1 

catanh complex arc hyper- y= O,x>+1 and -tt/2.::;;b'::;;+tt/2 
bolic tangent y= O,x<-1 

ccosh complex hyperbolic 
cosine 

csinh complex hyperbolic 
sine 

ctanh complex hyperbolic 
tangent 
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23.6 cexp, clog, cabs, cpow, csqrt 

Synopsis 

#include <complex . h> II All C99 

double complex cexp (double complex z); 
float complex cexpf(float complex z ) ; 
long double c omplex c expl(long double c omplex z ) ; 

double complex clog (double complex z); 
float complex c logf(float complex z); 
long d ouble complex clogl(long double complex z) ; 

double 
float 

cabs (double complex z ); 
c absf (float complex z); 

long double cabsl ( long double complex Z ) i 

double complex cpow 
double complex z, 
double complex u); 

float complex cpowf( 
float complex z, 
float complex u) ; 

long double complex cpowl( 
long double complex z , 
long double complex u) ; 

double complex csqrt (double complex z ); 
float complex csqrtf (float complex z ); 
long double complex c sqrtl (long double complex z) ; 

The domain and range of the functions are listed in Table 23- 3 assuming the notation 
(a + bi) = I (z) = I(x + y i) or 
(a + bi) = I(z, w) = I (x + yi, U + v i). 

Table 23-3 Domain and range of complex exponential and power 

C name Function 

cexp " 
clo g In, 

cabs absolute value 
a = s qrt(?+i) 

w cpow , 
c sqrt square root 

Branch cuts 

y= o,X< o 

y= o,X< o 

y= O,x <O 

Range 

- 1t :s:bs +1t 
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23.7 carg, cimag, creal, coni, cproj 

Synopsis 

#include <complex.h> 

double carg (double complex z); 
float cargf(float complex z); 
long double cargl(long double complex Z)i 

double cimag (double complex z); 

Complex Arithmetic 

II All C99 

float cimagf(float complex z); 
long double cimagl(long double complex z); 

double creal (double complex z); 
float crealf(float complex z); 
long double creall(long double complex z}; 

double complex conj (double complex z); 
float complex conjf{float complex Z)i 

long double complex conjl(long double complex z); 

double complex cproj (double complex z); 
float complex cprojf(float complex z); 
long double complex cprojl(long double complex z}; 

Chap. 23 

The domain and range of the functions are listed in Table 23-4 assuming the notation 

(a + bi) = f(x + yi) or 

(a+bi)=f(x + y i, u+ vi). 

Table 23-4 Domain and range of miscell aneous complex funct ions 

C name Function Branch cuts Range 

carg argument (also called y= D,x<O l-rt,+rt ) 
phase angle) 

cimag imaginary part of z: y 

creal real part of z: x 

conj a=x,b=-y 

cproj projection onto Riemann 
sphere 

The value of carg (z) is the angle on the complex plane from the positive real axis 
to the line from the origin to z . 

The value of cproj (z) is z if z is not infinite. If z is infinite, then cproj (z) is 
positive real infinity expressed as a complex number. If the implementation supports 
signed zeroes and z is infinite, then the (zero) imaginary part of cproj (z) will have the 
same sign as the imaginary part of z . For z to be infinite, it is sufficient that either compo
nent of z be infinite even if the other component is NaN. 
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Wide and Multibyte Facilities 

The facilities of this section support wide characters and strings, and multibyte characters 
and strings. Character classification and mapping faci lities are found in header file 
we type. h , and the remaining character and string facilities are found in wchar. h . For 
the most part, the facilities duplicate those for traditional characters and strings found in 
ctype. h , string. h , and stdio. h , changing the argument and r~turn types in an ob
vious fashion. 

24.1 Basic Types and Macro s 

#include <wchar.h> 
typedef wchar_ t; 
typede£ 
typede£ 

typede£ 

wint_ ti 
mbstate t; 

size_ti 

#define WEOF .. . 
#define WCHAR MIN 
#define WCHAR MAX 

Synopsis 

Type wchar t (the wide-character type) is an integral type that can represent all distinct 
values for any execution-time extended character set in the supported locales. It may be a 
signed or unsigned type, and it is also defined in s tdde f • h . The macros WCHAR _ MIN 
and WCHAR _ MAX give the numerical limi ts of the wchar _ t type; their values do not 
have to correspond to extended characters. 

Typewint_t is also an integral type that can hold all the values ofwchar_t and, 
in addition, at least one additional value that is not a member of the extended character set. 
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That constant value is given by the macro WEOF and is used to designate "end of input" 
and other exceptional conditions. The wint _ t type is one that is not altered under the 
usual argument promotions. 

Type mbstate _ tis a nonarray object type that can represent the state of aconver
sian between sequences of multibyte characters and wide strings. 

Type size _ t is the same type defined in stddef . h. 

References size _ t 11.1; wchar _ t 11 .1; wide characters 2.7.3 

24.2 Conversions Between Wide and Multibyte Characters 

Synopsis 

#include <wchar.h> 
size t mbrlen(const char *8, SiZ8_t n, mbstate_ t *ps}; 
wint_ t btowc(int c) 1 

size_ t mbrtowc(wchar_ t .pwc, const char *8, size tn, 
mbstat8_ t .pa); 

int wctob(wint_ t e)i 

size_ t wcrtomb(char *a, wchar_ t we, mbstate t *ps}; 
int mbsinit(const mbstate t *ps); 

The conversion functions in this section are extended versions of the basic functions de
fined in stdlib. h: mblen, mbtowc , and wctomb (Section 16.10). These functions, 
added in e89 Amendment 1, are more flexible, and their behavior is more completely 
specified. 

The mbrlen function inspects up to n bytes from the string designated by s to see 
if those characters represent a valid multibyte character relative to the conversion state 
held in ps. If ps is nUll, then the function uses its own internal state object, initialized at 
program startup to the initial state. If s is a null pointer, the call is treated as if s were" n 

and n were 1. If s is valid and corresponds to the null wide character, then 0 is returned 
(regardless of how many bytes make up the multi byte character). If s is any other valid 
multibyte character, then the number of bytes making up that character is returned (i.e., 
the value returned is in the range 1 through n). If s is an incomplete multibyte character, 
then - 2 is returned. If s is an invalid multibyte character, then - 1 is returned, and errno 
is set to EILSEQ. The conversion state is updated when the return value is non-negative, 
it is undefined when -1 is returned., and it is unchanged if -2 is returned. 

The btowe function returns the wide character corresponding to the byte e , which 
is treated as a one-byte multi byte character in the initial conversion state. If c (cast to 
unsigned char) does not correspond to a valid multibyte character, or ife is EOF, then 
btowc returns WEOF. 

