

For any enquiries email Colin Mitchell

BASIC ELECTRONICS

Chapter 1: Basic Electronics - .pdf (1.2MB) or .zip
Circuit Symbols - EVERY Circuit Symbol
Chapter 2: The Transistor

- PNP or NPN Transistor TEST

Chapter 2a: The 555 IC
The 555-1
The 555-2
The 555-3
The 555 TEST
Chapter 3: The Power Supply download as .pdf (900kB)

- Constant Current
- Voltage Regulator

Chapter 4: Digital Electronics

- Gates Touch Switch Gating

Chapter 5: Oscillators
Chapter 6: Test - Basic Electronics (50 Questions)
Remember: the animations do not work in .pdf

$\frac{\text { Active HIGH }}{\text { AND Gate }}$	Milliamp - current Multimeters
Battery	NAND Gate
Battery Current	NOR Gate
Breadboard	NOT Gate
Capacitors	Ohm's Law
Capacitors in Parallel	Passive Components
Capacitors in Series	Piezo
Cell	Plant Watering Circuit
Charging A Capacitor	PNP Transistor
Capacitor Charging	Power Rail
Capacitor Charging - more details	Potentiometer
Capacitors on Volume Control	Protection Diode
Capacitor - values	Questions
Characteristic Voltage drop - LED	Regeneration
Chassis	Resistance - Multimeter
Circuit	Resistor Colours
Circuit - Drawing	Resistors In Parallel
Component - Symbols more	Resistors in Series
Current - milliamp	Robot Man
Cutoff and Saturation	Robot Man Animation
Damage A LED	Schematic
DC Current	Slide Switch
DC Voltage	Short Circuit
Digital States	Soldering Iron
Diode	Speaker
Drawing A Circuit	Supply Rail
Earth Rail Earth Rail	Switch
Earth Return	Symbols more - components
Electret Microphone	Tap A Piezo
Electrolytics	Test A Cell
Emitter Follower	Testing A LED
Energy in a cell	Time Delay
Flashing LED Flashing LED	Time Delay Animation
Gates with Diodes	Toggle Switch
Globe	Tolerance - resistors
Ground	Transformer Feedback
How a Transistor turns ON	3-Transistor Circuit
LED	Transistor NPN and PNP
LED flat spot (cathode)	Transistor - how it works
LEDs in Parallel	Transistor Tester
LEDs in Series	Turning ON a Transistor
LED Resistors	Variable Capacitors
LED Voltages	Variable resistor - potentiometer
Light Dependent Resistor	Voltage
Load Resistor	Voltage - Analogue Multimeter
Memory Cell	Voltage - Digital Multimeter
Microphone - Electret	White LED Voltage
	$\begin{aligned} & \text { Wire } \\ & 50 \text { Questions } \end{aligned}$

BEFORE WE START

Too many text books start with the physics of the atom and have equations and mathematics to show how smart the author is.

Don't worry, we wont have any physics or equations.
The reason . . .
This is not a physics course. It is a practical electronics course to teach the basics as quickly as possible. There are no equations because most transistor circuits cannot be worked out mathematically as the gain of a transistor changes according to the current-flow and these gain-values are never provided. So the mathematics is worthless.
To get an answer, all you have to do its build the circuit and measure the values with a multimeter.
Also lots of discussions in text books will never be used in your next 40 years of electronics, so this course doesn't have any unnecessary material and is much-more concentrated than anything you have read before.
Every frame contains important points - especially the animations - as they show you how a circuit works in slow-motion - something that has NEVER been done before.

Learn electronics from the beginning . . . START HERE:

Fig 1 The wire in a circuit diagram

All electrical and electronic components need wire to connect them to the circuit.
In a diagram called a CIRCUIT DIAGRAM, the wires are drawn as lines.
When the wires (or lines) cross, they may be joined or just passing.
It is VERY IMPORTANT to show the difference between lines that are JOINED and lines that are NOT JOINED.
When the lines are joined, it is best to place a dot on the connection to PROVE the lines are joined. When the lines are just crossing, a gap should be made so it is obvious that one wire goes under the other and does not touch.
Lines should be "across the page" or "up and down." Very few lines should be at 45°.
You can make a line thicker to indicate a power rail or a wire that will be thick in reality.

Fig 2 A single Cell and many Cells

Next we need a battery. A battery consists of two or more cells. The positive terminal of a battery is the long line in the diagram and you must add the voltage (of the cell or battery) to the symbol as a single cells can be $1.2 \mathrm{v}, 1.5 \mathrm{v}, 2.2 \mathrm{v}$ or up to 3.6 v .
The symbol does not let you know the voltage.
The positive is always at the top.

Next we need a globe. A globe has two connections (a fine wire inside a glass bulb glows when the globe is connected to a battery).

Fig 3: A Globe

Fig 4: A Circuit
With a globe, battery and wire we have produced a CIRCUIT.
A CIRCUIT is a complete path and we say the
"electricity" the CURRENT emerges from the positive of the battery, moves through the globe and returns to the battery via the wire.
If the globe is a " $3 v$ GLOBE" it will glow when connected to a $3 v$ battery.
The globe can be connected either way around.
The circuit we have shown is called a SCHEMATIC and consists of symbols: a globe symbol and a battery symbol.
The line connecting the two components is called WIRE.

Fig 5:Adding a SWITCH

To turn the globe ON and OFF we need a SWITCH.
The switch may be a push button, a slide switch or a toggle switch (a "click" action). You could twist the wires together and untwist them. The result is the same. We say the circuit is "broken" or "open" via the switch and the lamp does not glow. Closing the switch turns ON the globe.

Supply Rail or Power Rail Fig 6: Naming the RAILS	The top rail of the CIRCUIT DIAGRAM is called the SUPPLY RAIL or POWER RAIL. The lower rail is called the $0 v$ Rail or EARTH RAIL. Do not connect the Supply rail $(+12 v)$ to the Ov rail as this will cause a high current to flow and is called SHORT CIRCUIT.
Fig 7: The EARTH RAIL	The lower rail is also called the Chassis. This comes from the "old days" when electronics constructors build radios on a metal chassis (metal box) and it was connected via wire to a pipe in the ground to help the radio pick up distant radio stations. The term also comes from car and truck wiring where one side of each globe is connected to the frame or chassis so that only one wire is needed to each globe and the return "path" is via the chassis.

Some circuits identify the "Ground Lead" or "Ground Wire" of a project to show where all the signals have been "referenced to." In other words, all the signals rise and fall above and below this "Ground wire" or "Ground Lead." This lead may not be at earth potential as the project may be in a plastic box but it identifies where the earth lead of a Cathode Ray Oscilloscope or the negative lead of a multimeter is connected.

[^0]Fig 8: EARTH Return

VOLTAGE AND CURRENT

What is voltage and what is current?
Here is a very simple description.
A battery produces a voltage called DC. (This is a very confusing name because the letter actually refer to Direct Current, so we just say DC Voltage).
A battery also produces current called DC - Direct Current. We say DC current.

VOLTAGE

Voltage is a value produced by an electrical component called a battery or cell. A single cell produces one and a half volts. (1.5v) and although this is not a high voltage, when cells are connected together we get higher voltages.
If 6 cells are connected in series we get 9 v .
Here is a $9 v$ battery:

Touch the two terminals with your tongue. You get a tingle. This is a $9 v$ tingle. Now you have "felt" electricity. This is a $9 v$ tingle.

