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Preface
When I started teaching Verilog to electrical engineering and computer science seniors at
the University of Wyoming, there were only two books and a handful of papers on the
subject, in contrast to the overwhelming body of academic literature written about VHDL.
Previously, VHDL had been unsuccessful in this course. For all its linguistic merits, VHDL
is too complex for the first-time user. Verilog, on the other hand, is much more straightfor-
ward and allows the first-time user to focus on the design rather than on language details.
Yet Verilog is powerful enough to describe very exotic designs, as illustrated in chapters 8-
11.

As its subtitle indicates, this book emphasizes the algorithmic nature of digital computer
design. This book uses the manual notation of Algorithmic State Machine (ASM) charts
(chapter 2) as the master plan for designs. This book uses a top-down approach, which is
based on the designer's faith that details can be ignored at the beginning of the design
process, so that the designer's total effort can be to develop a correct algorithm.

Chapters 2-11 use the same elementary algorithm, referred to as the childish division algo-
rithm, for many hardware and software examples. Because this algorithm is so simple, it
allows the reader to focus on the Verilog and computer design topics being covered by each
chapter. This book is unique in showing the correspondence of ASM charts to implicit style
Verilog (chapters 3, 5 and 7). All chapters emphasize a feature of Verilog, known as non-
blocking assignment or Register Transfer Notation (RTN), which is the main distinction
between software and synchronous hardware. Except for chapter 6, this book ignores (ab-
stracts away) propagation delay. Instead, the emphasis here is toward designs that are
accurate on a clock cycle by clock cycle basis with non-blocking assignment. (Many exist-
ing Verilog books either provide too much propagation delay information or are so abstract
as to be inaccurate on a clock cycle basis. Appendices C and D motivate the abstraction
level used here.)

Chapter 4 gives a novel three-stage design process (behavioral, mixed, structural), which
exercises the reader's understanding of many elementary features of Verilog. Chapter 7
explains an automated one hot preprocessor, known as VITO, that eliminates the need to go
though this manual three-stage process.

This book defers the introduction of Mealy machines until chapter 5 because my experi-
ence has been that the complex interactions of decisions and non-blocking assignments in a
Mealy machine are confusing to the first-time designer. Understanding chapter 5 is only
necessary to understand chapters 9 and 10, appendix J and sections 7.4 and 11.6.

The goal is to emphasize a few enduring concepts of computer design, such as pipelined
(chapters 6 and 9) and superscalar (chapter 10) approaches, and show that these concepts
are a natural outgrowth of the non-blocking assignment. Chapter 6 uses ASM charts and
implicit Verilog to describe pipelining of a special-purpose machine with only the material
of chapter 4. Chapters 8, 9 and 11 use the classic PDP-8 as an illustration of the basic
principles of a stored program computer and cache memory. Chapter 8 depends only on the
ASM material of chapter 2. Chapter 9 requires an understanding of all preceding chapters,
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except chapter 7. The capstone of this book, chapter 10 (which depends on chapter 9), uses
the elegant ARM instruction set to explore the RISC approach, again with the unique com-
bination of ASMs, implicit Verilog and non-blocking assignment.

Chapters 3-6, 9 and 10 emphasize Verilog simulation as a tool for uncovering bugs in a
design prior to fabrication. Test code (sometimes called a testbench) that simulates the
operating environment for the machine is given with most designs. Chapter 10 introduces
the concept of Verilog code coverage. Chapters 7 and 11, which are partially accessible to
a reader who understands chapter 3, uses specific synthesis tools for programmable logic to
illustrate general techniques that apply to most vendors' tools. Even in synthesis, simula-
tion is an important part of the design flow. Chapter 11 will be much more meaningful after
the reader has grasped chapters 1-9. The designs in chapter 11 have been tested and down-
loaded (www. phptr . com) into Vantis CPLDs using a tool available to readers of this
book (appendix F), but these designs should also be usable with minor modifications for
other chips, such as FPGAs.

Appendices A, B and G give background on the machine language examples used in chap-
ters 8-11. Appendices C and D give the block diagram notation used in all chapters for
combinational logic and sequential logic, respectively. Chapters 1-11 do not use tri-state
bidirectional buses, but appendix E explains the Verilog coding of such buses.

This book touches upon several different areas, such as "computer design," "state machine
design," "assembly language programming," "computer organization," "computer arithmetic,"
"computer architecture," "register transfer logic design," "hardware/software trade-offs,"
"VLSI design,"" "parallel processing" and "programmable logic design." I would ask the
reader not to try to place this book into the pigeon hole of some narrow academic category.
Rather, I would hope the reader will appreciate in all these digital and computer design
topics the common thread which the ASM and Verilog notations highlight. This book just
scratches the surface of computer design and of Verilog. Space limitations prevented inclu-
sion of material on interfacing (other than section 11.6) and on multiprocessing. The ex-
amples of childish division, PDP-8 and ARM algorithms were chosen for their simplicity.
Sections labeled "Further reading" at the end of most chapters indicate where an interested
reader can find more advanced concepts and algorithms, as well as more sophisticated fea-
tures of Verilog. Appendix F indicates postal and Web addresses for obtaining additional
tools and resources. It is hoped that the simple examples of Verilog and ASMs in this book
will enable the reader to proceed to these more advanced computer design concepts.
In places, this book states my opinions rather boldly. I respect readers who have differing
interpretations and methodologies, but I would ask such readers to look past these distinc-
tions to the unique and valuable approaches in this book that are not found elsewhere. I
have sprinkled (somewhat biased) historical tidbits, primarily from the first quarter century
of electronic computer design, to illustrate how enduring algorithms are, and how transient
technology is. Languages are more algorithmic than they are technological. Just look at the
endurance of the COBOL language for business software. Hardware description languages
will no doubt change as the twenty-first century unfolds, but I suspect whatever they be-
come, they will include something very much like contemporary implicit style Verilog.
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1. WHY VERILOG
COMPUTER DESIGN?

1.1 What is computer design?
A computer is a machine that processes information. A machine, of course, is some
tangible device (i.e., hardware) built by hooking together physical components, such
as transistors, in an appropriate arrangement. Processing occurs when the machine fol-
lows the steps of a mathematical algorithm. Information is represented in the machine
by bits, each of which is either 0 or 1. This book only considers digital information
(i.e., bits) and does not consider analog information. Analog information can be ap-
proximated by digital information by using a sufficient number of bits.

Computer design is the thought process that arrives at how to construct the tangible
hardware so that it implements the desired algorithm. The goal is to turn an algorithm
into hardware. Computer designers have two ways to look at the machines they build:
the way they act (known as the behavioral viewpoint, which is closely related to algo-
rithms), and the way they are built (known as the structural viewpoint, which is like a
"blueprint" for building the machine).

1.1.1 General-purpose computers
When you say the word computer today, it brings to mind what we refer to as a general-
purpose computer, which you can program with software to implement any algorithm.
With a general-purpose computer it is not necessary to build a new machine to imple-
ment each new algorithm. Programming such a general-purpose machine is often done
with a conventional high-level language, such as C, C++, Java or Pascal.

1.1.2 Special-purpose computers
If you accept the definition of a computer given in section 1. 1, there are many kinds of
machines that fit this description in addition to general-purpose computers. We will
refer to these other kinds of machines as special-purpose computers, which are non-
programmable machines that implement one specific algorithm. A general-purpose
computer is actually like a special-purpose computer that implements one algorithm,
known as fetch/execute, that interprets a software program. The fetch/execute algo-
rithm is fairly complex, so it is easier to study computer design by first looking at how
simpler algorithms (than fetch/execute) can be transformed into hardware. For example,
a traffic light is controlled by a machine that indicates when different colored lights are
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to be turned on. This machine is not programmable. Once it is designed, it always does multane
the same boring thing: green, yellow, red, green, yellow, red, ... Nevertheless, by the Colossu
above definition, it is a computer. It follows a particular (although boring) algorithm. the mat]

Special-purpose computers are ubiquitous because, in large volumes, it is more eco- puter, a
nomical to manufacture a special-purpose computer that implements one boring algo- Mark I,
rithm than to purchase a general-purpose computer and waste most of its capabilities 1948.
on that boring algorithm. However, for small volumes, or for problems where the speci- 194
fications change frequently (such as tax accounting), the software approach is more In the I
economical. only lar

There are only a handful of general-purpose computers on the market, and so there are advance
not many jobs for designers for these popular machines. On the other hand, many non- vacuum
computer industries use special-purpose computers as parts for the products they manu- tages th
facture, and so job opportunities exist for designers of special-purpose machines. Also, This, of
special-purpose computers play a role in the peripheral devices, such as modems, that tions co
attach to general-purpose computers. tal desil

bits. De
hand-he

1.2 A brief history of computer/digital technology econor
The history of computer design highlights two things: changing technologies and last- In the 1
ing concepts. It is important to make a distinction between a concept and a technology. on a ci
Information and algorithms are mathematical concepts that exist regardless of the physi- Interai
cal details of their implementation with a particular technology. Many of the algo- powe 
rithms used in computers today were discovered by the great minds of mathematics cidei
decades or centuries ago.

Almost four centuries ago, Blaise Pascal (for whom the language is named) built one of Since t
the first mechanical calculators (which required a great deal of human intervention to gies. It 
operate). Pascal is remembered today however because he discovered several interest- chips c(
ing algorithms, such as "Pascal's triangle," which are still in common use. A century But the
and a half ago, Charles Babbage succeeded in using the technology of his day (preci- mented
sion cams and gears) to build the first fully automatic special-purpose computer for
tabulating mathematical functions. Babbage also envisioned a general-purpose ma-
chine (with its fetch/execute algorithm) but was unable to complete it due to financial 1.3
difficulties.

In the bn
The invention of the vacuum tube was the technological advance that made building hardwa
computers affordable. For a fraction of the cost of a machine built with cams and gears, and 19(
a vacuum tube computer could automatically carry out hundreds of algorithm steps in needs n
a second. During the 1930s, C. Wynn-Williams in Great Britain built the first binary less km
counter with vacuum tubes and the team of John Atanasoff and Charles Berry at Iowa of softv
State University built the first vacuum tube special-purpose computer for solving si-
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multaneous equations. During World War II, several computers were built, including
Colossus (in Great Britain), which was used to break coded German messages. In 1945,
the mathematician John von Neumann popularized the idea of a general-purpose com-
puter, and his name is often synonymous with a machine that implements the fetch/
execute algorithm. The first operational general-purpose computer was the Manchester
Mark I, which was a vacuum tube machine built in England that ran its first program in
1948.

In the 1950s, general-purpose vacuum tube computers cost millions of dollars, and
only large corporations and governments owned them. The next major technological
advance came with the invention of the transistor, which can do the same thing that a
vacuum tube can do faster and more economically. Transistors also have the advan-
tages that they run cooler and have a longer life than vacuum tubes.

This, of course, lowered the cost of general-purpose computers so that smaller corpora-
tions could own them, but it also made the application of digital design practical. Digi-
tal designs are special-purpose computers built using electronic circuits that process
bits. Devices like digital watches, digital microwave oven timers, digital thermostats,
hand-held calculators, etc. are all controlled by special-purpose computers that became
economical with the invention of the transistor and related digital electronics.

In the 1960s, it became possible to manufacture hundreds or thousands of transistors
on a chip of semiconductor material, known as an integrated circuit, at very low cost.
Integrated circuits made it possible to mass-produce general-purpose computers, as
well as digital electronic chips. Special- and general-purpose computers are now so
powerful and affordable that they are part of almost every complex device built, from
children's toys to the space shuttle.

Since the 1960s, there have been continual improvements in semiconductor technolo-
gies. It is now possible to get millions of transistors on a single chip. Of course, today's
chips cost a fraction of the price of, and run faster and cooler than, their predecessors.
But the algorithms that these chips implement are similar to the algorithms imple-
mented with earlier technologies.

1.3 Translating algorithms into hardware
In the beginning, hardware designers were programmers and vice versa. The world of
hardware design and software design fragmented into separate camps during the 1950s
and 1960s as advancing technology made software programming easier. The industry
needs many more programmers than hardware designers and programmers require far
less knowledge of the physical machine than hardware designers. Despite this, the role
of software designers and hardware designers is essentially the same: solve a problem.

Why Verilog Computer Design? 3
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Although many hardware designers realized in the 1960s and 1970s that their primary
job was to develop an algorithm that solves a problem and translate that algorithm into
hardware, some hardware designers lost sight of this essential truth.

An early notation for describing digital hardware that provides tremendous clarity in
this regard is the Algorithmic State Machine (ASM), which was invented in the early
1960s by T.E. Osborne. As the name suggests, the ASM notation emphasizes the algo-
rithmic nature of the machines being designed. Chapter 2 explains the ASM notation,
and how it can be used manually to translate an algorithm into hardware. This notation
is used throughout the rest of this book.