The mbrtowc function converts a multibyte character s to a wide character accord
ing to conversion state ps. (If ps is null, then an internal state object is used, set at program 
startup to the initial state.) The result is stored in the object designated by pwe ifpwe is not 
a null pointer. If s is a null pointer, then the call to mbrtowe is equivalent to 
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mbrtowc (NULL I "" I 1, ps) . That is, s is treated as the empty string and the values of 
pwc and n are ignored. If s is a valid character corresponding to the null wide character, 
then 0 is returned (regardless of how many bytes in s were used). Otherwise, if s is a valid 
multibyte character, then the number of bytes used is returned. If s is an incomplete multi
byte character, then -2 is returned. Finally, if s is an invalid multibyte character. then -1 is 
returned. The conversion state specified by ps (or the internal conversion state ifps is the 
null pointer) is updated when a valid conversion occurs. The conversion state is unchanged 
if s is incomplete and is undefined if s is invalid. 

The we tob function (e89 Amendment 1) returns the single-byte, multibyte charac
ter corresponding to the wide character e in the initial conversion state. If no such single 
byte exists, EOF is returned. 

The wertomb function converts a wide-character we to a multibyte character rela
tive to the conversion state designated by ps. (If ps is null, then an internal conversion 
state object is used.) The multi byte character is stored into the array whose first element is 
designated by s and that must be at least MB _ CUR_MAX characters long. The conversion 
state is updated. If we is a null wide character, then a null byte is stored, preceded by any 
shift sequence needed to restore to the initial conversion state. The function returns the 
number of characters stored into s . If s is a null pointer, then we is ignored, and the effect 
of calling wertomb is simply to restore the initial conversion state and return 1 (as if 
L I \0 I had been converted into a hidden buffer). If we is not a valid wide character, then 
EILSEQ is stored into errno and - 1 is returned. 

The mbsini t function returns a nonzero value if ps is either null or points to an 
object that represents an initial conversion state. Otherwise it returns zero, 

References EILSEQ 11,2; errno 11.2; multibyte characters 2.1 .5; mbstate_ t 11.1; 
size_ t Il.l;wchar_ t 11.1;wint_ t Il.I 

24.3 Conversions Between Wide and Multibyte String s 

Synopsis 

#include <wchar.h> 
size_ t mbsrtowcs(wchar_t ·pwcs, const char ··src, size t n, 

mbstate t ·pS)i 
size_t wcsrtoDlbs(char ·s, const wchar t ··src, size t n, 

mbstate_t .pS)i 

The functions in this section are "restartable" versions of mbstowcs and wcstombs , 
which are defined in stdlib. h (see Section 16.11). These functions were added in 
Amendment 1 to C89. 

The mbsrtowcs function converts a sequence of multibyte characters in the null 
tenninated string s to a corresponding sequence of wide characters, storing the result in 
the array designated by pwes , The initial conversion state is specified by ps, and the in
put sequence of multibyte characters is specified indirectly by Brc . In nonnal operation, 
each multibyte character, up to and including the tenninating null character, is converted 



492 Wide and Multibyte Facilities Chap. 24 

as if by a call to mbrtowc, with the output wide characters being placed in the character 
array designated by pwcs. After the conversion, the pointer designated by arc is set to 
the null pointer to indicate that the entire input string was converted, and the number of 
wide characters stored into pwcs (not counting the terminating null wide character) is re
turned. The conversion state will he updated to he initial shift state-a consequence of 
converting the null character at the end of the input multibyte string. The output pointer 
pwcs may be the null pointer, in which case mbsrtowcs simply calculates the length of 
the output wide string required for the conversion. 

The conversion of the input multi byte string will also stop prematurely if a conver
sion error occurs. In this case, the pointer designated by src is updated to point to the 
multibyte character whose attempted conversion caused the error. The function returns - I, 
EILSEQ is stored in errno, and the conversion state will be indeterminate. 

The function wcsrtombs converts a sequence of wide characters beginning with 
the value designated by pwcs to a sequence of multibyte characters, storing the result into 
the character array designated by s . The initial conversion state is specified by ps, and the 
input wide string is specified indirectly by erc . In normal operation, each wide character, 
up to and including the tenninating null wide character, is converted as if by a call to 
wcrtomb, with the output multibyte characters being placed in the character array desig
nated by s. After the conversion, the pointer designated by arc is set to the null pointer to 
indicate that the entire input string was converted, and the number of bytes stored into s 
(not counting the terminating null character) is returned. The conversion state will be up
dated to be initial shift state-a consequence of converting the null wide character at the 
end of the input wide string. The output pointer a may be the null pointer, in which case 
wcartomba simply calculates the length of the output character array that would be 
needed for the conversion. 

The conversion of the input wide string will stop before the terminating null wide 
character is converted ifn output bytes have been written to a (and a is not a null pointer). 
In this case, the pointer designated by arc is set to point just after the last-converted wide 
character. The conversion state is updated-it will not necessarily be the initial state-and 
n is returned. 

The conversion of the input wide string will also stop prematurely if a conversion 
error occurs. In this case, the pointer designated by arc is updated to point to the wide 
character whose attempted conversion caused the error. The function returns - 1, EILSEQ 
is stored in errno, and the conversion state is indeterminate. 

References conversion slate 2.1.5; multibyte character 2.1.5; wide character 2.1.5 
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24.4 Conversions to Arithmetic Types 

Synopsis 

#include <wchar.h> 

double wcstod( 
const wchar_ t * restrict str, 
wchar_ t ** restrict ptr ); 

float wcstof( 
const wchar_ t * restrict str. 
wchar_ t ** restrict ptr ); 

long double wcstold( 
const wchar_ t * restrict str, 
wchar_ t ** restrict ptr ); 

long wcstel( 
const wchar t * restrict str, 
wchar_ t ** restrict ptr, int base ); 

long long westell( 
const wchar t * restrict str, 
wchar_ t ** restrict ptr, int base ); 

unsigned long westoul( 
const char * restrict str, 
wchar_ t ** restrict ptr, int base ); 

unsigned long strtoull( 
const char * restrict str, 
wchar_ t *. restrict ptr, int base ); 
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The wasto ... functions in this section are the same as their corresponding strto ... func
tions in Section 16.4, except for the types of their arguments, the use of the iswspace 
function to detect whitespace. and the use of the decimal-point wide character in place of 
the period. These wide-string conversion functions can accept implementation-defined in
put strings in addition to the strings accepted by strto .... 

The functions westod, westol, and westoul functions were added in (C89 
Amendment 1); the remaining ones are new in C99. 

24.5 Input and Output Functions 

The functions for input and output of wide character strings are listed in Table 24-1 along 
with their byte counterparts and the section in this book that discusses both the byte and 
wide-character functions. 

24.6 String Functions 

Table 24-2 lists the functions supporting wide strings along with their byte counterparts 
and the section in this book that discusses both the byte- and wide-string functions. 
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Table 24-1 Wide input/output functions 

Wide-character funct ion Section Byte-character function 

fgetwc 15.6 fgetc 

fgetwB 15.7 fgets 

fputwc 15.9 fputc 

fputws 15.10 fputs 

fwide 15.2 
fwprintf 15.11 fprintf 

fwscanf 15.8 fscanf 
getwc 15.6 gate 

getwchar 15.6 getchar 

putwc 15.9 putc 

putwchar 15.9 putchar 

swprintf 15.11 sprint£ 
swscanf 15.8 sBcanf 

ungetwc 15.6 ungetc 

vfwprintf 15.12 vfprintf 

vfwscan£ 15.12 vfseanf 
vswprintf 15.12 vsprintf 

vswscanf 15.12 vsscanf 

vwprintf 15.12 vprintf 

vwscanf 15.8 vacanf 

wprintf 15.11 printf 

wscanf 15.8 scanf 

24.7 Date and Time Conversions 

The wcsftime wide function corresponds to the strftime byte function. 