CURRENT

You cannot feel current with your tongue so we have to carry out another experiment:

Place a 22 ohm or 47 ohm resistor across the terminals of the battery and hold your fingers on the resistor. It will get hot. This is the result of current flowing through the resistor and heating it up. The current will be about half an amp and the voltage is 9 v , so the wattage will be about 2 to 4 watts.
Feel the heat produced.
Milli - milli means $1 / 1,000$ th (one thousandth) - such as one milliamp or one millivolt. In other words one thousand milliamps is equal to 1 amp .
One volts is not a very large value as a battery produces 9 v and a cell produces 1.5 v to 3.6 v (depending on the type of cell.
But 1 amp is a large quality when talking about electronic circuits involving LEDs, motors and transistors.
The globe used in the experiments above requires about $300 \mathrm{~mA} .(1,000 \mathrm{~mA}=1 \mathrm{amp})$
The 3 v motor used in the experiments requires about 250 mA
The LEDs used in the experiments require about 20 mA .
Transistors can pass about 100 mA to 800 mA via the collector-emitter.
In most cases current-flow in the circuits we will be discussing will be less than 1 amp and will be shown as $25 \mathrm{~mA}, 100 \mathrm{~mA}, 350 \mathrm{~mA}$ etc.

WATTAGE and CAPACITY

A 9 v battery has 6 very small cells and they will not last very long.
A "AAA" cell is larger and a "D" cell is much larger.
A large cell is said to have a LARGE CAPACITY. This means it will deliver a larger current for a longer period of time.
The WATTAGE of a cell is the multiplication of the voltage x current. The answer is milliwatts or watts.
The CAPACITY of a cell is the wattage x hours. The answer is milliwatt-hours or watt-hours. This is also called watt-hours.
You can determine the capacity of a cell (such as a rechargeable cell) by connecting it to a clock-mechanism that has a 4R7 connected across the terminals. The resistor will take a considerable current and deplete the cell in a few hours. The clock will let you know exactly how long the cell delivered the current. You can then compare other cells.

The simplest electrical circuit consists of a battery and resistor. The current flowing through the circuit will depend on the voltage of the battery and the resistance of the resistor R.
The formula connecting these three quantities is:

$$
I=\frac{V}{R}
$$

Ohm's Law

$I=\frac{12}{3}$
$\mathrm{I}=4 \mathrm{amps}$
This is called Ohm's Law. Suppose you have a 12 v battery and the resistor is 3 ohms. The current flowing through the resistor will be 4 amps.
Increasing the resistance will decrease the current if the voltage remains fixed.
All the above circuits are called ELECTRICAL CIRCUITS because they contain electrical components (such as a motor, globe, relay, switch).
When the circuit contains an ELECTRONIC component such as a diode, transistor, LED, it is called an ELECTRONIC CIRCUIT or ELECTRONIC SCHEMATIC.

Fig 11. The LED

Fig 12. The Resistor

This simple ELECTRONIC CIRCUIT contains a LIGHT EMITTING DIODE (LED), RESISTOR and battery.

The circuit is classified as electronic because the LED is not an electrical item (such as a globe) but more-complex, as it produces light when current flows through a crystal and the crystal produces the colour.

A RESISTOR must be included in the circuit to prevent the LED being damaged.
The resistor in this circuit must be 220 ohms. This is shown by the colours on the resistor. The colours for 220 ohms: red - red - brown. The 4th band is gold - indicating a tolerance of 5%. A resistor has RESISTANCE.
It reduces the current from the battery to a required amount to prevent the LED glowing too bright. A resistor is just like putting your foot on a hose. The water trickles out the end. The resistor "resists" the high current-flow that the battery is able to deliver.

Fig 12a. The Resistor Colours

Fig 13. The Resistor and LED

There are hundreds of different resistors because the resistance-values need to cover the range one ohm to 10 million ohms.
There are also small, medium and large resistors. The resistors on the left are just a few in the range. (See the full range below). They show colour bands for 1 ohm to 8.2 ohms and 1 million ohms to 8.2 million ohms. All the other values are shown below. An electronics engineer does not have the room to store 10 million different resistors so they make each resistor 5% or 10% higher than the previous. This reduces the number to about 100 to 200.

TOLERANCE

The first 3 bands indicate the value of the resistor and the 4 th band indicates either 5% or 10% tolerance.
All modern resistors are 5% or 2% or 1%. The "old" 10% resistors are no longer made.
Gold = 5\%
Silver $=10 \%$

The LIGHT EMITTING DIODE is called an electronic component (mainly because it is more complex than a globe and it produces light by a more-complex means than heating a wire).
A LED must be connected around the correct way. It will not illuminate if connected around the wrong way.
All LEDs have one lead longer than the other. The SHORT lead is called the CATHODE (k).
All LEDs have a flat on one side and this is the CATHODE lead.
The arrows on the diagram indicate light is "given off" (emitted - produced).

Fig 14. The LED - showing the flat spot
A close-up of a red LED. The cathode lead is the short lead and next to a flat side on the LED. DO NOT show "+" or "-" on a diagram. Only show the letter " k " to indicate cathode.
The symbols "+" and "-" are used when a component produces a voltage or is connected directly to "+" and
"-" A LED is connected via a resistor.

When a LED is connected to a circuit, (and the correct-value resistor is included), a voltage will be develop across the LED called the

CHARACTERISTIC VOLTAGE DROP.

This voltage is due to the colour of the LED and the crystal inside the LED that produces the colour. The diagram on the left shows the approximate voltage developed for each LED.
The voltage does not change for small, medium, surface-mount, or large LEDs.

Fig 15. LED VOLTAGES

If we connect a WHITE LED to $3 v$ supply, it will not illuminate because it needs a supply higher than 3.6 v .

The resistor in series with the LED is called a CURRENT LIMITING RESISTOR.

In this circuit no current flows because the supply is not high enough.

Fig 17. WHITE LED VOLTAGE

When the supply is increased to 4.5 v , the 220 R resistor will allow a current to flow through the white LED and it will develop a CHARACTERISTIC VOLTAGE DROP of 3.6 v across it.

The supply (the voltage of the battery) must be higher than the CHARACTERISTIC VOLTAGE DROP of the LED so the resistor will allow the correct amount of current to flow.
The ideal current for a LED is 20 mA , however some LEDs will work when 1 mA flows, so you have to know what you are doing.

Fig 18. WHITE LED VOLTAGE

Fig 19. Testing A LED
Now connect either the $1 \mathrm{k}, 470 \mathrm{R}$ or 220 R and determine the brightness you need.
As the brightness increases, the current will be higher.
You can use $3 v$ supply for all LEDs except blue and white.

HOW TO TEST A LED

Some clear LEDs produce red or orange and some LEDs do not have the cathode lead clearly identified.
Here's how to find the colour, cathode lead and the current.
You need a 6 v battery, 10k resistor, 1 k resistor, 470R resistor and 220R resistor.
Connect the 6 v battery and 10k resistor to the LED and it will only illuminate when the cathode is connected to the negative of the battery. This is the short lead.

Do not connect a $3 v$ battery directly across a LED. It will be DAMAGED. You MUST include a resistor.