1.4 Hardware description languages
Unfortunately, hardware designers were inundated with the overwhelming technologi-
cal changes that occurred with semiconductor electronics. Many hardware designers
lost track of the advances in design methodology that occurred in software. Around
1980, as semiconductor technology advanced, it got more and more difficult to design
hardware. Up to that time, most hardware design was done manually. Designers real-
ized that the ever-increasing power of general-purpose computers could be harnessed
to aid them in designing the next generation of chips. The goal of using the current
generation of general-purpose computers to help design the next generation of special-
and general-purpose computers required bringing the worlds of hardware and soft-
ware back together again.

Out of this union was born the concept of the Hardware Description Language (HDL).
Being a computer language, an HDL allows use of many of the timesaving software
methodologies that hardware designers had been lacking. But as a hardware language,
the HDL allows the expression of concepts that previously could only be expressed by
manual notations, such as the ASM notation and circuit diagrams.

As technology advances, the details about HDLs will undoubtedly change in the fu-
ture, but studying an HDL instills fundamental concepts that will endure. These ideas,
originally thought of as hardware concepts, are becoming more important in software
due to the increased importance of software parallel processing and object-oriented
programming. There is a deep theoretic similarity between the concepts in software
fields (such as operating systems and data structures) and the concepts in computer
design. The growing popularity of HDLs attest to this fact: hardware is becoming
more like software, and vice versa.

Chapter 3 discusses a popular HDL, known as Verilog, which is easy to learn because
it has a syntax similar to C and Pascal. Verilog was developed in the early 1980s by
Philip Moorby as a proprietary HDL for a company that was later accquired by Ca-
dence Design Systems, which put the Verilog standard into the public domain. It is now
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known as IEEE 1364. Verilog is used together with ASM charts in the rest of this book.
This book is not just about Verilog or ASM charts for their own sake; this book also
describes how these notations illuminate the thought processes of a computer designer.
Ultimately, computation takes place on hardware. As children, all of us were inquisi-
tive about everything: "How does this work?" Even if you do not plan on becoming a
computer designer, it seems reasonable that you should be able to answer that question
about the machines that are at the heart of your chosen career. The power of the Verilog
and ASM notations give us insight for answering this question.
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grams, and simulation results.
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of other high level languages,
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simulation results.

9 Hardware
Why Verilog Computer Design? 5



1.6 Assumed background
It is assumed that the reader has a reasonable amount of experience programming in a
conventional high-level language, such as C, C++, Java or Pascal. Programming expe-
rience in assembly language (appendices A, B and G) is very helpful. It is assumed that
the reader can understand binary, octal and hexadecimal notations, can convert these to
and from decimal and can perform arithmetic in these bases. It is also assumed that the
reader is familiar with the common combinational logic gates (AND, OR, NOT, etc.),
and that the reader knows about the common digital building blocks used in digital
design (appendices C, D and E).

1.7 Conclusion
The few computers built in the nineteenth century were based on classical mechanics
(cams and gears visible to the naked eye). Almost all the computers built in the twenti-
eth century have been based on electronics. It is hard to say what technologies will be
prevalent for computers in the twenty-first century.

Conventional semiconductor technology will someday reach its limit (based on the
minimum size of a transistor and the speed of light). Technologies based on recombinate
DNA, photonics, quantum mechanics, superconductivity and nanomechanics (cams
and gears built of individual atoms) are all contenders to be the computer technology of
the twenty-first century. The point is that it does not matter: technology changes every
day, but concepts endure. The intellectual journey you travel by turning an algorithm
into hardware illustrates these enduring concepts. I hope you enjoy the journey!

Verilog Digital Computer Design: Algorithms into Hardware
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DESIGNING ASMs
This chapter explains the graphical notation used throughout the rest of this book. This
graphical notation helps a hardware designer working only with pencil and paper. Chap-
ters 4 and above require that the reader understand the notation explained in this chap-
ter. Chapter 3 describes an alternative textual notation, known as Verilog, more suitable
for automation (computer-aided design), where software tools help the designer pro-
duce a correct machine. The reader of this book will acquire a thorough understanding
of both the notation in chapter 3 and the notation in this chapter, but we begin at the
beginning with the most important question a hardware designer can ask: "How do I
write down the particular algorithm that the hardware is supposed to follow?"

2.1. What is an ASM chart?
An Algorithmic State Machine (ASM) chart is a flowchart-like notation that describes
the step-by-step operations of an algorithm in precise units of time. ASM charts are
useful when you want to design hardware that implements some particular algorithm.
The ASM chart can describe the behavior of the hardware without having to specify
particular hardware devices to implement that algorithm. This allows you to make sure
that the algorithm is correct before choosing an interconnection of particular hardware
("a structure") that implements the behavior described by the ASM. The most serious
errors in hardware design do not result from connecting wires to the wrong place ("bad
structure") but instead are the fault of designers not thinking through their algorithms
completely ("bad behavior"). Designing a hardware structure is much more expensive
than describing its behavior, and so it is sensible to spend extra time on the behavioral
ASM chart before considering how to implement it with a hardware structure.

Although an ASM chart looks similar to a conventional software flowchart, the inter-
pretation of an ASM chart differs from a conventional software flowchart with regard
to how the passage of time relates to the operation of the algorithm. In software, the
exact amount of time from one algorithm step to the next is not explicitly described by
a flowchart. In the ASM chart, each step of the algorithm takes an exact amount of
time, known as the clock period or clock cycle. There are also other time-related dis-
tinctions in the ASM chart notation which are described later.

An ASM chart is composed of rectangles, diamonds (or equivalently diamonds can be
drawn as hexagons for notational convenience), ovals and arrows that interconnect the
rectangles, diamonds and ovals. ASM charts composed only of rectangles and dia-
monds are said to describe Moore machines. ASM charts that also include ovals are
said to describe Mealy machines. Mealy machines are described in chapter 5, and some
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of the more advanced concepts in chapter 7 and chapters 9 and above require the reader
to understand Mealy notation. At this time, we will ignore the use of ovals and concen-
trate only on ASM charts for Moore machines.

Each rectangle is said to describe a state. A label, such as a number or preferably a
meaningful name, can be written on the outside of the rectangle. The term present state
refers to which rectangle of the ASM chart is active during a particular clock period.
The term next state indicates which rectangle of the ASM chart will be active during
the next clock period. The ASM chart indicates how to determine the next state (given
the present state) by an arrow that points from the rectangle of the present state to the
rectangle of the next state. Each arrow eventually arrives at one of the rectangles in the
ASM chart. Since it has a finite number of rectangles, there is at least one loop in an
ASM chart. An ASM chart is said to describe a particularfinite state machine. Unlike
software, there is no way to stop or halt a finite state machine (unless you pull the
plug).

There is a relationship between the ASM chart and its behavior. For example, consider
the following ASM chart with three states:

GREEN

YELLOW

RED

Figure 2-1. ASM with three states.

Assuming that we start in state GREEN, and that the clock has a period of 0.5 seconds,
the ASM chart will make the following state transitions forever:
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wing sections explain the commands that can occur in rectangles of an ASM
decisions that can occur in diamonds of an ASM chart, the input and output
ns to a machine described by an ASM chart and issues of ASM chart style.
the examples in the following sections vaguely resemble a traffic light con-

ey are not intended to solve such a practical problem. They are instead in-
lely to illustrate ASM chart notation and style.

ASM chart commands
the rectangle for a state is not empty. There are three command notations that

r can choose to put inside the rectangle, which are described in the following

Asserting a one-bit signal
s a bit (or as explained in section 2.1.1.2, a group of bits) that conveys infor-
.signal is transmitted via a wire (or similar physical medium). The designer
final (and its corresponding wire) a name to document its purpose. When the
signal occurs inside a rectangle of an ASM chart, that signal is asserted when
ne is in the state corresponding to the rectangle in question. In other state
;, where that signal is not mentioned, that signal takes on its default value. As
le, assume the default value for the signal STOP is 0. In the following:

GREEN F| 1

YELLOW

RED

STOP

STOP

2-2. ASM with command outputs.

1 be 1 when the ASM is in state RED or state YELLOW. STOP will be 0 when
is in state GREEN. The following illustrates this situation:
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2.1.1.2 Outputting a multi-bit command
When the name of a signal is on the left of an equal sign (=) inside a rectangle, thatsignal takes on the value specified on the right of the equal sign during the state corre-
sponding to the rectangle in question. In other state rectangles, where that signal is not
mentioned, that signal takes on its default value.

The following two diagrams show ASM charts that use =. The first of these ASMs isequivalent to the ASM given in section 2.1.1. The second example introduces a two-bit
bus SPEED whose default value is 00.

GREEN

YELLOW

RED

Figure 2-3. Equivalent tofigure 2-2.
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GREEN 
- -

SPEED =3m
OP=o

oP=1

'OP=1

OP=O

)P=1

)P=1

YELLOW

RED

inside a rectangle, that
during the state corre-

where that signal is not

STOP
SPEED=1 ]

[ STOP

Figure 2-4. ASM with multi-bit output.

In the above, SPEED is 0 in state RED, 1 in state YELLOW and 3 in state GREEN.

first of these ASMs is
ple introduces a two-bit

2.1.1.3 Register transfer
The last two notations are simply a way of indicating how state names translate into
physical signals, such as STOP and SPEED. Although we will eventually find many
uses for these two notations, they are by themselves not the most convenient way to
describe an algorithm.

Most algorithms manipulate variables that change their values during the course of the
computation. It is necessary to have a place to store such values. Eventually, the de-
signer will choose some kind of synchronous hardware register (appendix D) to hold
such temporary values. In ASM chart notation, it is not necessary to make this design
decision in order to describe an algorithm. Register Transfer Notation (RTN) (denoted
by an arrow inside a rectangle) tells what happens to the register on the left of the arrow
at the beginning of the next clock cycle. If a particular register is not mentioned on the
left of an arrow in a state, the value of that register will remain the same in the next
clock cycle. For example,

Designing ASMs

present next output
time state state
0.0 GREEN YELLOW STOP=0 SPEED=11
0.5 YELLOW RED STOP=1 SPEED=01
1.0 RED GREEN STOP=1 SPEED=00
1.5 GREEN YELLOW STOP=0 SPEED=11
2.0 YELLOW RED STOP=1 SPEED=01
2.5 RED GREEN STOP=1 SPEED=00
... ... ... ... ...

P Hardware 11



GREEN

YELLOW STOP
SPEED=1

COUNT- COUNT+1

I
RED

STOP
COUNT- COUNT+2

I 

Figure 2-5. ASM with register output.

in the above assume that a three-bit COUNT register is 000 at time 0:

present next
time state state
0.0 GREEN YELLOW STOP=0 SPEED=11 COUNT=000

0.5 YELLOW RED STOP=1 SPEED=01 COUNT=000

1.0 RED GREEN STOP=1 SPEED=00 COUNT=001

1.5 GREEN YELLOW STOP=0 SPEED=11 COUNT=011

2.0 YELLOW RED STOP=1 SPEED=01 COUNT=011

2.5 RED GREEN STOP=1 SPEED=00 COUNT=100

... ... ... ... ... ...

Unlike STOP and SPEED, COUNT is not a function of the present state.
whenever the ASM is in state GREEN, STOP is 0. The first time in s1
COUNT is 000, but the second time in state GREEN, COUNT is 011.

Notice that the - causes a delayed assignment, which is different thai
with conventional software programming languages, such as C. This is
distinction to keep in mind when designing ASM charts. One of the i
that reoccurs throughout this book is the consequence of designing
that use this kind of delayed assignment. Although at first a novice 
find <- unnatural and may make mistakes because of a misunderstanding
the reader masters the concept of this delayed assignment, all of the advar
in later chapters will become much more understandable.

2.1.2 Decisions in ASM charts
One or more diamonds (or hexagons) following a rectangle indicate a d
ASM chart. The decision inside the diamond occurs at the same time as ti

Verilog Digital Computer Design: Algorithms into Hardwa
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described in the rectangle. There are two kinds of conditions that a designer can put
inside a diamond in an ASM chart. These decisions are described in the following
sections.

2.1.2.1 Relations
Relational operators ( ==, <, >, <=, >=, != ) as well as logical operators (&&, II,!) can
occur inside a diamond. It is also permissible to use the shorter bitwise operators (&,I,^,-)
inside a diamond when all of the operands are only one-bit wide. When the relation in
the diamond involves registers also used in the rectangle pointing to that diamond, the
action taken is often different than would occur in software. Because the decision in the
diamond occurs at the same time as the operations described in the rectangle, you
ignore whatever register transfer occurs inside the rectangle to decide what the next
state will be. The register transfer is an independent issue, which will only take effect at
the beginning of the next clock cycle. As a illustration of such a decision, consider:

rNT=000

NT=000

FNT=001

rNT=011
rNT=011

NT=100

GREEN

YELLOW

ant state. For example,
time in state GREEN,
is 0 1.

erent than assignment
. This is an important
of the central topics
designing algorithms
novice designer may

,rstanding of A-, once
the advanced concepts

4

SPEED=3 ]
STOP

SPEED=1 I
COUNT- COUNT+1

RED
STOP

COUNT CUNT+2

Figure 2-6. ASM with decision.

licate a decision in an
time as the operations

At first glance, it might appear that the ASM will get stuck in the loop the first time the
machine enters state YELLOW because COUNT+1 is 001. However the decision
COUNT != 0 is based on the current value of COUNT, which remains 000 until the
beginning of the next clock cycle. Therefore the ASM exits from state YELLOW and
proceeds to RED. On the second time the machine enters state YELLOW, COUNT is
01 1, and so it stays in state YELLOW for six clock periods. The only reason the ASM
ever leaves state YELLOW is because the three-bit COUNT wraps around from 7 to 0.