References strftime 18.6 

24.8 Wide-Character Classification and Mapping Functions 

Table 24-3 lists the wide-character classification and mapping functions, along with the 
corresponding character function and the section in this book that describes it. 

The wide-character function towctrans has no parallel function. Its signature is: 

#include <wetype.h> 
wint t towetrans( wint t we, wetrans t dese ); 

The towctrans function maps the wide-character we to a new value, which it re
turns. The mapping is specified by a value of type we trans t , which can be obtained by 
calling the wetrans function (Section 12.11). The LC CTYPE locale category must be 
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Thble 24-2 Wide-string functions 

Wide-string function Section Byte-string function 

wcscat 13.1 strcat 
wcschr 13.5 strchr 
wcscmp 13.2 strcmp 
wescoll 13.10 strcoll 
wcscpy 13.3 strcpy 
wcacspn 13.6 strcspn 
wcslen 13.4 strlen 
wcsncat i3.l strncat 
wcsncmp 13.2 strncmp 
wcsncpy 13.3 strncpy 
wcspbrk 13.6 strpbrk 

wcsrchr 13.5 strrchr 
wcsspn 13.6 strspn 
wcsstr 13.7 strstr 
wcstok 13.7 strtok 
wcsxfrm 13. 10 strxfrm 
wmemchr 14. 1 memchr 
wmemcmp 14. 1 memcmp 
wmemcpy 14.3 memcp¥ 

wmemmove 14.3 memmove 
wmemset 14.4 memset 

Table 24-3 Wide-character functions 

Wide-character function Section Byte-character function 

iswalnum 12.1 isalnum 
iswalpha 12.1 isalpha 
iswblank 12. isblank 
iswcntrl 12.1 iscntrl 
iswctype 12. isctype 
iswdigit 12 .3 isdigit 
iswgraph 12.4 isgraph 
iswlower 12.5 islower 
iswprint 12.4 isprint 
iswpunct 12.4 ispunct 
iswspace 12.6 isspace 
iswupper 12.5 isupper 
iswxdigit 12.3 isxdigit 
towlower 12.9 tolower 
towupper 12.9 toupper 
wctrans 12.1 1 ctrans 

the same during the call to towctrans as it was during the call to wctrans t , which 
produced the value of dese . 



A 
The ASCII Character Set 

o 
o 

Hex. OClal Dec. Char. Name 

0 0 0 '@ NUL 

I I I 'A SOH 
2 2 2 'B STX 
3 3 3 'C ETX 
4 4 4 'D EaT 
5 5 5 'E ENQ 

6 6 6 'F ACK 
7 7 7 "G BEL, 

8 010 8 ' H BS. 
9 011 9 ' I TAB, 

O,A 012 10 ' J LF. 
O,B 0)3 II ' K VT. 
O,C 014 12 'L FF. 
O,D 015 13 'M CR. 
O,E 016 14 'N SO 
O,F 017 15 "0 SI 

OxlO 020 16 'P DLE 
Oxll 021 17 'Q DCI 
Oxl2 022 18 'R DC2 
Oxl3 023 19 'S DC3 
Ox14 024 20 'T DC4 
OxlS 025 21 'U NAK 

Ox16 026 22 'V SYN 
Oxl7 027 23 'W ETB 
OxlS 030 24 'X CAN 
Oxl9 031 25 ' Y EM 

OxlA 032 26 'Z SUB 
Oxl S 033 27 ' [ ESC 
OxiC 034 28 ,\ FS 
OxlO 035 29 'J OS 
OxlE 036 30 M RS 
OxlF 037 31 , US 

\ a 

\ b 

\ t 
\ n 

\v 
\f 

\ r 

Ox20 
040 

0,4{) 
0100 

Ox60 
0 140 

Dec. Char. Dec. Char. Dec. Char. 

32 SP 64 @ 96 -
33 I 65 A 97 a 

34 " 66 B 98 b 

35 # 67 C 99 c 

36 s 68 D 100 d 

37 , 69 E 101 • 
38 • 70 F 102 f 

39 , 71 G 103 g 

40 ( 72 H 104 h 

41 ) 73 I 105 i 

42 • 74 J 106 j 

43 + 75 K 107 k 

44 · 76 L 108 1 

45 - 77 M 109 - m 

46 · 78 N 110 n 

47 / 79 0 III 0 

48 0 80 p 112 p 

49 1 81 Q 113 q 

50 2 82 R 114 r 
51 3 83 s 115 • 
52 4 84 T 116 t 

53 5 85 u 117 u 

54 6 86 v 118 v 
55 7 87 w 119 w 

56 , 88 x 120 x 
57 9 89 y 121 Y 

58 , 90 z 122 z 

59 , 91 I 123 { 
60 < 92 \ 124 I 
61 : 93 I 125 } 
62 94 . 126 > -
63 ? 95 127 DEL 
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Syntax 

abstract-declarator: 
pointer 
pointer opt direct-abstract-declarator 

additive-expression: 
multiplicative-expression 
additive-expression add-op multiplicative-expression 

add-op : one of 
+ -

address-expression .-
& cast-expression 

array-declarator: 
direct-declarator [ constant-expressionopt ) 
direct-declarator [ array-qualifier-listopt array-size-expressionopr 
direct-declarator [ array-qualifier-listopt *] 

array-qualifier: 
static 
restrict 
const 
volatile 

array-qualifier-lisl : 
array-qualifier 
array-qualifier-list array-qualifier 

array-size-expression: 
ass ig nmen! -exp re ssion 

* 

(unlil e99) 
(e99) 
(e99) 
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assignment-expression: 
conditional-expression 
unary-expression assignment-op assignment-expression 

assignment-op : one of 
: +: -: '*", /- %= « = 

binary-exponent: 
p sign-partopt digit-sequence 
P sign-parropt digit-sequence 

bit-field: 
declarator opt : width 

bitwise-aNd-expression : 
equality-expression 

» = &= 

bitwise-aNd-expression & equality-expression 

bitwise-negation-expression : 
- cast-expression 

bitwise-or-expression : 
bitwise-xor-expression 
bitwise-or-expression 

bitwise-xor-expression: 
bitwise-aNd-expression 

bitwise-xor-expression 

bitwise-xor-expression " bitwise-and-expression 

break-statement: 
break; 

case-label: 
case constant-expression 

cast-expression: 
unary-expression 
( rype-name ) cast-expression 

c-char .-

Syntax 

A 
: I: 

any source character except the apostrophe ('), backslash (\), or newline 
escape-character 
universal-character-name 

c-char-sequence : 
c-char 
c-char-sequence c-char 

c/raracter-COflstaflt : 
c-char-sequence 

L I c-char-sequence 

character-escape-code : one of 
n t b r f 

v \ • 
a ? 