Fig 20. Damage a LED

-R0 IIU]	-10R III] -	100R IIIT)	-1k0 IIIT -	
1R2 IDU	-12R IIID -	120R IIIT -	-1k2 IIIT -	
-185 IDM -	-15R IID]	150R IIL) -	-1k5 IIIT -	
R88 [10]-	-18R III]	-180R IIIT]-	-1k8 IIIT]	
2R2110]	22R \|	I -	220R IIIU -	2k2III)
2R7 11007	27R\|	以-	270R IILI -	2k7 IIIT]
-3R3 [10] -	-33R D] -	330R ITI-	-3k3 [10 -	
-3R9 IIM -	-39R ID]	-390R IIT]-	-3k9 [10]-	
4R7]ID] -	47RI\|	470RIILI -	4k7 IIIT]-	
5R6 IID -	-56R III] -	560R IIIT -	-5k6 IIIT -	
6R8 IID] -	68R IID -	680R IIID -	6k8 IIIT] -	
-8R2ILD]	82R IIID -	820R IIID -	8k2 1110	
10k II IT	-100k IIII]	190\|IIT -	10m IIID -	
12k IID]	120kIIIT	1m2IIV)	22 mIIID	
15k III]	-150kIIT]	1m5 IIIT -		
18k IIID	-180k III]	1m8 IIIT -		
22 k III]	220 k III]	2M2 IIIX -	OR1 ITI]	
27 k IID]	270 k IIIT -	$2 \mathrm{~m} 71 \mathrm{HD}-$		
33k Inll	330k IIIT]	зм3 [1]10 -		
39k IIIT]	-390k IIIT -	3M9 \|l	ll -	$\underset{\text { zero ohm (link) }}{\text { OR }}$
-47kIITIT	-470kIIIT -	4M7 [\|ITI -		
56k IIIT	560k IIT]	5m6 IIIT -		
68k IID	680k IIII)	6m8 IILI -		
82k IIIT -	-820k IIIT -	8m2 IIIT -		

Fig 21. All the resistor values
Here are all the colours and values for the resistors you will using in this course. Just match-up the colours on your resistor with the resistors above and you will find the value.
of a length of wire 3 metres long.
When a switch is open the resistance is infinite - millions and millions of ohms.
The resistance of your body from one hand to the other will be about 70,000 ohms.
The resistance between two wires dipped in water will be about 1,000 to 100,000 ohms (depending on the dissolved-salts in the water - pure water has a very high resistance) The resistance of the filament of a 3 v globe will be about 30 ohms. The resistance of the winding of a 3 v motor will be about 3 ohms.
Resistors are made with values from less than one ohm to more than 10 million ohms by adding carbon to the mixture inside the resistor (and cutting a track around the outside of the resistor) then connecting a lead to each end. Adding more carbon reduces the value of resistance. Carbon has a low resistance.
Resistance-values are measured with the RESISTANCE settings on a MULTIMETER.
This is called the "Ohms Range." Sometimes with the symbol: $\boldsymbol{\Omega}$
A Multimeter will have 2,34 or more scales to cover the range one ohm to 10 million ohms. Low value resistors (from 1 ohm to 999 ohms) are written as 1R, 220R, 470R, 999R. with the letter "R" indicating Resistance (ohms). You can also use the symbol "omega" (Ω) For values above 1,000 ohms to 99,999 ohms, they are written as: $1 \mathrm{k}, 2 \mathrm{k} 2,4 \mathrm{k} 7,10 \mathrm{k}, 100 \mathrm{k}$, 220k, 470k, with the letter " k " indicating "kilo" (thousand).
$1 \mathrm{M}=1,000,000$ - one million ohms $1 \mathrm{M} 2,2 \mathrm{M} 2,4 \mathrm{M} 7,10 \mathrm{M}$.
The letters " R, k and M " are placed so they take the place of the decimal point. This prevents any mistake, as a decimal point can be missing in a poor photocopy.

MULTIMETERS

There are two types of MULTIMETER. The top two are called DIGITAL MULTIMETERS (DMM) and show numbers on a display.
The lower two meters are called ANALOGUE MULTIMETERS and have a pointer and scale.
All meters come with a set of red and black leads.
The red lead is always connected to the positive of the battery or the positive on a project and the black lead is connected to the negative or earth or chassis.
When making a resistance measurement, the leads can be around either way.
Resistance measurements are always made with the power removed from a circuit. Any voltage on a circuit will upset the resistance reading.

Fig 22. Resistance Measurement with Analogue Multimeter

Fig 23. Resistance Measurement with
a DMM

The resistance of a resistor is measured by placing the leads of the multimeter on the ends of a resistor and turning the dial on the analogue multimeter to the resistance scale to make the pointer move to about the centre of the scale.
The resistance scale is marked with a high value on the left and 0 ohm on the right. This is opposite to all the other scales. You must get the pointer to move to the middle of the scale as it is not accurate at left-end.
Analogue multimeters are only suitable for reading values from 1 ohm to 100,000 ohms. The scale is too hard to read above 100k.
To find the value of a resistor, you can compare the colours with the table above.

A digital multimeter produces a moreaccurate reading of resistance.
It is accurate from 1 ohm to 10 M ohms.
Select the scale that provides a reading.

Fig 24. Connecting LEDs in series
LEDs can be placed in series provided the total CHARACTERISTIC VOLTAGE DROP across the LEDs is LESS than the supply voltage.
In this case the voltage across the LEDs is $1.7 \mathrm{v}+1.7 \mathrm{v}+1.7 \mathrm{v}=5.1 \mathrm{v}$
The supply is 6 v and this allows 0.9 v for the CURRENT LIMITING RESISTOR.
The LEDs will not be very bright with 220R.
Change the resistor to 47R
If you connect 4 LEDs in series, the total CHARACTERISTIC VOLTAGE DROP will be 6.8 v and no LEDs will illuminate because the total is higher than the 6 v supply.

Fig 25. Connecting LEDs in series

Different-colour LEDs can be connected in series. Add up the total Characteristic Voltage for the 5 LEDs and see if it is less than 12 v .

The 220R resistor will have to be reduced to 47R to make the LEDs bright.

LEDs can be connected in parallel if they are the same colour.
In the diagram a red LED drops a
CHARACTERISTIC VOLTAGE of 1.7 v and if they are from the same manufacturer or the same batch, they will work ok.
Although we say the characteristic voltage for a red LED is 1.7 v , this can change slightly from different manufacturers and one LED may glow brightly while the other is dull.
You have to build the circuit and see the result.
Fig 26. Connecting LEDs in parallel

Different colour LEDs cannot be connected in parallel. The voltage across a red LED is 1.7 v . This becomes the "Supply Voltage" for the green LED and it is too low. The green LED needs a supply of 2.1 v to 2.3 v .
Only the red LED will illuminate.

Fig 27. Connecting LEDs in parallel

Suppose you don't have a 220 ohm resistor. You can make a 220 ohm resistor with two resistors in series. The total resistance will be 200 ohms, but resistors are not accurate and the result will be very close to 220R.
Electronic circuits are not very critical. You will not be able to see the difference in brightness between 200 ohms and 220 ohms.

When resistors are connected in series, the total resistance is found by adding the resistance of each resistor.

$$
\mathbf{R}_{\text {total }}=\mathbf{R}_{1}+\mathbf{R}_{2}+\mathbf{R}_{3}+\cdots
$$

Fig 28. Connecting Resistors in Series

Fig 29. Connecting Resistors in Parallel

You can create a 220 ohm resistor by connecting two resistors in Parallel.
When two equal-value resistors are connected in Parallel, the total resistance across the combination is HALF. 470R in parallel with 470R produces 235R. This is very close to 220R.
We are not going into the formula as it is very complex.
Three equal-value resistors in parallel produce a total of one-third.
Simply get two resistors and connect them in parallel and measure them with a multimeter.

Fig 30. Flashing LED

There are some special LEDs that can be connected to $3 v$ to $9 v$ and they flash or produce a range of colours.
These LEDs have a chip and resistor inside the body of the LED to produce the effect and allow the LED to operate on a voltage without the need for a current limiting resistor.