Hardware
Designing ASMs
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present next
M4mo --i>F c--

|I[ L. a U t1! GREE!
0.0 GREEN YELLOW STOP=0 SPEED=11 COUNT=000

0.5 YELLOW RED STOP=1 SPEED=01 COUNT=000

1.0 RED GREEN STOP=1 SPEED=00 COUNT=001

1.5 GREEN YELLOW STOP=0 SPEED=11 COUNT=011

2.0 YELLOW YELLOW STOP=1 SPEED=01 COUNT=011

2.5 YELLOW YELLOW STOP=1 SPEED=01 COUNT=100

3.0 YELLOW YELLOW STOP=1 SPEED=01 COUNT=101 YELLOV
3.5 YELLOW YELLOW STOP=1 SPEED=01 COUNT=110

4.0 YELLOW YELLOW STOP=1 SPEED=01 COUNT=111

4.5 YELLOW RED STOP=1 SPEED=01 COUNT=000

5.0 RED GREEN STOP=1 SPEED=00 COUNT=001

... ... ... ... ... ...

The highlighted line shows the last time the ASM is in state YELLOW. The next state
is RED because COUNT is 000. REI

2.1.2.2 External status Fi
Many hardware systems are composed of independent actors working cooperatively
but in parallel to each other. We use actor as an ambiguous term that incorporates other
digital hardware (i.e., special- and general-purpose computers) as well as non-digital The at
hardware and people who communicate with the machine described by an ASM chart. WALE
From a designer's standpoint, the details of the other actors are normally unimportant. When

These actors need to send information to the machine described by the ASM chart. The m
When such external information can be represented in only one bit, it is known as
external status. (Multi-bit signals can be broken down into several single-bit status 2.1.3
signals if desired.) External status signals have names that are simply labels for physi- AnAS
cal wires connecting the machine that implements the ASM chart to the outside world. its inte
By convention, the name of a status signal can occur by itself inside a diamond. The structu
meaning of such a diamond is the same as testing if the status signal is equal to one. For provid
example, larger

inputs
are eit
ASM

In add
gram i
ments
descril
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9T=000

9T=000

qT=001

NT=011

UT=011

UT=100

.T=101

1T=110

9T=111
IT-000
qT=001

GREEN

YELLOW

,LOW. The next state

RED

Figure 2-7. ASMs with external status.working cooperatively
hat incorporates other
is well as non-digital
)ed by an ASM chart.
Ormally unimportant.

The above ASMs are equivalent to each other. They will stay in state GREEN until
WALKBUTTON is 1 during the last clock period that the ASM is in state GREEN.
When WALKBUTTON is 1 in state GREEN, the next state will be state YELLOW.
The machine ignores WALKBUTTON when it is in state YELLOW or in state RED.d by the ASM chart.

te bit, it is known as
reral single-bit status
nply labels for physi-
: to the outside world.
iside a diamond. The
al is equal to one. For

2.1.3 Inputs and outputs of an ASM
An ASM chart describes the behavior of a piece of digital hardware without specifying
its internal structure. The machine described by an ASM chart is often part of a larger
structure. The machine receives inputs from other actors in that larger structure and
provides outputs to other actors in that larger structure. In order to be part of such a
larger structure, the machine described by an ASM chart must have a limited set of
input ports (to receive information) and output ports (to send information). These ports
are either single wires or buses having names that correspond to names used in the
ASM chart.

In addition to its ASM chart, we can draw a block diagram of a machine. Such a dia-
gram is sometimes called a black box because it hides the internal structure that imple-
ments the machine. The only thing we know is that the behavior of the machine is
described by the corresponding ASM, and that the machine has inputs as specified by

hardware DesigningASMs 15



arrows pointing into the black box, and outputs as specified by arrows pointing out of being i
the black box. As is standard notation in all hardware structure diagrams, when the 2-9 shc
input or output ports are more than one bit wide, the width is specified by a slash. left tree

The following is a block diagram of the machine described by the ASM chart in 2.1.2.2: o three

WALKBUTTON C- STOP C

EXAMPLEl 

ASM 7'SPEED| 

COUNT

Figure 2-8. Block diagram. NO

2.1.3.1 ASM inputs
There are two kinds of inputs to a machine described by an ASM chart and black box
diagram. It is somewhat arbitrary which of these two approaches a designer uses. The
designer is free to choose the way that seems most appropriate for the problem at hand.
It is permissible for a designer to mix these two approaches in a particular ASM. Since BLO,
it plays a role later in the design process, the distinction between these two kinds of
inputs is important to note.

2.1.3.1.1 External status inputs 3
A designer may consider a one-bit input port as an external status input when it is
mentioned only by itself in diamond(s). Such status inputs are usually interpreted as
providing an answer from the outside world to some yes/no question, such as "has the
button been pressed?" As an example, in the block diagram above in section 2.1.3, Fig
WALKBUTTON is the only external status input.

It is n

2.1.3.1.2 External data inputs easier
When an input of any width is used only on the right-hand side of register transfers in must l
rectangles and/or only in relational decisions, it is considered an external data input.
Such data inputs usually play the same role that input variables play in conventional In the
programming languages.

It is arbitrary whether the designer wishes to consider a one-bit input as a status or data 2.1.3
input, as was illustrated in section 2.1.2.2. When a multi-bit input is used only with There
relational operations in diamonds (and not on the right of register transfers in rect- box d
angles), a designer may consider such a multi-bit input as being composed of several based
status input bits. For example, consider a machine with an external three-bit data input comnr
A. At some point in the behavior of the machine, the ASM needs to test if the value distin
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arrows pointing out of
e diagrams, when the
ecified by a slash.

being input to the machine from the outside world on the bus A is equal to two. Figure
2-9 shows the block diagram and two equivalent ASM charts. The ASM chart on the
left treats A as a single data input, but the ASM on the right treats A as being composed
of three status inputs (A[21, A[1] and A[O]).ASM chart in 2.1.2.2:

NT

4 chart and black box
; a designer uses. The
r the problem at hand.
)articular ASM. Since
an these two kinds of

BLOCK DIAGRAM

A EXAMPLE
3 MACHINE

atus input when it is
usually interpreted as
tion, such as "has the
love in section 2.1.3, Figure 2-9. Two ways to test multi-bit input.

It is natural for designers to treat yes/no information as status. In most other cases, it is
easier for the designer to consider something as a data input than to consider it as a
status input, as the above ASMs illustrate. Inputs used on the right of register transfers
must be treated as data inputs.

if register transfers in
i external data input.
play in conventional In the block diagram above in figure 2-8, there are no external data inputs.

put as a status or data
)ut is used only with
;ter transfers in rect-
composed of several
l three-bit data input
Is to test if the value

2.1.3.2 ASM outputs
There are two kinds of outputs from a machine described by an ASM chart and black
box diagram. Unlike the two kinds of inputs, with outputs the designer makes a choice
based on how the output is generated in the ASM. From that point on, the designer is
committed to that kind of output. Since it plays a role later in the design process, the
distinction between these two kinds of outputs is important to note.
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2.1.3.2.1 External command outputs Arbitt
External command outputs are generated as described in sections 2.1.1.1 and 2.1.1.2. mostly
They are a function only of the present state of the ASM (assuming, as we have been so analol
far, that ovals are not present in the ASM so that it represents a Moore machine). Com- ware.
mand outputs do not retain their value when changing from one state to the next. If a staten
particular command output is not mentioned in the next state, it reverts to its default is ted
value. In the block diagram given in section 2.1.3, the external command outputs are the gc
STOP and SPEED. ling n

2.1.3.2.2 External data outputs 2.1.5
External data outputs are register names mentioned on the left of a register transfer in at There
least one rectangle. Unlike command outputs, data outputs can retain their value when the bc
changing from one state to the next. If a particular data output is not mentioned in the solve!
present state, it continues to hold its current value during the next state. Not all registers The d
used in an ASM are necessarily output by the ASM. If a register is not specified as an soluti
output from the block diagram, it is an internal register, which the outside world is not perfect
allowed to examine (because no bus has been provided to connect that register to the as fit
outside world.) The only external data output of the block diagram in section 2.1.3 is time,
COUNT. tem.

The o
2.1.4 Goto-less style the dc
ASM charts allow a designer to specify an arbitrarily complex set of decisions to deter- has a
mine the next state. In theory, the possible next states for a particular state could be any is not
of the rectangles in the ASM chart. Of course, in every particular case (based on regis-to Wo
ter values and status inputs during that clock period), the ASM deterministically de- thing
scribes a particular next state to which the ASM goes in the next clock period. The alrea(
problem for a careless designer is that the number of possible next states to consider solve
could be quite large if the ASM is large. The flaw here is not in the technical capability the diof ASM charts (and corresponding hardware) to correctly implement such complex usefu
decisions, but rather in the capability of designers to comprehend their designs. ntop-d
Similar problems were encountered decades ago in software design. At that time, the
high-level language goto statement was quite popular. Psychological studies have We 
shown that people are only able to keep a few details in their short-term memory at any
time. Using goto statements correctly requires that a designer remember too many
details when the program gets to be of any size. Dijkstra popularized the idea in 1968
that software programmers should avoid the use of goto statements in order to make This
software more readable, and more likely to be correct. ters c

scribe
only
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Arbitrary next states in a flowchart are just like go tos in software. Therefore, we will
mostly use "got o-less" style ASM charts. Such ASMs are limited to decisions that are
analogous to the high-level language style that is nowadays standard practice in soft-
ware. In other words, we will try to make our decisions act like high-level language i f
statements, and our loops act like high-level language while statements. Although it
is technically possible to make an ASM chart look like a plate of spaghetti, the goal of
the got o-less style is to avoid such a mess. On rare occasions, there may be a compel-
ling need to use an ASM chart which violates the goto-less style.

2.1.5 Top-down design
There are two basic approaches to solving problems: bottom up and top down. With
the bottom-up approach, the designer begins with some tiny detail of the problem and
solves that detail. The designer then goes on to some unrelated tiny detail, and solves it.
The designer will eventually have to "glue" the details together to form the complete
solution. On large problems, bottom-up designed pieces usually do not "fit" together
perfectly. This problem happens because the designer did not view the separate details
as fitting into some master plan. An unreasonably large percentage of the designer's
time at the end of the project is wasted on integrating the details into a complete sys-
tem.

The opposite of the bottom-up approach is top-down design. In the top down approach,
the designer starts with a master plan. The details come later, and because the designer
has a master plan, the details will fit perfectly into the final solution. Top- down design
is not natural for novice designers. If you have never built hardware before, it is natural
to worry about how the details will work (voltages, wires, gates, etc.). Leaming some-
thing new is a mostly bottom-up process, but experienced designers use what they have
already learned in a top-down fashion. Top-down design is based on faith: you have
solved details similar to those in your current problem before, and so you can ignore
the details when you begin the solution to the current problem. An ASM chart is a
useful notation for describing the overall actions of a hardware system without getting
into the hardware details. Therefore, the ASM chart makes a good starting point for the
top-down design process.

We will take the top-down design process through three stages, briefly described in the
following subsections (2.1.5.1 through 2.1.5.3).

2.1.5.1 Pure behavioral
This is the most important stage. It is the stage that most of the examples in later chap-
ters concentrate on. In this stage of the top-down design process, the machine is de-
scribed with a single ASM chart using primarily RTN and relational decisions. The
only differences between the pure behavioral solution and a software solution is that

Designing ASMs
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the ASM chart describes the passage of time relating to the hardware system clock (as cepts
explained in sections 2.1.1 and 2.1.2) and the machine described by the ASM chart tis fa
connects to the external world via hardware ports (section 2.1.3). A practical example in an
of taking a simple problem and exploring various solutions using pure behavioral ASM design
charts is given in section 2.2. The only kind of structure that exists in the pure behav- The cc
ioral stage consists of the input and output ports, as illustrated by the of RT
following: 

output

from t
is stillEXTERNAL EXTERNAL isci

STATUS COMMAND descri
INPUTS OUTPUTS ratherMACHINE about:EXTERNAL EXTERNAL carry 
DATA DATA now 

INPUTS OUTPUTS identi

the ccFigure 2-10. Pure behavioral block diagram.