App. B 

(C99) 

(C89) 

(C89) 



App. B Syntax 

character-type~specifier : 
char 
signed char 
unsigned char 

comma-expression: 
ass ig nm ent-exp re ssion 
comma-expression I assignment-expression 

complex-type-specijier: 
float _ Complex 
double _ Complex 
long double _ Complex 

component-declaration: 
type-specifier component-declarator-list ; 

component-declarator: 
simple-component 
bit-field 

component-declarator-list: 
component -declo fa to r 
component-declarator-list . component-declarator 

component-selection-expression: 
direct-component-selection 
indirecr-component-selection 

compound-literal: 
( type-name ) { initializer-list , opt} 

compound-statement: 
{ declaration-or-statement-Jis fopt } 

conditional-expression: 
logical-or-expression 
logical-or-expression ? expression 

conditional-statement : 
if-statement 
if-else-statement 

constant: 
integer-constant 
floating-constant 
character-constant 
string-constant 

constant-expression: 
conditional-expression 

continue-statement: 
c ontinuei 

conditional-expression 
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decimal-constant: 
nonzero-digit 
decimal-constant digit 

decimal-floating-constant: 

declaration: 

digit-sequence exponent jloating-suffixopr 
dotted-digits exponentopt jloating-suffixopr 

declaration-specifiers initialized-declarator-list i 

declaration-list: 
declaration 
declaration-list declaration 

declaration-or-statement : 

declaration 
statement 

declaration-or-statement-list: 
declaration-or-statement 
declaration-or-statement-list declaration-or-statement 

declaration-specifiers: 

declarator: 

storage-class-specifier declaration-specifiersopt 
type-specijie r dec 10 fa ri on -5 pee ifie rs opt 
type-qualifier dec[aration-specijiersopt 
function-specifier declaration-specijiersopt 

pointer-declarator 
direct-declarator 

default-label: 
default 

designation: 

designator: 

designator-list = 

[ constant-expression ] 
. identifier 

designator-list: 
designator 
designator-list designator 

digit: one of 
o 1 2 3 4 5 6 789 

digit-sequence: 
digit 
digit-sequence digit 

direct-abstract-declarator: 
( abstract-declarator) 

direct-abstract-declarator opt [ conslanl-expressionopt ] 

Syntax App. B 

(C99) 
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direct-abstract-declarator opt [ expression] 

direct-abstract-declarator opt [ * ] 
direct-abstract-declaratoropt (parameter-type-listopt ) 

direcl-component-selecrion : 
postfIX-expression. identifier 

direct-declarator: 
simple-declarator 
( declarator ) 

Junction-declarator 
array-declarator 

do-statement: 
do statement while (expression ) 

dotted-digits: 
digit-sequence. 
digit-sequence . digit-sequence 
. digit-sequence 

doued-hex-digits : 
hex-dig it-sequence • 
hex-digit-sequence • hex-digit-sequence 
. hex-dig it-sequence 

enumeration-constant .
identifier 

enumeration-conslant-definition : 
enumeration-constant 
enumeration-constant ", expression 

enumeration-definition-lisr : 
enumeration-constant-definition 
enumeration-definition-list , enumeration-consrant-deJinition 

enumeration-tag: 
identifier 

enumeration-type-definition : 
enum enumeration-tagopf { enumeration-definition-list } 
enum enumeration-tagopr { enumeration-definition-list , } 

enumeration-type-reference : 
enum enumeration-tag 

enumeration-type-specijier: 
enumeration-type-definition 
enumeration-type-reference 

equality-expression: 
relational-expression 
equality-expression equality-op relational-expression 

equality-op : one of 

"'''' 1-
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escape-character: 
\ escape-code 

universal-character-name 

escape-code: 
characrer-escape-code 
octal-escape-code 
hex-escape-code 

exponent: 

expression: 

e sign-partopt digit-sequence 
E sign-partopt digit-sequence 

comma-expression 

expression-list: 
assignment-expression 
expression-list , assignment-expression 

expression-statement: 
expressIOn 

field-list : 
component-declaration 
field-list component-declaration 

floating-constant: 
decimal-floatiNg-constant 
hexadecimal-floaring-constant 

jloating-poinHype-specijier,' 
float 
double 
long double 
complex-type-specijier 

floating-sufflX: one of 
f F 1 L 

Jor-expressions : 
(in itial-clauseopt expressionopt ; expressionopt 

jor-statement: 
for Jor-expressions statement 

function~call : 
postfix~expression expression~listoPt ) 

function~declaralor : 
direct~declarator ( parameter~type~list 
direct~declarator ( identijier-listopt ) 

function-definition: 
function-det-specifier compound-statement 

function-de/-specifier: 
decla ration-specifiers opt dec la ra to r decla ra tion- list opt 

Syntax App. B 

(C99) 

(C89) 

(C99) 

(C89) 
(C99) 

(C89) 
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Junction-specifier: 
inline 

gOlo-statement : 
goto named-label; 

h-char-sequence: 

any sequence of characters except> and end-oj-line 

hexadecimal-constant : 
Ox hex-digit 
ox hex-digit 
hexadecimaL-constant hex-digit 

hexadecima l-floating- constant: 
hex-prefix dotted-hex-digits binary-exponent jloating-sujfuopt 
hex-prefix hex-digit-sequence binary-exponent jloating-sujfixQpt 

hex-digit: one of 
o 1 234 5 6 7 8 
ABC D E F abc 

hex-digit-sequence : 
hex-digit 
hex-digit-sequence hex-digit 

hex-escape-code: 

hex-prefIX: 

hex-quad: 

identifier: 

x hex-digit 
hex-escape-code hex-digit 

Ox 
OX 

hex-digit hex-digit hex-digit hex-digit 

identifier-nondigit 
identifier identifier-nondigil 
identifier digit 

identifier-list: 
identifier 
parameter-list , identifier 

identifier-nondigit: 
nondigit 
universal-character-name 

9 

d e 

other implementation-defined characters 

If-eLse-statement: 
if ( expression ) statement else statement 

if-statement: 
if (expression) statement 

f 
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indirect-component-selection: 
post[u-expression - > identifier 

indirection-expression,' 
• cast-expression 

initial-clause: 
expression 
declaration 

initialized-declarator: 
declarator 
declarator:a: initializer 

initialized-declarator-list : 
initialized-declo rator 
initialized-decLarator- list , initialized-declarator 

initializer,' 
assignment-expression 

{ initializer-list , opr } 

initializer-list: 
initializer 
initializer-list I initializer 
designation initializer 
initializer-list I designation initializer 

integer-constant : 
decimal-constant integer-suffixopt 
octal-constant integer-suffixopt 
hexadecimal-constant integer-sujfuopt 