Fig 31. These diagrams show the resistor needed to produce 1 mA to 25 mA current through a single LED on $3 \mathrm{v}, 5 \mathrm{v}, 9 \mathrm{v}$ and 12 v supply.

Fig 32. The DIODE

THE DIODE
The next simple electronic component is the DIODE.
It only works when connected correctly. A DIODE allows current to flow through it when it is connected as shown in the diagram.
A Diode is similar to a one-way water valve.
When the diode is "facing down," the motor spins. When it is "facing up" the motor does not spin.

The diagram shows the "current path" around the circuit. The current is measured in AMPS and we discuss current as CONVENTIONAL CURRENT. This is the way current was thought to flow when electricity was born and they said it flows out the POSITIVE TERMINAL of the battery, around the circuit and into the NEGATIVE TERMINAL. The arrow on the diode shows the current will flow through the diode and allow the motor to spin. The diode is said to be FORWARD BIASED.

There is no flow of current because the diode prevents any current-flow when connected as shown.
The motor DOES NOT WORK.
The diode is said to be REVERSE BIASED.

current will flow in this direction

Fig 33. A Signal diode and a Power diode

There are hundreds of different types of diodes.
Power diodes, signal diodes, low voltage diodes, high voltage diodes, high-speed diodes and many other types.
They all do one thing.
They pass current in one direction and if turned around, they do not pass any current.

How a diode works

Diodes perform many function in electrical and electronic circuits. Here is an application as a PROTECTION DIODE.
It protects the amplifier. If the 12 v battery is connected around the wrong way, no current will flow.
Fig 34. A Protection diode

Fig 35. Diode "Voltage Drop"

Fig 37. Measuring Voltage with a Digital Multimeter

If you place the probes of a digital multimeter around the wrong way on a component, the display will show a "-" The meter will not be damaged.

Fig 40. Capacitors and symbol

The next component we cover is the CAPACITOR.
There are thousands of different types of capacitor.
Each value of capacitor can have a low voltage rating, medium voltage or high voltage.
Capacitors can be very small in size and shape or very stable with temperature-rise or simply very cheap to make.
A capacitor consists of two thin sheets of metal such as aluminium with a thin sheet of plastic between.
The sheets may be rolled up in a cylinder or laid on top of each other.
The fact is this: the top sheet of metal does not touch the bottom sheet. This is shown in the symbol. The resistance between the two terminals is INFINITE.
The 6th capacitor in the top row is called a MONOBLOCK.

Fig 41. Electrolytic Capacitor

A capacitor gets bigger as its value increases.
It also gets bigger when the voltagerating increases.
The basic unit of capacitance is the FARAD. A one-farad capacitor would be the size of a house. To make the capacitor smaller the sheets are etched to increase the surface-area and different insulating materials are used between the sheets.
The result is a capacitor called an ELECTROLYTIC. It is a bit like a rechargeable battery. It stores a lot of energy in a small space.
The negative lead is shorter and has a black stripe on the side of the electrolytic.

One FARAD is too big to handle. We use smaller values.
The middle of the range is one microfarad. This is written as 1 u . (sometimes you see uF) This is one-millionth of a FARAD.
The smallest value of capacitance is one picofarad. This is one millionth of a microfarad. It is written as $1 p$.
Capacitors are broadly separated into two groups. 1 p to $1 u$ and $1 u$ to $100,000 u$
Capacitors $1 p$ to $1 u$ are ceramic, polyester, air, styroseal, monoblock and other names.
Capacitors $1 u$ to $100,000 u$ are electrolytic or tantalum. A tantalum is the same as an electrolytic - for testing purposes - it is a more-compact electrolytic.

1 microfarad is one millionth of 1 farad.
1 microfarad is divided into smaller parts called nanofarad.
1,000 nanofarad $=1$ microfarad
Nanofarad is divided into small parts called picofarad
1,000 picofarad = 1 nanofarad.
Recapping:
$1 p=1$ picofarad. $1,000 p=1 n(1$ nanofarad $) \quad 1,000,000 p=1 u$

```
1,000n = 1u (1 microfarad)
1,000u = 1millifarad
1,000,000u = 1 FARAD.
Examples:
```

All ceramic capacitors are marked in "p" (puff")
A ceramic with 22 is $22 p=22$ picofarad
A ceramic with 47 is $47 p=47$ picofarad
A ceramic with 470 is $470 p=470$ picofarad
A ceramic with 471 is $470 p=470$ picofarad
A ceramic with 101 is 100 p (it can also be 100)
A ceramic with 102 is $1,000 p=1 n$
A ceramic with 223 is $22,000 p=22 n$
A ceramic with 104 is $100,000 p=100 n=0.1 u$ A common 100n is called a MONOBLOCK.
A ceramic with 105 is 1 u

TYPES OF CAPACITOR

For testing purposes, there are two types of capacitor.
Capacitors from 1 p to 100 n are non-polar and can be inserted into a circuit around either way. Capacitors from $1 u$ to 100,000 u are electrolytics (or tantalum) and are polarised. They must be fitted so the positive lead goes to the supply voltage and the negative lead goes to ground (or earth).

	Capacitors can be connected in Series or Parallel to obtain a value of capacitance you may not have available. They are also connected in series to increase the effective VOLTAGE RATING. However when two equal-value capacitors are connected in series, the final value is HALF, and thus you need two with double the final-value to get a value with an increased voltage-rating. When two equal-value capacitors are connected in series, the result is HALF. (This is the opposite to connecting resistors)
$\begin{array}{rr} 100 u^{+} \\ 25 v & 220 u^{+} \\ \hline 63 v & +\square \\ 50 u & 110 u \\ 50 v & 126 v \end{array}$	
Fig 43. Capacitors in Series	

QUESTIONS

1. Explain why the Flashing LED circuit has no external resistor.
2. How many 1.5 v cells are needed to produce a 6 v battery
3. Explain what happens when you reverse the leads to a motor.
4. Identify the positive terminal:

5. Can 3 green LEDs be connected in series to a 6 v supply?
6. A variable resistor is also called:
7. The combined resistance of two 1 k resistors in series is:
8. The combined resistance of two 1 k resistors in parallel is: \qquad
9. Name the short lead on a LED
10. Name the type of multimeter with a pointer and scale: \qquad
11. The total capacitance of two 100 u electrolytics in series is: \qquad
12. The total capacitance of two 100 u electrolytics in series is: \qquad
13. Write these values in words:
\qquad
14. How many $1 . \overline{5 v}$ cells in a $9 v$ battery?
15. The red probe is: \qquad (positive/negative)
16. Conventional current flows from: \qquad (positive to negative / negative to positive)
17. Make a 470u electrolytic with two electrolytics:
18. What is the voltage drop across a diode?
19. Name the component that only allows current to flow in one direction: \qquad
20. Name this symbol:

21. When resistors are connected in series, the resistance of the combination: \qquad
(increases / decreases)
22. When two capacitors are connected in parallel, the voltage-rating of the combination:
(increases / equal to the capacitor with the lowest voltage-rating)
23. Draw two 2 k 2 resistors in parallel.
24. Which is larger: 470 R or 22 k
25. What is the value of this combination:

26. What is the name of the resistor in series with a LED: \qquad
27. What is the voltage across the amplifier: \qquad

28. Identify the fault with these circuits:

Name these components:

Fig 47. Passive Components

Fig 47a. The Potentiometer in action

The Potentiometer is a variable resistor.
It consists of a curved carbon track with a wiper that touches the track and can be turned via a screwdriver or knob.
The wiper is the middle wire on the circuit symbol and it moves up and down as shown in the animation. When the three leads are connected the symbol is called a potentiometer. When two leads are connected it is a variable resistor.
When the resistance increases, less current flows through the pot.