2.1.5.2 Mixed
A pure behavioral ASM chart is merely the statement of an algorithm with precise
timing information and includes an indication of which operations occur in parallel. It
does not describe precisely what hardware components implement the computation.
The goal of computer design is to arrive at a "blueprint" of a physical machine. The
pure behavioral ASM chart is merely a description of what the designer wants the
machine to do. It does not tell how to connect the physical components together. Soft- ,
ware people wonder why the problem is not done upon completing the behavior ASM.
After all, we do have a solution (an algorithm). Hardware people wonder why we
spend so much time with ASM charts. After all, we do not yet have a solution (physical Fi
hardware). The answer to both groups is: have patience. The pure behavioral stage is
important because it enhances the likelihood the designer will produce a correct solu-
tion. The next stage, which is known as the mixed stage, accomplishes part of the trans- Ath(
formation from the algorithm into a physical hardware structure. more
The mixed stage of the top-down design process partitions the problem into two sepa- for t
rate but interdependent actors: the controller and the architecture. The architecture natio
(sometimes called the datapath) is the place where physical hardware registers will mixe
implement the register transfers originally conceived in the pure behavioral stage. The has t
architecture also contains combinational logic circuits that perform computations re- tectu
quired by the algorithm. What the architecture cannot do by itself is sequence events andE
according to the master plan given in the behavioral ASM. This is why the controller 2.2 i
exists as an independent actor. The controller tells the architecture what to do during tion
each clock cycle so that the master plan is carried out. Although it may seem the con-
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dware system clock (as
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3). A practical example
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cepts of controller and architecture make things more complicated, in fact working in
this fashion simplifies the thought process. In theory, it is possible to design a machine
in an extreme way that either has no architecture or has no controller. Such extreme
designs are as unnatural to think about as software without variable declarations.

The controller issues commands (as explained in sections 2.1.1.1 and 2.1.1.2) instead
of RTN. The architecture receives and acts upon those commands and responds by
outputting status. The controller makes decisions based on such status signals received
from the architecture (as explained in section 2.1.2.2) instead of relational decisions. It
is still possible to draw an ASM chart at this stage of the design, but the ASM chart only
describes the independent action of the controller (in terms of commands and status),
rather than the complete behavior of the system. This is what top-down design is all
about: moving from one master plan (the behavioral ASM) to greater detail on how to
carry out the master plan (the mixed ASM). The hardware structure in the mixed stage
now has more detail. From the standpoint of the outside world, the mixed stage is
identical to the pure behavioral stage, but internally we now see the interconnection of
the controller and the architecture.

lgorithm with precise
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Figure 2-11. Mixed block diagram.

Although, in theory, the architecture could be described by ASM chart(s), it is usually
more effective to use a hardware structure diagram. This is because a single ASM chart
for the architecture could easily have billions of states (corresponding to all the combi-
nations of values that all the registers in the system could have). Therefore, at the
mixed level of abstraction, we use an ASM chart to describe the controller (which still
has the same number of states) but use a hardware block diagram to describe the archi-
tecture. This stage of the design is known as mixed because it is a mixture of behavior
and structure. Examples of translating some of the pure behavioral solutions of section
2.2 into mixed behavioral controller/structural architecture solutions are given in sec-
tion 2.3.
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2.1.5.3 Pure structure
The final stage of the design process is to implement the ASM chart for the cot
as a hardware structure. This translation from the mixed stage to the pure sti
stage is quite mechanical, and in fact software tools exist that create controlle
ware automatically. One can simply describe the controller as a table that says
the present state and status inputs, what the next state and command outputs 
Various techniques exist to turn such a table into a hardware structure. For ex
such a table can be burned into a Read Only Memory (ROM). The only other ha
required for the controller besides the ROM is a register to hold the present sta
amples of translating some of the mixed ASM charts of section 2.3 into pure str
solutions are given in section 2.4.

2.1.6 Design automation
Synthesis tools exist (chapter 11) that automate much of the final stages of the
process explained above. When using such tools, the designer's job is essentiall
plete at the end of the pure behavioral stage. Many designers skip over the mixe
and go straight to the pure structural stage, from which the synthesis tool can au
cally create the netlist of gates needed to fabricate an integrated circuit.

Nevertheless, it is important for a designer to understand how all these stages
carried out manually in order for the designer to know how to create an efficii
correct design. The remainder of this chapter gives manual examples of the three
described above (pure behavioral, mixed, pure structural). The most important c
stages is the pure behavioral stage because, unless that stage is correct, the res
design process (either manual or automated) is pointless.

2.2 Pure behavioral example
To illustrate the design process for a pure behavioral ASM, we need a simple alE
to implement in hardware. One such algorithm comes from the definition of ur
integer division. This definition is probably the first thing you ever learned abo
sion when you were a child, and so we will refer to the algorithm that derives fri
definition as the childish division algorithm.

By way of illustration, suppose you give a child the following problem: "Yc
seven friends and twenty-one cookies. How can you divide your cookies equally
your friends?" One solution is to give each friend one cookie, and note that eact
received a new cookie. Check to see if there are enough cookies left to give anot
to each person. Since there are, repeat this process. When you are done, you w
noted that each person has received three cookies.
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The name "childish" may seem pejorative, but this algorithm has a very honored place
in the history of computer design (section 8.1). Like a child, this algorithm is simple
and unpretentious, yet it raises important issues that also apply to much more compli-
cated algorithms. Variations on the childish division algorithm are used throughout the
rest of this book. Even Snoopy can tell whether or not this algorithm has been imple-
mented correctly:

PEANUTS © United Feature Syndicate. Reprinted by Permission.

Of course, high-level software languages are sophisticated enough to have integer
division built in. If the variable x is the number of cookies, and y is the number of
friends, x/y is the solution to this problem. In hardware, division is seldom imple-
mented as a combinational logic building block (although for small bus sizes this is
certainly feasible). This means we need to use an ASM chart to describe a division
algorithm. There are much more efficient algorithms than this childish algorithm that
are normally implemented in hardware, but the childish division algorithm will allow
us to emphasize the properties of ASM charts without having to get into obscure math-
ematical detail to justify the algorithm. Why this childish algorithm works is obvious.

Before considering the hardware implementation of this childish algorithm, let's con-
sider how to code it in software, such as in the C programming language:

nd a simple algorithm
efinition of unsigned
or learned about divi-
that derives from this

problem: "You have
)okies equally among
note that each friend

ft to give another one
done, you will have

Upon exiting from the loop, r2 will be x/y. This is a slow algorithm when the answer
r2 is of any appreciable size because the loop executes r2 times.

This software algorithm would still work when the statements inside the loop are in-
terchanged. These two statements are independent of each other (the new value of r1
does not depend on the old value of r2 and vice versa):

hardware
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rl = x;
r2 = 0;
while (rl >= y)

{
rl = rl - y;
r2 = r2 + 1;

I
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IDLE[
READY

I~~~ implement computaion of 
s ' Ed quotient.These state(s) do 

Anot assert READ 

Figure 2-12. ASMforfriendly user interface.

READY

x/y

Figure 2-13. Block diagram.
tat we have afriendly
b, that our ASM can
ngle clock cycle (the
ing with ASM charts

The cloud will be replaced by one or more rectangles and one or more diamonds re-
quired to implement the childish division algorithm. None of the rectangles that re-
place the cloud will assert the READY signal. This means that on the next clock cycle
after the user pushes pb, READY will become 0. READY only becomes I when the
states in the cloud have finished and the ASM loops back to state IDLE.EADY signal. When

:n. When READY is
)ecomes 1 again, the
ser is patient enough
in. The user sets the
the button. The user
vill not consider how
t obey these assump-

In the following sections, we will examine several different ways to implement the
childish division algorithm hidden in the cloud. An experienced hardware designer
would not need to go through so many alternatives to arrive at our final solution. The
reason we will look at so many different ways to do the same thing is to illustrate
important properties of ASM charts that are somewhat different than conventional soft-
ware. In this discussion, we will see that certain ASM charts that look reasonable to one
familiar with software are actually incorrect and that some ASM charts that look some-
what strange are actually correct. Later, in section 2.3, we will use some of the pure
behavioral ASMs we develop in this section as the starting point for the mixed stage of
the top-down design process. These examples will also be used in later chapters.

block diagram will
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2.2.2 An ASM incorporating software dependencies
The software paradigm used by conventional programming languages, such as C, can
be described as each statement completes whatever action it is meant to accomplish
before the software proceeds to execute the next statement in the program. Ultimately,
all such software programs execute on some kind of hardware, therefore, it must be
possible to describe this software paradigm using the ASM chart notation. Although it
is often inefficient, a software algorithm can always be translated correctly into an
ASM with the following rules:

1. Each assignment statement is written by itself in RTN in a
unique rectangle that is not followed by a diamond.

2. Each if or while is translated into an empty rectangle
with a diamond to implement the decision.

With this approach, either of the following ASMs correctly implements the software
algorithm for division given earlier:

Figure 2-14. ASMfor software paradigm (COMPUTEI at top).

X Although in the following example there is a diamond in state IDLE involving an external status signal, the
original software algorithm does not mention this status signal (pb), and so the software paradigm is pre-
served in this example.
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cies
guages, such as C, can IDLE r1_x
meant to accomplish READY
> program. Ultimately,
therefore, it must be 

t notation. Although it p
.ated correctly into an INI

{TN in a TEST

ectangle rl3y

plements the software _COMT

COMPUTEl 
rl - r - y

Figure 2-15. ASMfor software paradigm (COMPUTE] at bottom).

The only difference between these two ASMs is whether state COMPUTEl is at the
top of the loop or at the bottom of the loop. Since these ASMs exactly model the way
software executes one statement at a time (one software statement per ASM rectangle),
whether r or r2 gets a value assigned first is irrelevant, because this was also irrel-
evant in software.

The value of x is assigned to the register rl in state IDLE. Although this could have
been done in an additional state, since we have assumed (see section 2.2. 1) that the user
waits at least two clock cycles when READY is before pushing pb, the initialization
1 of rl can occur here. The value of x will not be loaded into rl until the second of-rl -y these two clock cycles. If pb is true, the ASM proceeds to state INIT, which will even-
tually cause r2 to change. If pb is false, as would be the case most of the time, state

-R2+1 IDLE simply loops to itself. Since state IDLE leaves r2 alone and r2 typically con-
tains the last quotient, this user interface allows the user as much time as required to

!P). view the quotient. The user interface, not the division algorithm, requires that r2 be
assigned after the pb test.

State INIT makes sure that r2 is 0 at the time the ASM enters state TEST. State TEST
checks if rl>=y, just as the while statement does in software. States COMPUTEl
and COMPUTE2 implement each software assignment statement as RTN commands

n external status signal, the in separate clock cycles.
software paradigm is pre-
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Both of these ASMs work when x < y. For example, the following shows how the

ASMs proceed when x is 5 and y is 7 (all values are shown in decimal for ease of

understanding):

IDLE rl= ? r2= ? pb=O ready=1

IDLE rl= 5 r2= ? pb=1 ready=1

INIT rl= 5 r2= ? pb=O ready=O

TEST rl= 5 r2= 0 pb=O ready=0

IDLE rl= 5 r2= 0 pb=0 ready=1

The way each of the above ASMs operates is slightly different when x >= y. The

following shows how the ASM with COMPUTE 1 at the top of the loop proceeds when

x is 14 and y is 7:

IDLE rl= ? r2= ? pb=0 ready=1

IDLE rl= 14 r2= ? pb=1 ready=1

INIT rl= 14 r2= ? pb=0 ready=O

TEST rl= 14 r2= 0 pb=0 ready=0

COMPUTE1 rl= 14 r2= 0 pb=0 ready=O

COMPUTE2 rl= 7 r2= 0 pb=0 ready=0

TEST rl= 7 r2= 1 pb=O ready=0

COMPUTE1 rl= 7 r2= 1 pb=0 ready=0

COMPUTE2 rl= 0 r2= 1 pb=0 ready=0

TEST rl= 0 r2= 2 pb=0 ready=0

IDLE rl= 0 r2= 2 pb=0 ready=1

IDLE rl= ? r2= 2 pb=O ready=1

The time to compute the quotient with this ASM includes at least two clock periods in

state IDLE, a clock period in state INIT, and the time for the loop. The number of times

through the loop is the same as the final quotient (r2). Since there are three states in the

loop, the total time to compute the quotient is at least 3 + 3 * quo t i ent.