integer-suffix: 
long-suffix unsigned-sujflXopt 
long-long-suffix unsigned-sujJixop, 
unsigned-suffix long-sufflXop, 
unsigned-suffix long-Iong-suffixopt 

integer-type-specijier: 
signed-type-specijier 
unsigned-type-specijier 
character-type-specijier 
bool-type-specijier 

iterative-statement: 
while-statement 
do-statement 
fo r-statement 

label .-
named-label 
case-label 
default-label 

Syntax App. B 
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(C99) 
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labeled-statement: 
label : statement 

logical-and-expression : 
bitwise-or-expression 
logical-and-expression &&: bitwise-or-expression 

logical-negation-expression : 
1 cast-expression 

logical-or-expression : 
logical-and-expression 
logical-or-expression I I logical-and-expression 
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long-long-suffu: one of (C99) 
11 LL 

long-suffIX: one of 
1 L 

multiplicative-expression: 
cast-expression 
multiplicative-expression mull-op cast-expression 

mult-op one of 
• / % 

named-label: 
idenIijier 

nondigit : one of 
A B C 

N 0 p 

a b c 
n 0 p 

nonzero-digit.' one of 
1 2 3 

null-statement: 
; 

octal-constant: 
0 

D E F 

Q R S 

d e f 
q r s 

4 5 6 

octal-constant octal-digit 

octal-digit.' one of 
0 1 2 

octal-escape-code: 
octal-digit 

3 4 5 

octal-digit octal-digit 

G H 

T U 

g h 
t u 

7 8 

6 7 

octal-digit octal-digit octal-digit 

I J K L 

V W X Y 

i j k 1 
v w x y 

9 

M 

Z 

m 

z 
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on-ofJ-switch: 
ON 
OFF 
DEFAULT 

parameter-declaration: 
declaration-specifiers declarator 
declaration-specifiers abstracr-declaratorop1 

parameter-list: 
parameter-declaration 
parameter-list I parameter-declaration 

parameter-type-list: 
parameter-list 
parameter-list 

parenthesized-expression: 
( expression 

pointer .-
• lype-qualijier-lislopt 
* rype-qualijier-lislopt pointer 

pOinter-declarator .-
pointer direct-declarator 

postdecrement-expression : 
postfix-expression 

postfix-expression: 
primary-expression 
subscript-expression 
component -selection-express; on 
Junction-call 
pastincrement-expression 
pos/decrement-expression 
compound-literal 

pas/increment-expression: 
postfIX-expression ++ 

predecrement-expression : 
- - unary-expression 

pre increment-expression : 
++ unary-expression 

preproc:essor-Iokens: 
any sequence of C tokens-or non-whitespace characters 

Syntax 

that cannot be interpreted as tokens- that does not begin with < or • 

primary-expression: 
identifier 
constant 
parenthesized-expression 

App. B 

(C99) 
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q-char-sequence: 
any sequence of characters except" and end-afline 

relational-expression: 
shift-expression 
relational-expression relational-op shift-expression 

relational-op: one of 

< <= > >= 

return-statement: 

s-char: 

return expressionopr ; 

any source character except the double quote n , 

backslash \ , or newline character 
escape-character 
universal-character-name 

s-char-sequence: 
s-char 
sochor-sequence s-char 

shift-expression: 
additive-expression 
shift-expression shift-op additive-expression 

shlft-op : one of 
« » 

signed-type-specifier: 
short or short int or signed short or signed s hort int 
int or signed int or signed 
long or long int or signed long or sign ed long int 
long long or long long int or signed long long or 

signed long long int 

sign-part: one of 

+ 

simple-component: 
decla rator 

simple-declarator: 
identifier 

sizeofexpression : 

statement : 

sizeof ( rype-name ) 
sizeof unary-expression 

exp ression-s ta t eme nt 
labeled-statement 
compound-statement 
conditional-statement 
iterative-statement 
switch-statement 
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break-statement 
continue-statement 
return-statement 
gOfo-statement 

null-statement 

storage-elass-specifier.- one of 
auto extern register static typede£ 

string-constant : 
n s-char-sequenceopt n 

L n s-char-sequenceopt n 

structure-tag: 
identifier 

structure-lype-definition: 
struct structure-Iagap! { field-list } 

structure-type-reJerence : 
struct structure-tag 

struClure-type-specijier: 
structure-type-deJinition 
structure-type-reJerence 

subscript-expression: 
postfix-expression 

switch-statement: 

expression 

swi tch ( expression ) statemenr 

top-level-declaration: 
declaration 
function-definition 

translation-unit: 
top-level-declaration 
translation-unit top-level-declaration 

typedef-name : 
identifier 

type-name: 
declaration-specifiers abstract-declaratorOpt 

type-qualifier .-
const 
volatile 
restrict 

type-qualifier-list: 
type-qualifier 
type-quali!er-list type-qualifier 

type-specifier: 
enumeration-type-specifier 
floa Ii ng-point -type-spec ifie r 

Syntax App. B 

(C89) 

(C99) 

(C89) 
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integer-type-specijier 
structure-Type-specifier 
typedef-name 
un ion -type-specijie r 
void-type-specifier 

unary-expression: 
postfu-expression 
sizeofexpression 
unary-minus-expressIOn 
unary-pIus-expression 
logical-negation-expression 
bitwise-negation-expression 
address-expression 
indirection-expression 
pre increment-expression 
predecrement-expression 

unary-minus-expression : 

- cast-expression 

unary-plus-expression : 
+ cast-expression 

union-tag: 
identifier 

union-Type-definition : 
union union-tagopf { field-lis! } 

union-type-reference: 
union union-tag 

union-type-specifier: 
union-type-definition 
union -type-re Ie renee 

universal-character-name: 
\ u hex-quad 
\ U hex-quad hex-quad 

unsigned-suffix: one of 
u U 

unsigned-type-specifier: 
unsigned short i ntoPt 
unsigned intopt 
unsigned long intopt 
unsigned long long intopt 

void-type-specifier: 
v oid 

while-statement: 
while (expression) statement 
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width .' 
constant-expression 

Syntax App.B 
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Answers to the Exercises 

This appendix contains solutions to the exercises in Chapters 2 to 9. 

CHAPTER 2 ANSWERS 

1. Reserved words, hexadecimal constants, wide string constants, and parentheses are lexical to
kens. Comments and whitespace serve only to separate tokens. Trigraphs are removed before 
token recognition. 

2. The number of tokens for each string is: 
(a) 3 tokens (f) 4 tokens; .'It is not a single operator 

(b) 2 tokens; - is an operator, (g) not a token; same as "X\ n, which is 

not part of the constant an untenninated string constant 
(c) 1 token (b) not a token; identifiers cannot have $ 
Cd) 3 tokens; the second onc is "FOO· (i) 3 tokens; *= is an operator 
(e) 1 token (j) either none or 3; ## is not a lexical token, 

but it happens to be a preprocessor token 

3. The result is .*./; the comments are identified next between parentheses. Quotation marks 
inside a comment do not have to balance. 