There is a difference in operation between a Variable Resistor and a Potentiometer.
Both will increase or decrease the sound level as a volume control or the speed of a motor or the brightness of a globe, but a Potentiometer will guarantee zero volume or zero brightness when the pot is turned fully anticlockwise (as shown in the animation).
This is because the output will be zero volts, but the variable resistor may still deliver some "energy" (voltage and current) to the circuit when turned fully anticlockwise.

Potentiometers come in values from 100 ohms to 5 Meg ohms (500R, 1k, 2k, 5k, 10k, 50k, $100 \mathrm{k}, 200 \mathrm{k}, 250 \mathrm{k}, 500 \mathrm{k}, 1 \mathrm{M}$ are most popular).
They come as linear, or logarithmic where the resistance of the track (per mm) is higher at one end. Because our hearing is not linear, these pots can be used as volume controls to produce a gradual (very nearly linear) increase in volume.
Selecting the correct value of resistance for a circuit is VERY complex. If the value is not correct, the volume will not be loud or it will drop to zero before the pot is turned fully anticlockwise. Or the motor will drop to zero at mid-turn of the pot or it will not reduce in RPM to the desired amount.
The simple answer is to copy a circuit.
Or you can try the whole range of pots and you will find one value is the best.

A Potentiometer can be used in hundreds of different circuits to produce hundreds of different effects, but the actual "thing" that flows between the input and output is a percentage of the voltage. At the same time the current will also be passed to the output at a reduced value. A pot actually delivers BOTH reduced values at the same time and the receiving circuit will be designed to "look for" the change in voltage or current. If the supply voltage is not rising or falling, the "values" are called DC values.
The voltage can also be in the form of a signal (volume). This is called an AC signal.

X

Fig 48. The TRANSISTOR

The TRANSISTOR
A TRANSISTOR is an ACTIVE device. It AMPLIFIES.
There are many types of transistor (over 20,000 different types) from hundreds of manufacturers and they have many different names. We are going to study the simplest. It has the technical name BIPOLAR JUNCTION TRANSISTOR (BJT) but we are going to call it a TRANSISTOR. There are two types in this group: PNP and NPN.

The type we will study is also called a SMALL-SIGNAL TRANSISTOR.

You cannot tell an NPN transistor from PNP by looking at it. You must test it in a circuit.
In Fig 65 you will make a Transistor Tester project, but first some basic facts:

Fig 49. The NPN TRANSISTOR in a Circuit

The first type of transistor we are going to study is the NPN.
A transistor has three leads:
BASE, COLLECTOR and EMITTER
Basically, a small current enters the base and a large current flows through the collector-emitter leads as shown in the diagram.
The resistor in the collector lead is called the LOAD Resistor.
Sometimes the load is a speaker.

Fig 52. Two Transistor Circuit

Fig 53. Three Transistors

You can see the effect of one transistor. It does not do much.
The two transistor circuit allows the resistance of your finger to deliver current into the base of the first transistor and this transistor delivers more current into the base of the second transistor. The result is more collector-emitter current and the LED illuminates.
The three transistor circuit produce an ENORMOUS effect.
It will pick up STATIC ELECTRICITY and all forms of electro-magnetic energy (radiation) and illuminate the LED.

The Piezo diaphragm is held around the outer edge inside a plastic case and when a voltage is applied to the two leads, the thin plate curves very slightly.
When the voltage is removed, the plate returns to its flat shape. If the voltage is reversed, the plate curves in the opposite direction.

The curving is due to a thin layer of ceramic material under the plate and then a film of metal is deposited onto the ceramic so a lead can be soldered.

There is infinite resistance between the two leads as the ceramic material is an INSULATOR.
The capacitance between the two leads is approx $22 n$.
The Piezo is a passive device. It needs a pulse or frequency for it to produce an output.

Fig 55. The Piezo

The ONE TRANSISTOR CIRCUIT above can be turned into a detector to show when a plant needs water.
Place the two probes into the soil and water the plant. The LED will turn off. As the water evaporates the LED will turn ON to let you know the plant needs watering.

Fig 56. Plant Needs Water

Fig 57. Tap the Piezo

This experiment produces a pulse from the piezo when it is tapped and the LED illuminates briefly.

The LED can be connected either way around.
This proves the diaphragm flexes when a voltage is applied and also in the reverse situation. A voltage is produces when the diaphragm is tapped.

Fig 58. Flashing LED and White LED

A flashing LED is not very bright. It can be connected to a transistor and the transistor will drive a very bright white LED.
The transistor is an amplifier. It is amplifying the current flowing through the flashing LED and supplying a higher current for the white LED.

We cannot discuss any further details of the circuit at the moment because the actual operation of the circuit is quite complex.

At the moment we just need to experiment with simple transistor circuits.

Fig 59. Soldering Iron
We now come to the point of HELPING YOU WITH CONSTRUCTION.
We have already shown you 6 different circuits and there are many ways to build them.
You can:

1. Solder them.
2. Build them on an Experimenter Board
3. Connect the components with clips or twist the leads together.

It does not matter how you build the circuits.
The fact is this: YOU MUST START BUILDING.
The best soldering iron for a beginner is a CONSTANT TEMPERATURE soldering iron. It has a dial that can be turned to set the desired temperature.
An ordinary soldering iron GETS TOO HOT. It is not suitable for soldering electronic circuits. This is something that no-one has mentioned before. An ordinary soldering iron will melt the solder TOO QUICKLY and burn the resin inside the solder and make soldering very difficult for a beginner.
Soldering must be done slowly so the resin in the middle of the solder gets hot and cleans the leads of the components so the solder will "stick."
That's why you must apply the solder to the leads you are soldering and allow the resin to "attack" the leads and clean them.
The cheapest TEMPERATURE CONTROLLED soldering Iron is available on eBay for les than $\$ 10.00$ (post FREE).
You will also need a small roll of solder (0.9 mm) and a soldering Iron stand.
Email Colin Mitchell for links to eBay. (talking@tpg.com.au)
A whole book could be written on the ART OF SOLDERING.
Look on the web for articles and videos on SOLDERING.

Fig 61. Jumpers
The components on the BREADBOARD are fitted down the holes and metal strips under the board join each column of 5 holes. If you want to join one hole with another, you can use 0.5 mm tinned copper wire or JUMPERS. See photo opposite. Jumpers can be purchased on eBay for less than $\$ 3.00$ posted.

Email Colin Mitchell for links to eBay. (talking@tpg.com.au)

Fig 62. Breadboard with Nails
If you don't have a soldering iron or experimental breadboard, you can make your own board with nails. See the photo above. It is a multivibrator circuit and we will be presenting this circuit in a moment. The components can be twisted around the nails and bare wire used to join some of the nails to complete the circuit.
Another method of connecting the components is called BIRD-NESTING. This involves soldering the components "in the air" as shown in the 27 MHz transmitter circuit below:

Another way to connect the component(if you don't have a soldering iron), is to wind 6 turns of bare wire around each connection and leaving all the components "in the air." The bare wire can be obtained from hook-up flex. This is plastic coated "wire" containing up to 15 fine strands of wire. Use a single strand for the connections. None of the components will touch each other BY MISTAKE and the circuit will work perfectly. Bird-nesting is a good way to build a quick circuit and test its performance. It might look messy but you can easily change any component.