Here is what happens with the ASM that has COMPUTE2 at the top of the loop:

IDLE rl= ? r2= ? pb=O ready=1

IDLE rl= 14 r2= ? pb=1 ready=1

INIT rl= 14 r2= ? pb=0 ready=O

TEST rl= 14 r2= 0 pb=0 ready=O

COMPUTE2 rl= 14 r2= 0 pb=0 ready=0

COMPUTE1 rl= 14 r2= 1 pb=0 ready=0

TEST rl= 7 r2= 1 pb=O ready=0

COMPUTE2 rl= 7 r2= 1 pb=O ready=0

COMPUTE1 rl= 7 r2= 2 pb=0 ready=0

TEST rl= 0 r2= 2 pb=0 ready=O

IDLE rl= 0 r2= 2 pb=0 ready=1

IDLE rl= ? r2= 2 pb=O ready=1

The latter ASA
PUTE1 schedi
does not take 
cannot be part

2.2.3 Elin
The empty rec
lation from so
in with other
diamond follc
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The latter ASM illustrates the need for an empty rectangle in state TEST. State COM-
PUTE1 schedules a change in register ri (for example, from 7 to 0), but the change
does not take effect until the beginning of the next clock cycle. Therefore the decision
cannot be part of state COMPUTE 1 but instead needs the empty rectangle (state TEST).

2.2.3 Eliminating state TEST
The empty rectangle for state TEST was introduced only to allow a mechanical trans-
lation from software to an ASM. In many instances, a decision like this can be merged
in with other states. Remember with an ASM that a non-empty rectangle having a
diamond following it means the computation in the rectangle and the decision in the
diamond take place in parallel. It is inappropriate to merge a decision onto states doing
computation when the outcome of the decision (in the software paradigm) could de-
pend on the computation. Consider the following modified version of the ASM (figure
2-15) that has COMPUTE2 at the top of the loop:

t two clock periods in
.The number of times
-are three states in the
tient.

top of the loop:

ady=1

ady=1

ady=O

ady=O

ady=O

ady=O

ady=O

ady=O

ady=O
ady=O
ady=1

ady=1

Figure 2-16. Incorrect four-state division machine.

The only difference here is that state TEST has been eliminated. Although this works
for x<y, it fails to compute the correct quotient for x>=y. As an illustration of this
error, assume that rl is twelve bits and consider when x is 14 and y is 7:
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The decision r 1> =y actually occurs separately in two states: INIT and COMPUTE 1.
In state INIT, the only computation involves r2, and so the decision (14 is >= 7) pro-
ceeds correctly. The problem exists in state COMPUTE1 because the computation
changes ri, and the decision is based on r. The second time in state COMPUTE1,
ri is still 7, although it is scheduled to become 0 at the beginning of the next clock
cycle. The decision is based on the current value (7), and so the loop executes one more
time than it should and the incorrect value of r2 (3) results. The mysterious decimal
4089 is the side effect of 12-bit underflow (4089+7=212).

Although it is incorrect to remove state TEST in the last example, what about removing
state TEST in the other ASM (figure 2-14, with COMPUTE 1 at the top of the loop)?

Figure 2-17. Correctfour-state divison machine.
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IDLE rl= ? r2= ? pb=O ready=1
IDLE rl= 14 r2= ? pb=1 ready=1
INIT rl= 14 r2= ? pb=O ready=O
COMPUTE2 rl= 14 r2= 0 pb=0 ready=0
COMPUTE1 rl= 14 r2= 1 pb=0 ready=O
COMPUTE2 rl= 7 r2= 1 pb=0 ready=O
COMPUTE1 rl= 7 r2= 2 pb=O ready=O
COMPUTE2 rl= 0 r2= 2 pb=0 ready=0
COMPUTE1 rl= 0 r2= 3 pb=0 ready=0
IDLE r1=4089 r2= 3 pb=0 ready=1
IDLE rl= ? r2= 3 pb=0 ready=1
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This ASM has the decision rl>=y happening in two different states: INIT and COM-
PUTE2. The difference here is that the decision is not dependent on the result of the
computation in state COMPUTE2. Therefore, this ASM is correct. As an illustration,
consider when x is 14 and y is 7:

IDLE rl= ? r2= ? pb=0 ready=1
IDLE rl= 14 r2= ? pb=1 ready=1
INIT rl= 14 r2= ? pb=0 ready=0
COMPUTE1 rl= 14 r2= 0 pb=0 ready=0
COMPUTE2 rl= 7 r2= 0 pb=0 ready=O
COMPUTE1 rl= 7 r2= 1 pb=0 ready=0
COMPUTE2 rl= 0 r2= 1 pb=O ready=0
IDLE rl= 0 r2= 2 pb=0 ready=1
IDLE rl= ? r2= 2 pb=O ready=1

The second time in state COMPUTE 1 schedules the assignment that changes rl from
7 to 0. This takes effect at the beginning of the clock cycle when the ASM enters state
COMPUTE2 for the second time. The decision, which is now part of COMPUTE2, is
based on the correct value (0). This means the loop goes through the correct number of
times and the quotient in r2 is correct. As was the case with the earlier ASMs, r2 will
remain unchanged until pb is pushed again.

Although the ASMs in section 2.2.2 are also correct, this ASM has the advantage that it
executes faster as it requires only 3 +2 * quotient clock cycles.

2.2.4 Eliminating state INIT
In addition to being able to describe a decision and a computation that occur in parallel,
the ASM chart notation can describe multiple computations that occur in parallel. Con-
sider eliminating state INIT by merging the assignment of zero to r2 into the rec-
tangle for state IDLE:
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2.2.5 S
ri- X One way tIDLE r2ADY extra regis

0 b 

0 CIOMU l
| r- ri

COMPUT2
r2 - r2 +1

Figure 2-18. Incorrect user interface (throws quotient away).

You may have as many RTN assignments occurring in parallel within a state as you
want as long as each left-hand side within that state is unique. In this instance, ri and
r2 are scheduled to have new values assigned at the beginning of the next clock cycle.
Since we have assumed that the user will ensure that the ASM stays in state IDLE Figure g
while x remains constant for at least two clock cycles, ri and r2 will be properly
initialized before entering the loop. This ASM will correctly compute the quotient and This ASM 
leave the loop after the proper number of times for the same reason. To illustrate what is 14 and y
this ASM does, consider the same example as the other ASMs (when x is 14 and y is ID
7): ID

IDLE rl= ? r2= 0 pb=0 ready=1 CO
IDLE rl= 14 r2= 0 pb=1 ready=1 CO
COMPUTE1 rl= 14 r2= 0 pb=0 ready=O CO
COMPUTE2 rl= 7 r2= 0 pb=0 ready=0 CO
COMPUTE1 rl= 7 r2= 1 pb=0 ready=0 CO
COMPUTE2 rl= 0 r2= 1 pb=O ready=0 CO
IDLE rl= 0 r2= 2 pb=0 ready=1 ID
IDLE rl= ? r2= 0 pb=O ready=1 ID

There is a new problem with this ASM that we have not seen before: the quotient (2) Unfortunate
exists in r2 for only one clock cycle. This ASM throws it away because the assignment to be zero, r
of 0 to r2 is in state IDLE. From a mathematical standpoint, this ASM is correct, but assignment
from a user interface standpoint, it is unacceptable. zero. One w

test for the 
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2.2.5 Saving the quotient
One way to overcome the user interface problem in section 2.2.4 is to introduce an
extra register, r3, that saves the quotient in a new state COMPUTE3:

1 -.- r1 -y|

FE21
2--r2 +i1 

el within a state as you
In this instance, ri and
of the next clock cycle.
M stays in state IDLE
nd r2 will be properly
mpute the quotient and

:ason. To illustrate what
(when x is 14 and y is

-eady=1

.eady=1

:eady=0
.eady=0
-eady=0

-eady=0
.eady=1

?eady=1

Figure 2-19. Saving quotient in r3.

This ASM works for x>=y (the quotient is now in r3, not r2). For example, when x
is 14 and y is 7:

Unfortunately, there is a subtle error in the above ASM: when the answer is supposed
to be zero, r3 is left unchanged instead of being cleared. This occurs because the only
assignment to r3 is inside the loop, but the loop never executes when the quotient is
zero. One way to overcome this problem is to include an extra decision in the ASM to
test for the special case that x<y (which can be done by testing if rl>=y is false):

no Hardware 33

before: the quotient (2)
because the assignment
this ASM is correct, but

IDLE rl= ? r2= 0 r3= ? pb=0 ready=1
IDLE rl= 14 r2= 0 r3= ? pb=1 ready=1
COMPUTEI rl= 14 r2= 0 r3= ? pb=O ready=0

COMPUTE2 rl= 7 r2= 0 r3= ? pb=0 ready=0
COMPUTE3 rl= 7 r2= 1 r3= ? pb=0 ready=0
COMPUTE1 rl= 7 r2= 1 r3= 1 pb=0 ready=0
COMPUTE2 rl= 0 r2= 1 r3= 1 pb=0 ready=0
COMPUTE3 rl= 0 r2= 2 r3= 1 pb=0 ready=0
IDLE rl= 0 r2= 2 r3= 2 pb=0 ready=1
IDLE rl= ? r2= 0 r3= 2 pb=0 ready=1
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IDLE

READY l

Figure 2

Figure 2-20. Handling quotient of zero. Here is an e

* ID
ZEROR3 0 COPD

. CO

Of course, this has the disadvantage of taking longer (2 +3 * quo ti ent clock cycles), ,c
but sometimes a designer must consider a slower solution to eventually discover a cc
faster solution. lo

!;~~ID

2.2.6 Variations within the loop The value i

Let's take the final ASM of section 2.2.5 and consider some variations of it inside theX
loop that will make it incorrect. Our eventual goal is to find a faster solution that is gd Anotherthi
correct, but for the moment, let's just play around and see how we can break this ASM. states CONV

One incorrect thing to do would be to assign to r3 before incrementing r2:
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Figure 2-21. Incorrect rearrangement of states.

Here is an example when x is 14 and y is 7 of what kind of error occurs:

,otient clock cycles),
eventually discover a

The value in r3 is one less than it should be since it was assigned too early.ariations of it inside the
a faster solution that is
we can break this ASM.

Another thing to try (which unfortunately will also fail for similar reasons) is to merge
states COMPUTE2 and COMPUTE3 into a single state COMPUTE23:

ementing r2:

o Hardware

IDLE rl= ? r2= 0 r3= ? pb=0 ready=1
IDLE rl= 14 r2= 0 r3= ? pb=1 ready=1
COMPUTE1 rl= 14 r2= 0 r3= ? pb=0 ready=0
COMPUTE3 rl= 7 r2= 0 r3= ? pb=0 ready=0
COMPUTE2 rl= 7 r2= 0 r3= 0 pb=0 ready=O
COMPUTE1 rl= 7 r2= 1 r3= 0 pb=O ready=O
COMPUTE3 rl= 0 r2= 1 r3= 0 pb=0 ready=O
COMPUTE2 rl= 0 r2= 1 r3= 1 pb=O ready=O
IDLE rl= 0 r2= 2 r3= 1 pb=O ready-1
IDLE rl= ? r2= 0 r3= 1 pb=O ready=1
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Figure 2-22. Incorrect parallelization attempt.

Here is an example when x is 14 and y is 7 of what kind of error occurs:

Even though inside the rectangle the assignment to r2 is written above the assignment
to r3, they happen in parallel. The meaning of a state in an ASM is not affected by
the order in which a designer writes the commands inside the rectangle. Since
there is a dependency between the commands in state COMPUTE23, this ASM is not
equivalent to the correct solution of section 2.2.5 but is instead equivalent to the incor-
rect solution given a moment ago. After the second time in state COMPUTE23, r2 is
incremented (from to 2), but r3 changes to the old value of r2 (1), which is not what
we want.

Although all of the above variations may seem hopeless, there is in fact a correct and
faster solution if we press on with this kind of variation. Let's merge all three com-
mands into a single state COMPUTE:

This ASM is coi
y is 7):
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IDLE 1

-L<

IDLE rl= ? r2= 0 r3= 0 pb=0 ready=1
IDLE rl= 14 r2= 0 r3= 0 pb=1 ready=1
COMPUTE1 rl= 14 r2= 0 r3= 0 pb=0 ready=0
COMPUTE23 rl= 7 r2= 0 r3= 0 pb=0 ready=0
COMPUTE1 rl= 7 r2= 1 r3= 0 pb=0 ready=0
COMPUTE23 rl= 0 r2= 1 r3= 0 pb=0 ready=0
IDLE rl= 0 r2= 2 r3= 1 pb=O ready=l
IDLE rl= ? r2= 0 r3= 1 pb=0 ready=1

Figure 2-23. 

r
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The decision involving rl>=y is part of state COMPUTE (as well as being part of
state IDLE), and ri is affected in state COMPUTE. Also there is the interdependence
of r2 and r3 observed earlier. The reason why state COMPUTE works here is that all
of these things occur at the same time in parallel. We have now totally left the sequen-
tial software paradigm of section 2.2.1 (one statement at a time; no dependency within
a state). We are now using the dependency in the algorithm with parallelism to get the
correct result much faster.

is in fact a correct and
s merge all three corn-

Although in this ASM r3 still serves as the place where the user can observe the quo-
tient when the ASM returns to state IDLE, r3 accomplishes something even more
important. It compensates for the fact that the loop in state COMPUTE executes one

) Hardware
Designing ASMs

or occurs:

ready=1

ready=l

ready=0

ready=0

ready=0

ready=0

ready=1

ready=1

IDLE rl= ? r2= 0 r3= ? pb=0 ready=1
IDLE rl= 14 r2= 0 r3= ? pb=1 ready=1
COMPUTE rl= 14 r2= 0 r3= ? pb=0 ready=0
COMPUTE rl= 7 r2= 1 r3= 0 pb=0 ready=0
COMPUTE rl= 0 r2= 2 r3= 1 pb=0 ready=O
IDLE rl= 4089 r2= 3 r3= 2 pb=O ready=1
IDLE rl= ? r2= 0 r3= 2 pb=O ready=1

Figure 223. Correct parallelization.