/**/*/*n*/*/*n//*//**/*/ 
(--) (---) (-----) (--) 

4. The order is: 
I. converting trigraphs 
2. processing line continuation 
3. removing comments 
4. collecting characters into tokens 

5. Some possible objections: 
(a) difficult to identify (read) the multiple words in the identifier; 

use uppercase or underscores 
(b) the identifier's spelling is close to a reserved word 
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(c) lowercase 1 ("ell") and uppercase 0 ("oh") are easily mistaken for 1 (one) and 0 (zero) 
(d) closely resembles a numeric literal (the first letter is an "oh") 
(e) if the compiler accepted this identifier, it would be an extension 

6. Ca) Forexample:x '" a //*divide*/ bi 
(b) Assuming a Standard C implementation that distinguished only the first 31 characters of 

identifiers, a Standard C program that spelled the same identifier different ly after the 31 5t 
character would be flagged as an error in C++. 

(e) For example, the declaration: int class = a i 
Cd) The expression sizeof (I a I) ==sizeof (char) will be different in C and C++ as

suming sizeof (char) I =sizeof (int). 

CHAPTER 3 ANSWERS 

l. Ca) The space before the left parenthesis is not permitted in Standard or traditional C. Instead 
of a macro with one parameter, ident will be a macro with no parameters that expands to 

" (x) x " . 

(b) The ~ and; characters are not necessary and are probably wrong. In some traditional C 
compilers, the space after # might cause problems. 

(c) This definition is aU right. 
(d) This definition is aU right; you can define reserved words as macros. 

2. Standard C Traditional C 
(a) b+a 
(b) x 4 (two tokens) 
(c) -a book-

(d) p?free (p) ,NULL 

b+a 
x4 (one token) 
# a book 

p?p?p? .. : NULL: NULL : NULL (infinitely) 

3 . The result after preprocessing (ignoring whites pace) is these three lines: 

int blue = 0; 
int blue = 0; 
int red = 0; 

4. Because the arguments and body are not parenthesized, the result of expanding the macro 
could be misinterpreted in a larger expression. A safer definition would be 

#define DBL (a) ( (a) + (a)) 

5. The macro is expanded in the following steps: 
M(M) (A,B) 

""(A,B) 

A = "B" 

6. This solution depends on the presence of defined and #error: 
#if I defined (SIZE) II (SIZEd) II (SIZE>10) 
#error "SIZE not properly defined " 
#endif 

7. In the preprocessor command #include <:/a/file.h>, the sequence /a/file.h is 
considered a token (a single me name); it would not be a token to the compiler. 

8. Presumably the programmer wishes to print an error when x==O . However, x==O is a run
time test, whereas #error is a compile-time command. If this program were compiled, the 
error message would always appear and halt compilation regardless of the value of x. 
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CHAPTER 4 ANSWERS 

I. The function will return the value of its argument each time it is called. Only if the static 
storage class specifier is used on the declaration of i inside P will the return value change in 
successive calls. 

2. The declarations of f as a function , integer variable, type name, and enumeration constant all 
conflict with each other; eliminate all but one of those declarations. The use of f as both a 
structure tag and a union tag conflict; eliminate the union so that f is also declared as a struc
ture component. The use of f as a label does not conflict with any other declarations except in 
a few older C implementations. 

3. Code int ii long i; float i; 

4. 

1 
2 
3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

(a) 

(b) 
(e) 

(d) 
(e) 

(f) 
(g) 

int i; 
void f(i ) 

long i; 

{ 
long 1 - i; 

{ 
float i; 

i -3 .4; 

} 
1 = i+2; 

} 
int 'p = &i; 

extern void P (void) ; 
register int i; 
typedef char *LTj 

(declared) 

(used) 

(declared) 
(declared) 

(used) 

(used) 

extern void Q(int i, const char *cp); 
extern int R( double *(*p) (long i) ); 
static char STR [11] ; (Note: leave room for the null character.) 

(declared) 
(used) 

const char STR2 [] _ INIT_ STR2j Braces around INIT_ STR2 are optional . 
Also acceptable would be: const char *STR2=INIT STR2; (No braces.) 

(h) int *IP - &i j 

5. int m[3] [3] = {{1,2,3},{1,2,3},{1,2,3}}; 

CHAPTER 5 ANSWERS 

1. Note that none of these types should involve type int since the size of int might be no larger 
than short anyway. 
(a) long or unsigned long (unsigned short might not handle 99999) 
(b) a structure containing two components: type short (for the area code) and type long 

(for the local number) (or the unsigned versions of these types) 
(c) char (any variant) 
(d) signed char in Standard C; short in other implementations (char might be un

signed) 
(e) signed char in Standard C; short in other implementations (char might be un

signed) 
(f) double would work, but less space would be occupied by using type long and storing 
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the balance as a number of cents 

2. The type of UP _ARROW_ KEY is int and has the value Ox86 (134). If the computer uses a 
signed type for char. the values for the extended characters will be negative, so if the argu
ment to is_ up_ arrow really is Ox86, the return statement test will be -122=::134 , 
which is false instead of true. The correct way to write the function is to coerce the character 
code to be of type char or coerce the argument to be of type unsigned char. That is, use 
one of the following return statements: 

return c == (char) UP_ ARRON_KEY; 
return (unsigned char) c •• UP_ARRON_KEY; 

The first solution is probably better since it allows the most freedom in defining a value for 
UP ARROW KEY. 

3. (aJ legal 
(bJ legal 
(c) illegal; cannot dereference a void * pointer 
(d) illegal; cannot dereference a void * pointer 

4. (aJ * (iv + i) 
(b) *(*(im+i)+j) 

5. 13. The cast is not necessary in Standard C, but it makes the intent clearer and may be needed 
in some older compilers. 

6. x.i '" 0; 
x.F.s :: 0; 
x.F .e • 0; x.F . m • 0; 
x.U.d '" a • 0; 

(0 and I are the only legal values.) 

(orx . U.p '" NULL; I 

butnotx.U.a(OJ '" 1\0 1 ; , 
which leaves some elements of a undefined) 
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7. The sketches are shown next. The number of bits occupied by each field is indicated, and 
markers along the bottom indicate word boundaries. Note particularly the order of the bit 
fields. 

Big-endian, right-Io-left bit packing 

32 
m 
24 

Little-enman, right-to-left bit packi ng 

P 32 

d64 

• 48 

P 32 

m e 

24 7 32 

~ .... ------- increasing memory .<I<lre"" 

8. typede£ int *fpi(); / * type definition */ 
£pi *X j / * variable declaration */ 
int *fpi () / * function; can't use typede£ in header */ 
{ 

return (fpi *)0; 
} 

CHAPTER 6 ANSWERS 

I. All the casts are permitted in Standard and traditional C except (c) and (e), which are disal
lowed in Standard C. 

2. In this solu tion, we assume the traditional C compiler allows mixed pointer assignments but 
otherwise fo llows Standard rules. However, for some traditional C compilers, the answers will 
be the same as for Question 1. 
(a) Permitted in Standard and tradi tional C. 
(b) Disallowed in Standard C, pcnniucd in traditio nal C. 