Fig 63. Wiring the 3-Transistor Circuit using BC547 Transistors
The diagram shows how to connect $3 \times B C 547$ transistors. The leads of a transistor can be collector-base-emitter OR emitter-base-collector and that's why we have provided 2 different wiring diagrams.

Fig 65. Transistor Tester

This handy transistor and LED tester can be built to test LEDs and both PNP and NPN transistors.
The project consists of two identical circuits, one for NPN and one for PNP.
You can build just the NPN section and then build the PNP section later.

LED VOLTAGE

We have shown a LED needs at least 1.7 v supply for it to operate.
This circuit works on 1.5 v and thus the action of the transistor and coil (called a Transformer) MUST be increasing the voltage for the LED to illuminate.
This circuit works on two "actions."

1. Transistor ACTION - this is the action of a transistor providing gain to make the circuit oscillate.
2. Transformer ACTION - this is the action of a coil of wire producing a voltage higher than the supply voltage when it is turned off.

This circuit is very technical and very complex.
We will be explaining it in a very simple way because this is a Basic Electronics Course.
THE TRANSFORMER - the two coils of wire on the left and the two coils of wire on the right.
When the voltage (actually the current) is switched off, the 40 turn coil in either of the circuits in this project; the voltage across the coil rises to more than the 1.5 v supply and is in the opposite direction to the voltage of the supply.
The circuit looks to be very simple but it uses an air-cored transformer to produce the voltage needed to illuminate the LED indicators and the circuit only works when the transistor is connected correctly. There are two separate circuits, one for NPN transistors and one for PNP transistors. We will cover the NPN section:
The circuit turns ON when the NPN transistor is fitted and the current through the 30 turn coil and 1 k 5 resistor turns ON the transistor and produces expanding flux in the 40 turn coil. This
flux cuts the turns of the 30 turn coil and produces a voltage in the coil that adds to the supply voltage and increases the current into the base. This turns the NPN transistor ON more. This action continues until the transistor is fully turned ON. At this point the current in the 40 turn coil is a maximum but it is not expanding flux and the 30 turn coil ceases to see the extra voltage. Thus the current into the base reduces and this turns the transistor OFF slightly. The flux produced by the 40 turn coil now becomes collapsing (or reducing) flux and it produces a voltage in the opposite direction to greatly reduce the current into the base. In a very short period of time the transistor becomes TURNED OFF and it is effectively removed from the circuit. The flux in the 40 turn coil collapses quickly and it produces a voltage in the 40 turn coil that is higher than the supply voltage and is in the opposite direction. This means the voltage produced by the 40 turns ADDS to the supply voltage and is delivered to the LEDs to illuminate them.
The NPN circuit has two LEDs in series so that a LED of any colour (including white) can be connected to the TEST LED terminals and it will illuminate. You can use any colour LED for any of the LEDs, however it is best to use either green or yellow or white for the single LED.
The two "coils" are wound on a 10 mm dia pen with 0.1 mm wire (very fine wire). The loops of tinned copper wire holding the coils on the board are connected to separate lands under the board and MUST NOT produce a complete loop as this will create a "Shorted Turn" and the circuit WILL NOT WORK.
If the LEDs do not illuminate, simply reverse the wires to the 30 turn coil.
The circuit does not need an ON/OFF switch because the LEDs require a voltage of over 2 v to illuminate (the orange LED) and the supply is only 1.5 v . A red LED needs about 1.5 v to 1.7 v to operate but when it is in series with a green LED, this voltage is over 3.5 v .
All the components fit on a small matrix board 5 holes $x 18$ holes. A kit of parts for the project is available for $\$ 4.00$ plus $\$ 3.00$ postage and ordering details can be obtained by emailing Colin Mitchell. (talking@tpg.com.au)
Build the circuit and test your transistors and LEDs.
We will be covering more on the action of a transistor and the action of a transformer in the discussion below, but it is important to build the circuit and see it working.
It is your first piece of TEST EQUIPMENT.

Questions

1. Identify the letters "c" "b" and "e"
2. What type of transistor is tested in the first set of hollow pins?
3. Put a PNP transistor into the first set of hollow pins and try all positions. Does the red and green LEDs illuminate?
4. When both the red and green LEDs illuminate, what is the approximate voltage across the pair?
5. When you fit a red LED to the test-socket, what is the approximate voltage across it?
6. When you fit a red LED to the test-socket, why does the red LED and green LED on the PC board turn off?
7. Why doesn't the project need an on/off switch?
8. The two coils for the circuit on the left is called a TRANSFORMER. Do the connections of the windings have to be connected to the circuit around a particular way?

Fig 67. The TIME DELAY

The TIME DELAY circuit consists of a Resistor \mathbf{R} and Capacitor \mathbf{C} in SERIES.

When the switch is closed, the electrolytic (called the CAPACITOR) charges slowly because the resistor only allows a small amount of current to flow.
It's just like charging your mobile phone. The battery takes time to charge because there is a resistor in the circuit to limit the current. If we remove the resistor in the mobile phone, the battery will get too hot when it is being charged but in the TIME DELAY circuit, we want the capacitor to charge slowly, because we want a TIME DELAY.

Fig 68. The charging of a capacitor is the same as building a brick wall.

CHARGING A CAPACITOR

The capacitor in Fig 67 charges via the resistor \mathbf{R}. But the voltage on the capacitor does not rise at a constant rate.
It starts off charging very quickly and as the voltage across it get higher, the voltage increases at a slower and slower rate.
In the photo I am building a brick wall.
I am working at a constant rate.
When I started building the brick wall, I laid 5 rows of bricks (5 courses) in the first hour.
As the wall increased in height, I had to climb the ladder and I could only lay 3 courses an hour and finally the wall was so high I could only lay 1 course per hour.
This is exactly the same as a capacitor charging. When the capacitor is uncharged, the supply voltage allows a high current to pass through the resistor \mathbf{R} and the energy quickly fills the capacitor. This results in a rapidly increasing voltage on the capacitor. But as the voltage on the capacitor increases, the difference in voltage between that on the capacitor and the supply is very small and only a small current will pass through the resistor. This means the voltage on the capacitor increases at a slower rate.

Fig 69. Time Units

It really does not matter how fast or slow or uneven a capacitor charges because most circuits detect a voltage on a capacitor and the time taken to reach this voltage is called the TIME DELAY. But to prevent you thinking the capacitor charges "smoothly" we have to explain what actually happens.
The graph on the left shows the capacitor charging. You can see it charges quickly at the beginning and then charges slowly and then very slowly.
You can see the first part of the graph is fairly "straight" (constant charging) - NOT "straight up and down" but a straight line and this applies to a voltage of about 63\%. The time taken to reach this voltage is called ONE TIME UNIT - also called ONE TIME CONSTANT. The graph continues for another 4 "time units" (time-constants) and the final voltage is very nearly 100%. (It never reaches 100\%.)

A TIME DELAY circuit needs three things:

1. A Resistor (R)
2. A Capacitor (C)
3. A "Detection Point."

When the switch is pressed, capacitor (C) takes time to charge via resistor (\mathbf{R}) and after a short period of time the voltage at the DETECTION POINT is 0.6 v and the transistor is TURNED ON. The LED illuminates.

Build the circuit with 100 u and 100 k and see how long it takes before the LED illuminates.

Fig 70. Time Delay Circuit

Fig 71. The "TIME DELAY" in the ROBOT MAN Project

In the ROBOT MAN project you can see the "TIME DELAY" circuit made up of the $100 \mathrm{u}, 10 \mathrm{k}$ resistor and the base of the transistor.

This is one of the most important BUILDING
BLOCKS in electronics. It is the basis of all oscillators and will be discussed below, after we explain a few more details.