This ASM is correct, as illustrated by the example used before (when x is 14 and
y is 7:

a above the assignment
�SM is not affected by
e the rectangle. Since
rTE23, this ASM is not
equivalent to the incor-
e COMPUTE23, r is
R (1), which is not what
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more time than the software loop would. Even though r2 becomes one more than the
correct quotient, r3 is loaded with the old value of r2 each time through the loop. On
the last time through the loop, r3 is scheduled to be loaded with the correct quotient.

The loop in state COMPUTE is interesting because it has a property that software
loops seldom have: it either does not execute or it executes at least two times. This is
because the decision rl>=y is part of both states IDLE and COMPUTE. To illustrate
this, consider when x is 7 and y is 7:

IDLE rl= ? r2= 0 r3= ? pb=O ready=1

IDLE rl= 7 r2= 0 r3= ? pb=1 ready=1

COMPUTE rl= 7 r2= 0 r3= ? pb=O ready=O

COMPUTE rl= 0 r2= 1 r3= 0 pb=O ready=O

IDLE rl=4089 r2= 2 r3= 1 pb=O ready=1

IDLE rl= ? r2= 0 r3= 1 pb=O ready=1

You can see that rl is 7 in state IDLE, and so the ASM proceeds to state COMPUTE.
In state COMPUTE, rl is scheduled to change, but it remains 7 the first time in state
COMPUTE; thus the next state is state COMPUTE (it loops back to itself). Only on the
second time through state COMPUTE has the scheduled change to rl taken place;
thus the next state finally becomes IDLE.

As with earlier ASMs, this ASM works for x<y only because of state ZEROR3. For
example, consider when x is 5 and y is 7:

IDLE rl= ? r2= 0 r3= ? pb=O ready=l
IDLE rl= 5 r2= 0 r3= ? pb=l ready=l
ZEROR3 rl= 5 r2= 0 r3= ? pb=O ready=0
IDLE rl= 5 r2= 0 r3= 0 pb=O ready=l
IDLE rl= ? r2= 0 r3= 0 pb=O ready=l

The time required for this ASM is 3 +quot i ent clock cycles.

2.2.7 Eliminate state ZEROR3
If the loop in state COMPUTE could execute one or more (rather than two or more)
times, it would be possible to eliminate state ZEROR3. This would work because r2 is
already 0, and the assignment of r2 to r3 would achieve the desired effect of clearing
r3.

One way to describe this in ASM chart notation is to note that pb is true when making
the transition from state IDLE to state COMPUTE (the first time into the loop), but pb
remains false until the quotient is computed (by our original assumption about a friendly
user). Let's change the decision so that it ORs the status signal pb together with the
result of the rl>=y:

IDL

Figure 2-24.
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Since pb is true for only one clock cycle, this only causes the loop to go in the first
time. Whether to repeat the loop subsequent times depends only on ri. Since for all
values x>=y the loop occurs at least twice anyway, ORing pb in the decision does not
change the operation of the ASM for x>=y. ORing pb only affects what happens when
x<y. Rather than executing state COMPUTE zero times, ORing pb forces it to execute
once. In this case, state COMPUTE will not execute more than once because x (ri) is
not >= y.

For example, consider when x is 5 and y is 7:

IDLE rl= ? r2= 0 r3= ? pb=0 ready=1
IDLE rl= 5 r2= 0 r3= ? pb=1 ready=1
COMPUTE rl= 5 r2= 0 r3= ? pb=0 ready=O
IDLE rl=4094 r2= 1 r3= 0 pb=0 ready=1
IDLE rl= ? r2= 0 r3= 0 pb=0 ready=1father than two or more)

uld work because r2 is
lesired effect of clearing The fact that rI and r2 are different after executing state COMPUTE than they were

in the earlier ASM after executing state ZEROR3 is irrelevant since the user only looks
at data output r3.

pb is true when making
ne into the loop), but pb
umption about a friendly
tal pb together with the

The time required for this ASM is also 3 +quotient clock cycles.

The above ASM was arranged to follow the goto-less style mentioned in section 2.1.4.
In essence, there is a whi 1 e loop (testing r 1 > =y pb) nested inside an i f statement
(testing pb). In order to describe this ASM in the goto-less style, pb is tested twice
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coming out of state IDLE. Such ASMs with redundant tests (in the same clock cycle)

can be simplified into shorter equivalent ASM notation. Although this equivalent ASM
is truly identical and would be implemented with the same hardware, it does not follow
a style that can be thought of in terms of i f s and whi 1 es:

2.3.1 First 
We could use an

% behavioral ASM
consider the AS.
chart for the diN
cause they are 
mixed stage, we

Consider the RI
loaded with x,;
three registers a
at the beginning

There are man)
mands. The de,
ease, personal r
ture. The only 
rectly impleme
behavioral AS
to choose regisl
many of the req
a counter regis
required in stat
COMPUTE). V

from the ASM i

Figure 2-25. Equivalent to figure 2-24.

Also, in the above, the order of the statements within state COMPUTE were re-

arranged for ease of understanding. As mentioned earlier, changing the order with a

rectangle does not change the meaning. Which way you draw the ASM is both a matter
of personal taste and also a matter of how you intend to use it. We will see examples
where both forms of this ASM prove useful. At this stage it is important for you to be

comfortable that these two ASMs mean exactly the same thing because under all pos-

sible circumstances they cause the same state transitions and computations to occur.

If the designer
to provide for t
dix C) in the a
would just mal
we will choose

On the other h
outside the reg
plest register
hardware will
r3.

2.3 Mixed examples
The three stages of the top-down design process were discussed in section 2.1.5. Sec-
tion 2.2 gives several alternative ways to describe the childish division algorithm in the

first stage of the top-down design process (as a pure behavioral ASM). This section

continues this same example into the second stage of the top-down design process. In

the second stage, we partition the division machine into a controller and an architec-
ture.

Having decide
how those reg
RTN in state (
ments, and r3
parallel. This i
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the same clock cycle)
Yh this equivalent ASM
ware, it does not follow

COMPUTE were re-
nging the order with a
ie ASM is both a matter
We will see examples
mportant for you to be
because under all pos-
)mputations to occur.

d in section 2.1.5. Sec-
ivision algorithm in the
ral ASM). This section
own design process. In
troller and an architec-

iple
he ASM charts in section 2.2 as an example of translating a pure
structural architecture and a behavioral controller. For example,
rt described in section 2.2.7, which is the simplest correct ASM
machine. We can, for the moment, ignore pb and READY be-
d ports (and will remain the same in the mixed stage). In the
to eliminate RTN commands and relational decisions.

mmands in this ASM chart. In state IDLE, ri is scheduled to be
parallel r2 is scheduled to be cleared. In state COMPUTE, all
eduled to change. Of course, these scheduled changes take effect
e next clock cycle.

)le hardware structures that could implement these RTN com-
makes an arbitrary decision (based on speed, cost, availability,
ce, etc.) about what hardware components to use in the architec-
nent is that interconnection of the chosen components can cor-

RTN transfers with the precise timing indicated by the original
The easiest (but not necessarily best) way to accomplish this is

ponents (like those in appendix D) that internally take care of as
TN commands as possible. For example, if the designer chooses
r2, the counter can internally take care of clearing r2 (as is
E) and also take care of incrementing r2 (as is required in state
e able to eliminate the RTN commands (such as r2 <- r2+1)

d replace them with internal command signals (such as incr2).

choose a non-counter register for r2, the designer would have
:ions with additional combinational devices (like those in appen-
ure. It is not wrong to choose a non-counter register for r2; it
,signer work harder. To keep this example as simple as possible,
ter register for r2.

;isters rl and r3 are loaded with values that must come from
like a simple counter). Therefore, it is sensible to use the sim-
ent possible (the enabled register) for rl and r3. Additional
ired to make available the new values to be loaded into rl and

e kind of registers to use in the architecture, we need to consider
*e interconnected. For a moment, let's concentrate only on the
TE. In this state, ri will be loaded with a difference, r2 incre-
ided with the old value of r2. All three of these actions occur in
For example, that the difference must be computed by a dedicated
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combinational device (such as a subtractor). Such a combinational device is always
computing the difference between r 1 and y (even though that difference is loaded into
ri only when the controller is in state COMPUTE).

When muxctr
output of the n
appears as foll

Loading r3 with the old value of r2 is easy. The output port of the r2 counter register
is simply connected via a bus to the input port of the r3 enabled register. If the only
state to mention rl, r2 or r3 were state COMPUTE, we would have the following
architecture:

muxctrl
Y

12

Figure 2-27.

Figure 2-26. Architecture using subtractor

but the above architecture fails to implement the RTN of state IDLE. The above archi-
tecture provides no way for rl to be loaded with x.

One approach that often allows an architecture to deal with different kinds of RTN in
different states is to use an Arithmetic Logic Unit (ALU), which is capable of many
different operations, instead of a dedicated combinational device (such as a subtractor).
Also, there is often a need for one or more muxes so that the proper information can be
routed to the ALU. In this particular ASM, there are only two different results that
might be loaded into r 1: either the difference of r and y or passing through x un-
changed. This means the ALU must be capable of at least two different operations:
computing the difference of the ALU's two data inputs and passing through the ALU's
second input unchanged. The ALU is commanded to do these operations by particular
bit patterns on the six-bit aluctrl bus. Symbolically, we will refer to these bit pat-
terns as 'DIFFERENCE and 'PASS. The grave accent ('), which is also known as
backquote or tick, indicates a symbol that is replaced by a particular bit pattern.

On one hand, the ALU should be able to subtract y; on the other hand, the ALU should
be able to pass x. To accomplish this requires a mux which can select either x or y. The
output of this mux is connected as the second input of the ALU. Input 0 of this mux is
connected to the external bus x. Input of this mux is connected to the external bus y.

Although the a]
2.2.7, it does nc
relational decis
a comparator) I
relational comic
stead of referrii
status signals. I
and y.

There are three
There is no >=
strictly < outpi
output is the in

At last, we hav
tional decision
to translate the
ASM chart. Th
incr2) instead
decisions. The
incr2 or 1dr
tion on the righ
the combinatio
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ational device is always
difference is loaded into

When muxctrl isO, the output of the mux is the same as x. When muxctrl is 1, the
output of the mux is the same as y. Using the mux and ALU, the architecture now
appears as follows:

f the r2 counter register
bled register. If the only
vould have the following

clrr2 icr2 Idr3

Idr3

12
Figure 2-27. Architecture using ALU.

IDLE. The above archi-

Although the above architecture implements all the RTN of the ASM chart in section
2.2.7, it does not consider the relational decision rl>=y. The simplest way to translate
relational decisions into the mixed stage is to dedicate a combinational device (usually
a comparator) for calculating an internal status signal that indicates the result of the
relational comparison. In the mixed ASM, this internal status signal will be tested in-
stead of referring to the relational decision. This is why ultimately the ASM uses only
status signals. In this particular instance, we will use a comparator whose inputs are ri
and y.

ifferent kinds of RTN in
fich is capable of many
ce (such as a subtractor).
'oper information can be
No different results that
r passing through x un-
vo different operations:
sing through the ALU's
operations by particular
ill refer to these bit pat-
which is also known as
ticular bit pattern.

There are three outputs of a comparator: the strictly <, the exactly == and the strictly >.
There is no >= output, but we can obtain that output, since it is the complement of the
strictly < output. We will use the strictly < output as the input of an inverter, whose
output is the internal status signal rgey.

At last, we have an architecture which can correctly implement all the RTN and rela-
tional decisions of the ASM chart in section 2.2.7. Now it will be a mechanical matter
to translate the pure behavioral ASM chart of section 2.2.7 into an equivalent mixed
ASM chart. The purpose of this translation will be to use command signals (such as
incr2) instead of RTN, and to use status signals (such as rgey) instead of relational
decisions. The - in RTN translates to a command signal (such as drl, clrr2,
incr2 or dr3) corresponding to the register on the left of the arrow. The computa-
tion on the right of the arrow may or may not require additional commands directed to
the combinational logic units, such as the ALU and mux.