(c) Disallowed in Standard C, permi tted in traditional C. 

(d) Disallowed in Standard and traditional C. 
(e) Disal lowed in Standard C, permitted in traditional C. 
(f) Permitted in Standard and traditional C. 

3. (a) unsigned 

(b) unsigned long in traditional C; long or unsigned long in Standard C 
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(c) double 
(d) long double in Standard C; 
(e) int .... (the usual unary conversions are applied to int [] ) 
(0 short (*) () , because the usual unary conversions are applied fust. Here is a plausi

ble si tuation in which this could happen: 
extern short £1 () I £2 (), (*pf) () ; 

extern int i; 
pf: (i>O ? f1 : £2 ); / * binary conv on £1 and £2 */ 

4. It is permitted (if wasteful) for an implementation to use 32 bits to represent type char. Re
gardless of the representation, the value of sizeof (char) is always I. The range of type 
int cannot be smaller than that of type char; it can be the same or it can be arbitrarily larger. 

5. There is not necessarily any relationship between them. They could be the same or one could 
be larger than the other. 

6. The value 128 can be expressed as the 32-bit hexadecimal number 0000008016. Since computer 
A is a big-endian, the bytes are stored in the order 00 16, 00 16 0016, 8016. On the little-endian 
computer, the bytes are reassembled from the low-order end, yielding 800000~6 or 
- 2,147,483,648. The result is the same if A is the liule-endian and B is the big-endian . 

CHAPTER 7 ANSWERS 

1. (a) char * 
(b) float (double in traditional C) 
(c) float 
(d) int 
(e) float (double in traditional C) 
(I) int 

(g) int 
(h) int 
(i) illegal 

0) float 

2. (a) pl+=li p2+=li *pl=*p2; 
(b) *pl=*p2 i pl-:l i p2-=li 

3. (a) #define low_ zeroes (n) (-l«n) (if n is not greater than the width of type 
int) 
(b) #define low ones {n} {-low zeroes (n}) 

(c) #define mid_ zeroes (width, offset) \ 
(low_ zeroes (width+offset) 1 low_ ones (offset}) 

(The + operator could be used in place of I.) 
(d) #define mid_ ones(width,offset (-mid_ zeroes(width,offset}) 

4. The expression j ++::++j is legal, but its result is undefined in Standard Cbecause j is mod
ified twice in the same expression. Depending on which operand of == is evaluated first, the 
result could be 0 or I, although the final value of j is likely to be 2. However, j++&&++j is 
legal and defined; its result is 0, and j has the value 1 at the end of the expression. 

5. (a) allowed since the types are compatible 
(b) not allowed (the referenced type on the left does not have enough qualifiers) 
(c) allowed since only one type specifies a size 
(d) allowed since qualification is irrelevant if the right side is not an lvalue 
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(e) not allowed only because float is not compatible with its promoted type (double) 
(t) allowed since the referenced types are compatible 

519 

6. No. The assignment is illegal because each structure definition creates a new type. If the defi
nitions are in different source files, the types are compatible, but this is a technicality that per
mits programs compiled in separate pieces to have well-defined behavior. 

CHAPTER 8 ANSWERS 

1. (a) n = AI 

Ll: 

if (n>=B) goto L2; 

sum+=n; 
n++j 

goto Ll; 
L2: ; 

(b) L, 

if (a<b) { 

a++; 
goto L; 

} 
(e) L, 

sum += .pi 
if (++p < q) goto L; 

2. The value of j is 3. " j is undefined" is incorrect; although the program jumps into a block, the 
fact that i has storage class static means that it will be properly initialized before the pro
gram begins. 

3. The value of sum is 3. i lakes on the values 0, I, ... each time around the loop. When i is 0, 
I, and 3, sum is incremented and the continue statement causes another loop iteration. 
When i is 2, sum is not altered, but the loop is continued. However, when i is 4, the break 
within the switch causes control to reach the break statement in the loop, which causes ter
mination of the loop. Therefore. case 5: is never executed. 

CHAPTER 9 ANSWERS 

1. (a) valid prototype 
(b) legal declaration, but not a prototype; must have a parameter type list within parentheses 
(c) illegal declaration; must have at least one parameter declaration before e llipsis 
(d) illegal declaration; must have at least one type specifier, storage class specifier, or type 

qualifier before each parameter name 
(e) valid prototype; parameter name is not necessary 

(f) legal definition, but not a prototype; must have parameter types within parentheses 

2. (a) not compatible; prototype' s parameter type is not compatible with the usual argument 
conversions. which is required when the definition is not in prototype form 

(b) not compatible; it does not matter that the prototype appears in the definition 
(c) compatible; the parameter names do not have to be the same 
(d) not compatible; the two prototypes do not agree in the use of the ellipsis 
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(e) compatible; nei ther is a prototype, so promoted argument types are passed 
Cf) compatible 

App.C 

3. (a) not legal; cannot convert short * to int * under the assignment convers ions 
(b) legal; s will be converted to type int and ld will be unchanged 
(c) legal ; ld will be converted to type short 
(d) legal; the firs t parameter is unchanged, the second is converted to type int, and the third 

is unchanged 
(e) legal; the parameter is converted to type int before the call, and back to type short at 

the beginning of the called function 
(f) legal, but probably wrong; the parameter is unchanged but will be interpreted as being of 

type in t by the caller 

4. The can is governed by the prototype appearing on the first line. The latter declaration does 
not hide the former, because P has external linkage. 

5. (a) OK; the val ue will be converted to type short before being returned 
(b) OK; the value will be converted to type short before being returned 
(c) illegal; the expression cannot be converted to the type of the return value 
(d) illegal; the expression cannot be converted under the assignment conversion rules 
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discarded expressions 250, 255, 

261,269 
di v facility 41 9 
divide by 0 206, 228, 229 
do statement 268 

dollar sign character 22 

domain error 425 
domain, real and complex 123, 

199 
doub1e type 132 
duplicate declarations 78, 79, 151 
dynamic_ cast C++ 

keyword 39 

E 

EBCDIC 14 
EDOM error code 327,425 

effective type 188 
EILSEQ error code 328 

#elif command 62 
else (See conditional statement) 
#else command 61 

encodi ng of characters 14, 16,39, 
497 

#endi f preprocessor 
command 61 

end-of-file 363 
end-of-line 11 , 13,34 

entry point of programs (See 
main) 

enumeration constants 
in expressions 208 
overloading class 78 
value of 147 

enumerations 
compatibility 173 

constants 83, 146 
dec laration syntax 145 
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static variables 103 
structures 109 
unions 110 

inner declarations 74 
input/output functions 363-?? 
insertion sort 271 
instr 353 
instr facility 353 
int type specifier 125, 128 
INT FASTN MAX macro 472 
INT FASTN MIN macro 472 - -
int_ fastN_ ttype 472 
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mbsini t function 491 
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self-referential 151 
size of 158 
tags 83, 148 
type of 149 

strxfrm facility 356 
subnormal 440 
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subnormal floating-point 
number 133 

subscripting 84,14 1,210 
swi tch statement 274 

body 263 
effect on initialization 81 
use 275 

swprintf function 388 
syntax notation 9 
sys/times. h header file 443 
sys / types . h header file 443 
sys_ errlist facility 328 
system facility 416 