Fig 72. Turning A Transistor ON

We will use the TIME DELAY circuit to turn the transistor ON.
Make sure the $100 u$ is uncharged by touching both leads (both ends of the capacitor) at the same time with a JUMPER - this is a piece of wire shown in Fig 61.
Push the switch and noting happens. After a short period of time the LED starts to glow and then comes on fully.
This shows two things:

1. The transistor is not turned ON when the base voltage is zero.
2. The base voltage must be 0.6 v for the transistor to start to turn ON and when the voltage is 0.65 v the transistor is turned $\mathbf{O N}$ FULLY.
Fig 73. How the LED turns ON

Fig 74. The LED turned ON $|$| When the switch is pushed, the transistor |
| :--- |
| turns ON (after a few seconds) and it pulls |
| the lower lead of the LED down towards the |
| Ov rail and this action turns the LED ON. |

When the LED is fully turned ON, the lower lead of the LED is almost directly connected to the $0 v$ rail.
In other words:
When the transistor is FULLY TURNED ON, the lower lead of the LED is almost directly connected to the 0 v rail.
The voltage between the lead of the LED and 0 v rail is 0.2 v . This is the characteristic voltage across the collector-emitter terminals of a transistor when it is TURNED ON.

Fig 75. The LED fully turned ON

In the three diagrams above you can see the LED is changed from an OFF condition to an ON condition by the action of the transistor.
The transistor is acting LIKE A SWITCH.
This action is one of the most important actions in electronics. It is called: "The Transistor as a SWITCH"
It is the basis to ALL Digital Circuits.
It is the basis because of these two facts:

1. When the transistor is OFF, the circuit is taking no current and no power is being lost or wasted.
2. When the transistor is $\mathbf{O N}$, the LED is almost at Ov and no resistor is in the lower lead to waste any power.
Thus we can turn things ON and OFF without wasting and power.
This is the basis to DIGITAL ELECTRONICS.

DIGITAL ELECTRONICS revolves around circuits that are either FULLY ON or FULLY OFF. This means they take almost no power and we can combines lots of circuits and still take almost no power.
This means they do not get hot and it also means they will last a long time.
You may not think turning a transistor ON and OFF will achieve any worthwhile outcome but a circuit can be designed to use two transistors (similar to the ROBOT MAN above). The circuit does not Flip-Flop but requires a switch and when the switch is pressed, the circuit changes state. The two transistors are connected together and it takes two presses of the switch to make the output of the second transistor change state ONCE.
The circuit is a divider. It is called a: divide-by-two and is the basis of all counting in a computer.
By adding more "divide-by-two" circuits we can get "divide by 4, divide by 8" etc. Two transistors don't do much but when you combine millions of transistors we have a COMPUTER.

Fig 76. The "MEMORY CELL"
When Switch \mathbf{A} is pressed, the voltage on the base is removed and transistor A turns OFF.
Transistor B turns ON via resistors R_{1} and R_{2} and the LED is turned ON.
When the switch is released, the voltage on the collector of transistor \mathbf{B} is less than 0.6 v and the two transistors remain in this state.
Pressing switch B turns the LED OFF. (transistor A turns ON via R_{3}, R_{4} and the LED - very little current flows through the LED and you can hardly see it glowing). The voltage on the collector of transistor \mathbf{A} is less than 0.6 v and the two transistors remain in this state.

Two transistors can do one more thing. They can

"REMEMBER."

Here is a manual circuit. Pressing Switch A turns the LED ON and pressing switch B turns the LED OFF.
The circuit "remembers" or remains in each state called a stable state.
The technical name for this circuit is:
BISTABLE MULTIVIBRATOR or BISTABLE SWITCH or BISTABLE LATCH.

This is the basis to all the memory in a computer.

These two states are reliable and guaranteed. They are not "half on" or "quarter on" or " 75% off."
These states are easy to transmit "down a wire." The ON STATE is transmitted as "1" (voltage present) and the OFF STATE is transmitted as "0" (voltage not present).
These are the two DIGITAL STATES.

The ROBOT MAN is a DIGITAL CIRCUIT.

Each LED is ON or OFF.
The waveform on the output of each transistor is called a DIGITAL SIGNAL.
The waveform is said to be DIGITAL or SQUARE WAVE.
The top line of the graph represents the LED OFF.
The bottom line of the graph represents the LED ON. The LED is ON when the collector voltage is LOW because we are pulling the lead of the LED to the $0 v$ rail as shown above. The circuit changes from one state to the other very quickly and this is called the RISE TIME.

Fig 77. The two Digital States

Going over the two DIGITAL STATES for a transistor.

In the first diagram the switch is not pressed and the base does not see a voltage to turn the transistor on. The transistor is "OFF" (not conducting) and it is not "grabbing" the LED. The LED is not illuminated.
In the second diagram the base of the transistor sees a voltage via the switch and it is TURNED on. The LED is illuminated.

Fig 78. ROBOT MAN Animation
This animation shows how a transistor grabs a LED and pulls it towards the $0 v$ rail to turn it ON.

Fig 79. TIME DELAY Animation

The animation in Fig 78 shows the two transistors turning the LEDs ON and OFF in a FLIP FLOP circuit.
We know the 10k and 100u components form a TIME DELAY to create the time for each LED to be illuminated. The timing for one LED plus the other LED creates a CYCLE and this is the FREQUENCY OF OPERATION for the circuit. It is measured in cycles per second - Hertz Hz .
We will now go into more detail of how the TIMING COMPONENTS create the TIME DELAY for each LED.
The circuit is more-complex than you think.
The $100 u$ is already charged from a previous cycle and we show how it gets discharged via the 10 k and charged in the opposite direction by the 10k to create a TIME DELAY.

THE CAPACITOR

The capacitor can perform many different functions and produce many different effects, depending on its value and the surrounding components.
In this circuit the capacitors on the input and output prevent DC on the volume control creating "scratchy sounds" when the volume is altered.
This is called "DC blocking."
The AC (the signal) passes through the capacitors but the DC voltage on the input is blocked.

CHARGING A CAPACITOR Part II

It is easy to see how a capacitor charges via a resistor in the TIMING CIRCUIT (Delay Circuit) above but many capacitors are not connected to the 0 v rail.
They are connected as show in the animation below and their "job" is to pass a waveform. When they pass the waveform they CHARGE and DISCHARGE.
The waveform is called an AC SIGNAL and the output is smaller than the input.
The circuit is taken from the circuit above, but the same effect applies to all capacitors that "pass a signal."
Here's why:

The capacitor charges slightly during the rise of the signal and the right-plate of the capacitor does not rise as high as the left-plate. That's why the output signal is not as large as the input signal.
If the capacitor did not charge, the output would be as large as the input. If you use a capacitor with a large value, it will not charge and thus the output will be as large as the input. That's why you use a large capacitor !!!!

CHARGING A CAPACITOR
 Part III

Here is another CAPACITOR in action.
The animation shows a capacitor charging (via a resistor). The initial current is LARGE and this turns the transistor FULLY ON and the globe illuminates. As the capacitor charges, the base current reduces and the transistor starts to turn OFF. Eventually the capacitor is fully charged and the voltage on the base falls to 0 v , turning the transistor OFF.