,r hand, the ALU should
select either x or y. The
J. Input 0 of this mux is
ed to the external bus y.
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This translation from pure behavioral ASM to mixed ASM always relates to a particu-
lar architecture that the designer has in mind. Although many architectures might have
been chosen for one pure behavioral ASM, each architecture will have a distinct mixed
ASM. The following shows the particular architecture we have just developed and the
corresponding translation of the pure behavioral ASM of section 2.2.7 into the particu-
lar mixed ASM required by this architecture. Finally, we give a system block diagram
showing the interconnection of this particular controller (as described by the mixed
ASM) and this particular architecture:

rl gey

clrr2 incr2 Idr3

r2 12 r3 1 2

pb

D.V... I... .. C
DIVISIC

.X ~e

L

: 12
Y ig 

... ... .. ......

Figure 2-30

The external c
translation to tl

2.3.2 Seco
It happens in th
implement any
architecture to 
just happens th
same register 
implement the 
signed for maxi
For example, t]
architecture an(
thus the data oi
mixed ASM ch

Figure 2-29. Mixed ASM corresponding tofigures 2-24 and 2-28.
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Figure 2-28. Methodical architecture.
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wvays relates to a particu- ...............................................-.--.-.--.-----.---.--
architectures might have DIVISION MACHINE
till have a distinct mixed
'e just developed and the
on 2.2.7 into the particu-
a system block diagram
described by the mixed pb CONTROLLER ARCHITECTURE

rigey x~~~~~~~~~~~~~~~~~~~~~~~~~lcr
in2incr2 1

rl gey x j/

i ~~12 READY 

incr2 Idr3 ...............................
4 l Figure 2-30. System diagram.

2 12 12 The external command READY and the external status pb are not affected by the
_3 >translation to the mixed stage.

2.3.2 Second example
It happens in this example that the architecture just developed could have been used to
implement any of the ASM charts in section 2.2. (It is rare for the same methodical
architecture to work with different ASMs.) In general, this would not be the case, but it
just happens that the ASM chart of section 2.2.7 requires maximal parallelism of the
same register transfers as the other ASMs. All the other ASM charts of section 2.2
implement the same RTN commands with less parallelism, and so an architecture de-
signed for maximal parallelism can implement an ASM that demands less parallelism.
For example, the first ASM of section 2.2.2 could be implemented using the same
architecture and system block diagram. The register r3 is not used by this ASM chart,
thus the data output of the machine should be r2 instead of r3. Figure 2-31 is the
mixed ASM chart that corresponds to this architecture and the ASM of section 2.2.2:

)IFFERENCE
1

d 2-28.
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The carry out (
IDLE Idrl be used to detaluctrI =PASSB ASM of sectio

muxctrl = 0
READY rectangle will 

commanded to
0 1 effect of compi

pb K <;architecture an

TEST 

r gei
\ ~COMPUTE1
0 Idrl

aluctrI =\DIFFERENC
muxctr = 1

COMPUTE2|

| _ incr2

Figure 2-31. Mixed ASM corresponding to figures 2-14 and 2-28. Figure 2-3,

2.3.3 Third example IDLE daluIf we are content with the slower ASM chart of section 2.2.2, perhaps we can find a mu
cheaper architecture (with less potential for parallelism) that can correctly implement RE
the RTN given in section 2.2.2. Of course, such an architecture could not implement
ASM charts, such as that in section 2.2.7, which require more parallelism. One way to 0
reduce cost (at the expense of speed) is to use the ALU as a central unit that can do
many different operations. In particular, it can output the value zero (when aluctrl
is 'ZERO) and it can increment (when aluctrl is 'INCREMENT). Since theALU is
used for everything, the mux must have enough inputs to provide anything required by
the ALU. In this instance, there is a three-input mux (with a two-bit muxctrl). This
allows the mux to select x, rl or r2 to be output to the bus which is the a input of
the ALU.

It is no longer necessary for r2 to be a counter register since the ALU can increment its
input, and the mux can provide the value of r2 to the ALU. The output of the ALU
must be available on a central bus, from which both rl and r2 can be loaded. (This
ASM does not use r3.)

Figure 2-i
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The carry out (cout) status signal output from the ALU is available at no cost. It can
be used to determine the result of the rl>=y test. This is permissible because the
ASM of section 2.2.2 has an empty rectangle for state TEST. In the mixed ASM, this
rectangle will not be empty, although no registers will be loaded. The ALU is simply
commanded to compute a difference without issuing a register load signal. As a side
effect of computing the difference, -cout indicates rl>=y. The following shows the
architecture and mixed ASM chart for the third example:

IdrI 1 

rl 21 ALU

muxctrl cout)IFFERENC Idr2 y b4
1 ~~~~~~~~~~~~~~~~~~~~~~12

l ' xsy~~~~~~~~~~~~~12 6
lcr2 aluctr

d 2-28. Figure 2-32. Central ALU architecture.

perhaps we can find a muxctrT= 0
an correctly implement READY
re could not implement
Parallelism. One way to 1
central unit that can do p
zero (when aluctrl INIT Idr2

ENT). Since the ALU is I aluctrl __ZERO

le anything required by TEST
o-bit muxctrl). This muxctrl = 1
which is the a input of

ALU can increment its muxctrl = 1
Me output of the ALU CMP2Idd

2 can be loaded. (This COMPUTE21

Figure 2-33. Mixed ASM corresponding to figures 2-14 and 2-32.
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2.3.4 Methodical versus central ALU architectures
There is a spectrum of possible ways to choose an architecture at the 
design process. At one extreme is the central ALU approach, illu
2.3.3, where one ALU does all the computation required by the entire
other extreme are methodical approaches, illustrated by sections 2.3.
each computation in the algorithm is done by a different hardware
ALU approach typically uses less hardware but only works with certa
For example, the ASM that works with the methodical approach in sel
work with the central ALU approach because that ASM performs mc
putation per clock cycle. The following table highlights the differen
two approaches:

What does computation?

What ALU output connects to?

What kind of register?

Number of - per clock cycle

Speed

Cost

Example

Figures

Central ALU

one ALU

every register

enabled

one

slower

lower

2.3 .3

2-32, 2-33

Met

regA
then
regi
to 

muxe

only

all

many

fast

high

2.3.

2-28
2-22

In the methodical architecture of section 2.3.2, the output of the ALU 
ri, but in the central ALU architecture of section 2.3.3, the output c
nects to both rl and r2. In the ASM implemented with the methodicz

2Including customized registers (other than those described in appendix D) built using n
tional logic that are tailored to the specific algorithm. See section 7.2.2.1 for an examp:

48 Vridoq f);it-l ,7n,1 no; -/..:
TI--V, Dig-,X Vurr~uL/esign: Algorithms into Hardi

section 2.3
because it
transfers.

2.4 Pi
In the mix
a controlle
tion contir
into the th
section 2.1

The third s
implement
stage, the 
level of th
instead de5
mation to
chine. The

2.4.1 F
To translat
name a sp,

requiremel
signer (wh
For an AS:
states, a tw
the job. Fo
general, an

The mixed
that being
sented by 

We also ne
C, for an 
011001.

The structi
next state 
combinatic
tional logic

l

I



es
the mixed stage of the
illustrated in section

ntire algorithm. At the
2.3.1 and 2.3.2, where
vare unit. The central
ertain kinds of ASMs.
n section 2.3.1 cannot
s more than one com-
,rences between these

registers

themselves or
registers tied
to dedicated
muxes and ALUs

only one register

all kinds2

many

faster

higher

2.3.1 & 2.3.2

2-28, 2-29, 2-31

section 2.3.1, there are multiple - per clock cycle. The central ALU approach is slower
because it takes an ASM that uses more clock cycles to accomplish similar register
transfers.

2.4 Pure sti actural example
In the mixed stage described in section 2.3), the division machine was partitioned into
a controller (described by a mixed ASM chart) and a structural architecture. This sec-
tion continues with the same example (variations of the childish division algorithm)
into the third stage (of the three stages for the top-down design process explained in
section 2.1.5).

The third stage involves converting the mixed ASM chart into a hardware structure that
implements the behavior described by the mixed ASM chart. At the end of the third
stage, the top level of the system is completely described in terms of structure. The top
level of the system is no longer described in terms of what it does (behavior) but is
instead described in terms of how to build it (structure). The desigier has enough infor-
mation to wire together the hardware components into an operational physical ma-
chine. The algorithm has become a working piece of hardware.

2.4.1 First example
To translate the mixed ASM chart into hardware we must assign each symbolic state
name a specific bit pattern. The bit patterns used are completely arbitrary. The only
requirement is that the des gner be consistent. One approach that is easy for the de-
signer (when the number of states in the ASM chart is small) is to use a binary code.
For an ASM with two states, a one-bit code suffices. For an ASM with three or four
states, a two bit code will do. For an ASM with five to eight states, a three-bit code does
the job. For an ASM with nine to sixteen states, the designer needs a four-bit code. In
general, an ASM with n states requires a cei l (l og2 (n) ) -bit code.

The mixed ASM of section 2.3.1 is quite simple. It requires only two states. Let us say
that being in state IDLE is represented by 0, and being in state COMPUTE is repre-
sented by 1.LU only connects to

put of the ALU con-
odical architecture of

We also need to know the bit patterns that control the ALU. As explained in appendix
C, for an ALU inspired by the 74xx181, 'PASSB is 101010 and 'DIFFERENCE is
011001.

The structural controller is composed of two parts: the present state register, and the
next state combinational logic. The status and the present state are the inputs of the
combinational logic. The next state and the commands are the output of the combina-
tional logic. The next state is the input to the present state register:

ising muxes and combina-
,xample.
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status -

Figure 2-34. Controller.

We can describe the next state logic with a table. For the ASM chart of section 2.3.1,
the corresponding table is:

In the above, ps stands for the representation of the present state, and ns stands for the
representation of the next state.

One possible hardware implementation of this table is a ROM. The above table can be
used as is to "bum" the ROM. Since there are three bits of address input to the ROM
(one bit for the present state, and two bits for the status), there are eight words (each 13-
bits wide) stored in the ROM for this controller.

Another approach would be to use the above table to derive minimized logic equations
for each bit of output and then use the logic equations to arrive at a structure composed
of AND/OR gates. For example, the following logic equations are equivalent to the
above table:

For a more co
tools) could by
actual hardwa
job.

Several of the
and 001 are id
pb and not oi
abbreviated f

inputs
ps pb rig

0 -
0 1-
1 0 0
1 1 0
1 - 1

shows a "don
state transitio
given earlier.

2.4.2 Sec
Assuming th;
follows:
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inputs outputs
ps pb rgey ns 1drl clrr2 incr2 dr3 muxctrl aluctrl ready

o a 0 0 1 1 0 0 0 101010 1
o 0 1 0 1 1 0 0 0 101010 1
0 1 0 1 1 1 0 0 0 101010 1
0 1 1 1 1 1 0 0 0 101010 1
1 0 0 0 1 0 1 1 1 011001 0
1 0 1 1 1 0 1 1 1 011001 0
1 1 0 1 1 0 1 1 1 011001 0
1 1 1 1 1 0 1 1 1 011001 0
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- commands

chart of section 2.3.1,

Ialuctrl ready

101010 1
101010 1
101010 1
101010 1
011001 0
011001 0
011001 0
011001 0

tore complicated controller, using Karnaugh maps (or other logic minimization
ould be helpful. Other approaches exist. Turning a table, such as the above, into
iardware is a task that can be automated. Many software tools exist to aid in this

1 of the entries in the above table are identical to each other. For example, 000
[ are identical because the transition from IDLE to COMPUTE depends only on
not on rlgey. (The second ASM chart in section 2.2.7 makes this clear.) An
ated form of the table:

, and ns stands for the

[he above table can be
*ess input to the ROM
eight words (each 13-

mized logic equations
a structure composed
are equivalent to the

a "don't care" as a hyphen for those status inputs that do not affect a particular
^nsition. This table means exactly the same thing as the longer form of the table
arlier.

Second example
ing that the five states in the ASM chart of section 2.3.2 are represented as

Hardware

ns = -ps&pbjps&(r1geyjpb)

1drl = 1
clrr2 = -ps

incr2 = ps
ldr3 = ps
muxctrl = ps
aluctrl[5] = -ps
aluctrl[4] = ps

aluctrl[3] = 1
aluctrl[2] = 0
aluctrl[l] = -ps
aluctrl[O] = ps
ready = -ps

?uts outputs
b rigey ns drl clrr2 incr2 dr3 muxctrl aluctrl ready

- 0 1 1 0 0 0 101010 1
- 1 1 1 0 0 0 101010 1
O 0 1 0 1 1 1 011001 0
o 1 1 0 1 1 1 011001 0
1 1 1 0 1 1 1 011001 0
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Using the "don't care" form of the table is useful because otherwise the table would be

32-lines long. The values of muxctrl and aluctrl in states INIT, TEST and COM-
PUTE2 are arbitrary. There are three extra state encodings (101, 110 and 111) that

should never occur in the proper operation of the machine. On power up, the physical

hardware might find itself in one of these states. To avoid problems of this kind, these
states go to state IDLE but otherwise do nothing.