T 

tags 
data 163 
enumeration 145 
overloading class 78 
structure 148 
union 160 

tan facility 433 
tanh facility 433 
target computer 13 
Technical Corrigenda to C89 4 
template C++ keyword 39 
tentative definition 114 
test suites 8 
text streams 363 
tgamma faci lity 440 
tgmath,h 425,435 
this C++ keyword 39 
Thompson, Ken 3 
throw C++ keyword 39 
tilde character 12 
_ TlME_ facility 51 
time facility 445 
time. h header file 443 
time _ t type 445 
time-of-day facilities 443-451 
times facility 443 
tm structure 446 
TMP MAX macro 405 
tmpfile facility 405 
tmpnam faci lity 405 
teasci i facility 341 
teint facility 342 
tokens (lexical) 20 
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converting to strings 55 
merging by preprocessor 4 I , 

55,57 
top-level declarations 74, 84 
toupper facility 342 
towc trans function 345 
towlower function 342 
towupper function 342 
traditional C 4 

converting library 
descriptions 312 

translation units 7. 74, 175 
trigonometric functions 433,434 
trigraphs 14,59,333 
true c++ keyword 39 
true macro 329 
trunc facility 428 
try C++ keyword 39 
twos-complement 

representation 125, 190 
type (See types) 
type checking 

of function parameters 300 
of function return values 302 

type names 176 
in cast expression 219 
in sizeof expression 221 

type qualifiers 89,98,2 13. 247, 
296 
restrict 94 

type specifiers 73, 86 
Bool 132 

char 129 
_ Complex 135 
default 87 
double 132 
enumeration 145 
float 132 

Imaginary 136 
int 125, 128 
integer 125 
long 128 
long double 132 
long float 132 
short 125, 128 
signed 125 
structure 148 
typedef names 168 
union 160 

unsigned 128, 129 
void 87 
without declarators 88 

typedef names 168- 172 
equivalence of 173 
LALR(l) grammar 171 
overloading class 78 
redefining 171 
scope 83 

typedef storage class 83, 168 
type-generic macros 425,435 
typeid C++ keyword 39 
type name C++ keyword 39 
types 123-180 

arithmetic 123 
array 140 
Boolean 132 
categories of 123 
character 129 
compatible 172- 176 
complex 135 
composite 172 
conversions 188 
corresponding 136 
domain 123 
effective 188 
enumerated 145, 173 
extended 131 
floating-point 132 
functions 165, 289 
imaginary 136 
integer 124 
pointer 136, 175 
real 136 
representation of 188 
same 172 
scalar 123 
semantic 440 
signed 125 
structure 149, 175 
unions 162, 175 
unsigned 128 
user defined 168 
variably modified t 44 
void 168 

u 

UCHAR MAX 127 

UCS-2 40 
UCS-4 40 
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UINT FASTN MAX macro 472 
uint_ fastN_ t type 472 
UINT LEASTN MAX macro 471 - -
uint_ leastN_ ttype 471 
UINT MAX 127 
UINTMAX C macro 473 
UINTMAX MAX macro 473 
uintmax_ ttype 473 
UINTN C macro 471 
UINTN MAX macro 470 
uintN _ t type 470 
UINTPTR MAX macro 473 
uintptr_ ttype 191 ,473 
ULLONG MAX 127 
ULONG MAX 127 
unary expressions 219 
#unde f preprocessor 

command 53,64 
underflow 206 

floating-point conversion 191 
underscore character 22 
ungetc facility 372, 374 
ungetwc function 375 
Unicode 40 
union type 160 
unions 

alignment of 162 
compatibility 175 
components 83, 161 
data tags 163 
declaration of 160 
initializers 110 
packing of components 161 
portability of 165 
size of 162 
tags 83, 160 
type of 162 

universa1 character name 21,41 
UNIX 3, 52, 115, 172 
unix macro 52 
unnonnaJized floating-point 

number 133 
unordered 442 
unsigned integers 

arithmetic rules 207 
conversions 190 

una igned type specifier 128 
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user-defined type (See typede£) 
USHRT MAX 127 

using C++ keyword 39 
usual arithmetic conversions 198 
usual conversions 

argument 128, 214 
assignment 195 
binary 198 
casts 194 

v 
VA ARGS macro 
parameter 58 

va _x variable-argument 
faci lities 329 

varargs. h header file 33 1 
variable length arrays 99, 109, 

143,170, 174,217,221, 230, 
263 

variables 
automatic 80 
declarators for 96 
in expressions 208 
static 80 

variably modified type 144 
vax macro 52 
VAX-II 52 
vertical tab character 11, 13, 36 
v£printf function 401 
vfscanf facility 401 
vfwprintf function 401 
vfWBcanf facility 401 
virtual C++ keyword 39 
visibility 76,151 
void type specifier 87, 168 

defining your own 23 
discarded expressions 256 
function result 214 
function return type 302 
in casts 168 

vprintf function 401 
vacanf faci lity 401 

vsprintf function 401 
vsscanf facility 401 
vswprintf function 401 
vswseanf facility 401 
vwprintf function 401 
vwseanf facility 401 

w 
wehar. h file 4,359,364 
wehar. h header file 489 
WCHAR_MAX 126, 365,474,489 
WCHAR_ MIN 126,365,474,489 
wchar_t C++ keyword 39 
wchar_ t type 15,31, !O8, 326, 

489 
wcrtomb function 491 
weseat function 348 
wesehr function 351 
wesemp function 349 
wescoll function 356 
wescpy function 350 
wesespn fu nction 353 
wesftime function 448 
weslen function 35 1 
wesncat function 348 
wesncmp function 349 
wcsncpy function 350 
wcspbrk function 353 
wcsrchr function 351 
wesrtombs function 492 
wesspn function 353 
wesstr function 354 
wcs tod function 493 
westof function 493 
westoimax function 475 
westok function 354 
westol function 493 
westold function 493 
westoll function 493 
westombs function 423 
westoul function 493 
westoull function 493 
westoumax function 475 
wcsxfrm function 357 
we tob function 491 
wetomb facility 422 
wetrans function 344 
wetrans_t type 344 
we type function 343 

we type. h header file 4, 489 
wctype_ t type 343 
WEOF macro 490 
WGI4 (C) 4 
whi 1 e statement 267 
whites pace 13 

533 

wide character 40 
wide characters 15,31 ,34,420 

input/output 364 
wide string 16,34, 108,422 
wide-oriented stream 364 
WINT MAX macro 474 
WINT MIN macro 474 
wint_ t type 15,365,489 
wmemehr function 360 
wmememp function 360 
wmemepy function 361 
wmenunove function 361 
wmemset function 362 
wprintf function 388 

x 
X3JlI (C) 4 

xor macro 333 
xor _ eq macro 333 

y 

YACC 172 