This animation shows three features:

1. The initial charging current is HIGH.
2. It gradually falls to zero.
3. The voltage on the base drops below 0.6 v and the

The Electret Microphone

The most common type of microphone is the ELECTRET MICROPHONE.
It is incorrectly termed the "Capacitor Microphone" or Condenser Microphone." "Capacitor Microphone" descriptions make no mention of a FET as the amplifying device and a polarized diaphragm to detect the audio, so they are something different.
The electret microphone consists of a FET (transistor) inside an aluminium case with a very thin Mylar film at the front. This is charged and when it moves (due to the audio it receives via a small hole in the front of the case), it vibrates and sends a very small voltage to the GATE lead of the Field Effect Transistor. This transistor amplifies the signal and produces a waveform of about 2 mV to 20 mV at the output. The electret microphone requires about 0.5 mA and will operate from 1.5 v supply with 4 k 7 LOAD RESISTOR.
For 3 v supply, the Load Resistor can be 22 k to 47 k . For higher supply voltages the resistor will be 68k or higher.
Electret microphones are extremely sensitive and will detect a pin-drop at 3 metres.

They are used in Hearing Aids and are more-sensitive than the human ear.
They are very small, low-cost and very sensitive.

The Speaker

The most common speaker is about 30 mm to 60 mm diameter and 8 ohm impedance. This means the voice coil is about 8 ohms resistance.
The two leads can be connected either
way to a circuit.
The speaker shown is 32 mm diameter and has a realistic wattage of 100 mW (NOT 1watt).
These speakers have a Mylar cone and the magnet is a "super magnet" and very small. That's why it is so flat.
A speaker can be used as a microphone (called a Dynamic Microphone) and a circuit to connect the speaker (mic) to an amplifier can be found on Talking Electronics website. It is not as sensitive as an electret microphone and does not
Speaker Symbol produce the same output amplitude, but it is an emergency microphone.

LDR and Light Alarm Circuit

Light Dependent Resistor (LDR)

Also called PHOTOCELL or PHOTO

 RESISTORA Light Dependent Resistor is a 2-leaded component containing a layer of semiconductor material.
The top contains two interleaving combs of conducting wires with a path of semiconductor material between. When light falls on the component, the resistance of the semiconductor material decreases.
In darkness the LDR will be about 300k. In very bright light the resistance will be about 200 ohms.
But if the light changes only a very small amount, the resistance CHANGE is VERY SMALL. For a large change, see Photo Transistor.
The Light Alarm circuit will produce a squeal when light falls on the LDR.

The emerging magnetic lines of force from an inductor produce the NORTH POLE - this is just "convention," a simple way to explain things - to get the explanation started.
When two or more coils are wound near each other, the inductor is called a TRANSFORMER (but not the armature above).

The Inductor

Also called "coil," or "Choke." An Inductor consists of one to many turns of wire wrapped around a former (tube of cardboard). The wire can be jumble-wound or wound in layers. The result is the same. This is called an air-cored coil or aircored inductor.
The centre can be filled with a metal such as iron or laminations (thin sheets of metal) or a ferrite material.
Different cores operate at higher frequencies.
The core can be circular (doughnut) or rectangular and it is called a MAGNETIC CIRCUIT (when it is a closed loop). Additional turns or increasing the diameter of the turns will increase the inductance.
A coil with a magnetic core can be used to pick up nails and metal items. It is called an electromagnet. It can be operated on AC or DC. When the metal core is loose and gets pulled into the coil it is called a SOLENOID or ACTUATOR or LINEAR ACTUATOR. It can be operated on AC or DC.
The way an inductor works is very complex but we can say it resists any rise or fall in voltage by turning the rise or fall into magnetic flux.
If the applied voltage is suddenly turned off, the inductor produces a very high voltage of opposite polarity (these are the two most important things for you to remember).

A single contact consists of 2 pins -called SPST (singlepole single-throw).
Or a single pair of contacts can consist of 3 pins - called change-over or SPDT (single-pole double-throw). A double set of contacts consists of 6 pins, called DPDT (double-pole, double-throw). This is also called a
CHANGE-OVER RELAY or REVERSING RELAY.

The RELAY

The word Relay comes from the days of Morse Code where a coil of wire (an electromagnet) closed a switch to allow the Morse code to travel further down the telegraph line. It would "relay" or "pass-on" the information.
A relay allows a "weak circuit" (one with low current) to operate a LOAD that needs a large current. It also separates the two circuits electrically and prevents a voltage such as 240 v connecting to a 12 v circuit. The coil is separated from the contacts and this gives the two circuits isolation.

CHHH

TRANSISTOR TESTER - 2
Here is a

The next BUILDING BLOCK we will cover is called the GATE.
In its simplest form it is an electrical circuit consisting of switches.
Its just two or more switches connected in series or parallel.
We give each circuit a name so we can talk about it and explain its action with a single word. Later we will cover the electronic version and show how diodes and a transistor are needed to perform a GATING FUNCTION.
The type of GATE we are talking about is a LOGIC GATE.
The circuit performs an operation called a LOGICAL OPERATION on an input or a number of inputs and creates a single output - called a LOGICAL OUTPUT.
LOGICAL means "understandable" or "correct" and in this case it means DIGITAL - the signal will rise to full rail voltage or fall to zero voltage. The output will not be half rail or quarter-rail voltage. The diagram show an "AND" GATE and "OR" GATE with switches.
For the AND GATE close switch A AND switch B for the lamp to illuminate.
For the OR GATE close switch A OR switch B for the lamp to illuminate.
Fig 80. The "AND" GATE and "OR" GATE with switches

Fig 81. The "NAND" GATE and "NOR" GATE with switches and a transistor

INVERSION

Inversion produces the opposite effect to the results above.
Suppose we want to turn OFF a lamp when one or two switches are pressed. We need a transistor.
The technical word for Inversion is NOT. It is simplified to the letter "N."

For the NAND GATE close switch A PLUS switch B for the lamp to turn OFF. For the NOR GATE close switch A OR switch B for the lamp to turn OFF.

These gates are only demonstrationgates to show how one or two switches will turn a lamp OFF.

NOT GATE

A single switch and transistor produces a NOT GATE.
This is simply an INVERSION.

The resistor turns the transistor $\mathbf{O N}$ and the lamp illuminates. The switch removes the voltage on the base and the transistor turns OFF.
This is only a demonstration circuit to show how a switch can turn a lamp OFF.
Fig 82. The "NOT" GATE

The 5 gates above form the basis to turning a circuit ON and OFF. We will discuss these gates later in the digital section.

NOR GATE with DIODES and Transistor
Fig 84. "NAND" and "NOR" gate with diodes and a transistor.

A NAND and NOR gate can be made with diodes and a transistor. This time we the output is either HIGH or LOW. We are gradually producing circuits that are electronic, rather than electrical circuits. In the NAND GATE
circuit, taking one of the inputs HIGH will still allow the other input to prevent the transistor turning ON.
When BOTH inputs are HIGH, the transistor turns on via resistor R and the output is LOW.

In the NOR GATE
circuit, taking one of the inputs HIGH will turn the transistor ON and the output will be LOW.

Drawing A Circuit

A circuit must be drawn according to simple rules so it can be instantly recognised.
An electronics engineer can "see a circuit working" when it is drawn correctly and can see if it is drawn correctly; if the parts-values are correct and can use the circuit to assist in diagnosing a problem with a faulty circuit.

The top circuit on is very difficult to visualise because it is not drawn in the normal way.
All the components have to be "turned around in your mind," to see what the circuit is doing.

[^0]: The circuit shows a 12 v globe connected to a 12 v battery and the circuit appears to be "broken" (not continuous).
 But the current returns
 via the earth connection. We talk about the CURRENT RETURNING. We don't say: the voltage returning.
 The voltage of the globe must be the same as the battery voltage, otherwise it will not glow fully or it will burn out if it is say a 6 v globe.