2.5 Hierarchical design
Even though upon completion of the third stage, the top level of the system is described
with pure structure, some devices (actors) that make up part of the architecture or con-

troller may still be described in terms of behavior. For example, if an architecture needs

an adder, the block diagram for the architecture would simply show a device with two
inputs (let's label them a and b) and one output (sum). There are many possible hard-

ware structures that could implement such an adder. At the top level of the system we

will view the black box of an adder as being part of a structure, even though we have

not specified what internal structure (of AND/OR gates for instance) implements the

adder. Whatever internal structure is used, we can describe the behavior of the adder
with a one-state ASM chart. ASM charts such as this that have one state correspond to

combinational logic. The following shows the black box for a two- bit adder, the ASM
chart for the adder, and one of many possible internal structures (circuits) for the adder:

Verilog Digital Computer Design: Algorithms into Hardware

IDLE 000

INIT 001

TEST 010

COMPUTE1 011

COMPUTE2 100

the following table describes the controller:

inputs outputs

Ps pb rlgey ns 1drl clrr2 incr2 muxctrl aluctrl ready

000 0 - 000 1 0 0 0 101010 1

000 1 - 001 1 0 0 0 101010 1

001 - - 010 0 1 0 0 101010 0

010 - 0 000 0 0 0 0 101010 0

010 - 1 011 0 0 0 0 101010 0

011 - - 100 1 0 0 1 011001 0

100 - - 010 0 0 1 0 101010 0

101 - - 000 0 0 0 0 101010 0

11- - - 000 0 0 0 0 101010 0

The above,
flattened ci
of output, i

BLOC

a -
2

b -4-
2

Figure

a-

Figuy
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The above circuit diagram is flattened, which means it does not show any hierarchy. A
flattened circuit diagram, composed entirely of logic gates, each producing a single bit
of output, is equivalent to a netlist. A netlist is a list of gates with the corresponding

trl aluctrl ready

101010 1
101010 1
101010 0
101010 0
101010 0
011001 0
101010 0
101010 0
101010 0

BLOCK DIAGRAM OF ADDER

a-

ASM OF ADDER (BEHAVIORAL)

SUM = a-b

Figure 2-35. Block diagram and behavioral ASM for adder.

7ise the table would be
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,ms of this kind, these

he system is described
te architecture or con-
an architecture needs
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many possible hard-
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le state correspond to
o- bit adder, the ASM

ircuits) for the adder:

Figure 2-36. Flattened circuit diagram for adder
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Figure 2-38. Definition of the full-adder module.
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Figure 2-39. Definition of the half-adder module.
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Figure 2-40. Hierarchical instantiation of modules.

Although hierarchical design can be used with either bottom-up or top-down design, it
is most important with top-down design. In top-down design, upon completion of the
third stage, the designer may apply the same three stages over again on any compo-
nents (actors) that are not standard building blocks. Building blocks such as adders are . CC
well understood, and the designer is not normally concerned about their internal struc- g e y
ture. Other problem-specific building blocks (such as the push button in the division (D
machine) would be dealt with at the end of the third stage for the top-level system. M

2.5.1 How pure is "pure"?
The terms "pure behavioral" and "pure structural" can be a little confusing. No matter
at what level of abstraction you view a hardware system, there is some irreducible
structure and some irreducible behavior. In the "pure" behavioral stage, the input and
output ports are part of some larger (unspecified) structure. In the "pure" structural
stage, the nature of the black boxes instantiated in the hardware diagram is known only .......
by their behavior. Even if the designer takes the hierarchy all the way down to the gate
level, the nature of each gate is known only by its behavior. Figure 2-
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2.5.2 Hierarchy in the first example
Sections 2.2.7, 2.3.1 and 2.4.1 discuss the details for the three stages for the example
two-state version of the division machine. The following three diagrams illustrate the
increasing amount of structure and decreasing amount of behavior as the designer
progresses through the three stages. In each of these diagrams, black boxes (and archi-
tectural devices, which are in fact black boxes themselves) represent aspects of the
system whose internal nature is known only by behavior.

x12 DIVISION

y MACHINE
1 2

(DESCRIBED BY
BEHAVIORAL / X/y

pb ASM CHART) READY

Figure 2-41. "Pure "behavioral block diagram.
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Figure 2-42. Mixed block diagram.
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Figure 2-43. "Pure" strucural block diagram.

The first diagram (figure 2-41), which illustrates the "pure" behavioral stage, has a
single black box. This box represents the complete division machine. The machine has
a unified behavior which can be described by a single ASM chart (see section 2.2.7).
The only structure in the first stage is the port structure that allows the machine to
communicate with the outside world.

The second diagram (figure 2-42) shows the "mixed" stage. Instantiated inside the
division machine are the controller and the architecture. In the mixed stage, the struc-
ture of the controller remains a mystery (i.e., a black box) which is described only in
behavioral terms by the ASM chart of section 2.3.1. This ASM chart refers only to
status and command signals. The architecture, on the other hand, is visible; however
architectural devices (such as the ALU) remain as black boxes, known only by their
behavior.
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The third diagram (figure 2-43) shows the "pure" structural stage. Here the controller
includes the next state logic and the present state (ps) register. The architecture re-
mains the same as in the "mixed" stage. Even though this is the "pure" structural stage,
the internal structure of the black boxes (next state logic, mux, ALU, comparator, in-
verter, ps, ri, r2 and r3 registers) remains hidden.

Here is where the power of hierarchical design comes to aid us in our top-down ap-
proach. We do not need to worry about the gate-level details of, say, the ALU. As the
earlier full-adder example illustrates, such behavioral black boxes can be decomposed
down to a gate-level netlist. For our purposes, we will be content with the third dia-
gram. The reason we do not have to work our way down to reach the gate level is that
automated tools now exist to do this dirty work.

2.6 Conclusion
This chapter illustrates two manual graphical notations: the ASM chart (to describe
behavior) and the block diagram (to describe structure). There are three stages in the
top-down design process to turn an algorithm (behavior) into hardware (structure):
pure behavioral, mixed and pure structural. The mixed and pure structural stages parti-
tion the machine into a controller and an architecture.

In addition, this chapter describes instantiating structural modules (hierarchical de-
sign). This allows the pure structural stage to be described in an understandable way,
without having to descend to the extreme gate-level detail of a netlist.

The next chapter introduces an automated textual notation that allows us to express
behavioral, structural and hierarchical design in a unified notation.

behavioral stage, has a
chine. The machine has
hart (see section 2.2.7).
allows the machine to

2.7 Further Reading
CLAIR, C. R., Designing Logic Systems Using State Machines, McGraw-Hill, New
York, 1973. This short but influential book was the first to explain the ASM chart
notation, which T. E. Osborne had invented in the early 1960s at Hewlett Packard.
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ich is described only in
;M chart refers only to
rd, is visible; however
,s, known only by their

GATsI, DANIEL D., Principles of Digital Design, Prentice Hall, Upper Saddle River,
NJ, 1997. Chapter 8 describes ASM charts. This book uses the term datapath to mean
what is called an architecture here and uses = rather than - for RTN.
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PROSSER, FRANKLIN P. and DAVID E. WINKEL, The Art of Digital Design: An Introduction

to Top Down Design, 2nd ed., PTR Prentice Hall, Englewood Cliffs, NJ, 2nd ed., 1987.

Chapters 5-8 give several examples of ASM charts using RTN. This book uses the term

architecture the way it is used here.

2.8 Exercises
2-1. Give a pure behavioral ASM for a factorial machine. The factorial of n is the

product of the numbers from 1 to n. This machine has the data input, n, a push button

input, pb, a data output, prod, and an external status output, READY. READY and

pb are similar to those described in section 2.2.1. Until the user pushes the button,

READY is asserted and prod continues to be whatever it was. When the user pushes

the button, READY is no longer asserted and the machine computes the factorial by

doing no more than one multiplication per clock cycle. For example, when n= 5 after

an appropriate number of clock cycles prod becomes 120 == 1 * 1 * 2 * 3 * 4 * 5

1 * 5 * 4 * 3 * 2 * 1 and READY is asserted again.

Use a linear time algorithm in the input n, which means the exact number of clock

cycles that this machine takes to compute n! for a particular value of n can be ex-

pressed as some constant times n plus another constant. (All of the childish division

examples in this chapter are linear time algorithms in the quotient.) For example, a

machine that takes 57 * n+ 17 clock cycles to compute n! would be acceptable, but

you can probably do better than that.

2-2. Design an architecture block diagram and corresponding mixed ASM that is able

to implement the algorithm of problem 2-1 assuming the architecture is composed of

the following building blocks: up/down counter registers, multiplier, comparator and

muxes. Give a system diagram that shows how the architecture and controller fit to-

gether, labeled with appropriate signal names.

2-3. Give a table that describes the structural controller for problem 2-2.

2-4. Give a pure behavioral ASM similar to problem 2- 1, but use repeated addition to

perform multiplication. For example, l 3 * 14 = = 0 + 13 +13 + 13 + 13 + 13 + 13

+13 +13 +13 +13 +13 +13 +13 +13.Directmultiplicationinasinglecycleis

not allowed. The algorithm should be suitable for implementation with the central ALU

approach. This will be a quadratic time algorithm in n because of nested loops.

2-10. For e
registers, %
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2-5. Design an architecture block diagram and corresponding mixed ASM for problem
2-4 assuming the following building blocks: enabled registers, muxes, comparator, and
the ALU described in section C.6. Give a system diagram that shows how the architec-
ture and controller fit together, labeled with appropriate signal names. Label the a and
b inputs of the ALU.

2-6. Give a table that describes the structural controller for problem 2-5.

2-7. Give a pure behavioral ASM similar to problem 2-4, but use a shift and add algo-
rithm to perform multiplication. Direct multiplication in a single cycle is not allowed.
Here is an example of multiplying 14 by 13 using the shift and add algorithm with 4-bit
input representations, and an 8-bit product.
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00001110 do

don'
00111000 do

+ 01110000 do

(1) add

t (0) add
(1) add

(1) add

10110110 product is

14 in this cycle
28 in this cycle
56 in this cycle

112 in this cycle

182

The number of cycles to perform a single multiplication by n is proportional to the
number of bits used to represent n, which is roughly the logarithm of n. But you have
to perform n such multiplications, and so this factorial algorithm is what is called an n
log n time algorithm, which takes more clock cycles than a linear time algorithm but
fewer clock cycles than a quadratic time algorithm when n is large. (Note that unlike
the linear time algorithm of problem 2-1, this approach does not require an expensive
multiplier.) You should use a methodical approach that exploits maximal parallelism.

2-8. Design an architecture block diagram and corresponding mixed ASM that is able
to implement problem 2-7 assuming the following building blocks: enabled registers,
counter registers, shift registers, muxes, adder, comparator. Give a system diagram that
shows how the architecture and controller fit together, labeled with appropriate signal
names.

2-9. Give a table that describes the structural controller for problem 2-8. (See section
D.9 for details about controlling a shift register.)

2-10. For each of the following ASMs, draw a timing diagram. x, y and z are 8-bit
registers, whose values should be shown in decimal.
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2-19. Like 2-18
enabled register
any kind of mu2-11. Design an architecture block diagram and corresponding mixed ASM that is able

to implement problem 2-10, part a assuming the following building blocks: two 8-bit
counter registers, one 8-bit adder, and any number of any kind of mux. Give a system
diagram that shows how the architecture and controller fit together, labeled with appro-
priate signal names.

2-12. Like 2-11, except use: one 8-bit counter register, one 8-bit enabled register, one
8-bit ALU and any number of any kind of mux. Label the a and b inputs of the ALU.

2-13. Design an architecture block diagram and corresponding mixed ASM that is able
to implement problem 2-10, part b assuming the following building blocks: two 8-bit
enabled registers, one 8-bit adder, one 8-bit incrementor and any number of any kind of
mux. Give a system diagram.
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2-14. Design an architecture block diagram and corresponding mixed ASM that is able
to implement problem 2-10, part c assuming the following building blocks: one 8-bit
counter register, one 8-bit enabled register, one 8-bit ALU (section C.6) and any num-
ber of any kind of mux. Give a system diagram. Label the a and b inputs of the ALU.

2-15. Design an architecture block diagram and corresponding mixed ASM that is able
to implement problem 2-10, part d assuming the following building blocks: two 8-bit
enabled registers, one 8-bit ALU (see section C.6) and one 8-bit two-input mux. Give a
system diagram. Label the a and b inputs of the ALU.

2-16. Design an architecture block diagram and corresponding mixed ASM that is able
to implement problem 2-10, part e assuming the following building blocks: two 8-bit
counter registers, one 8-bit enabled register, one 8-bit ALU (section C.6) and any num-
ber of any kind of mux. Give a system diagram. Label the a and b inputs of the ALU.

2-17. Like 2-16, except use: one 8-bit incrementor, three 8-bit enabled registers, one 8-
bit adder, and any number of any kind of mux.

2-18. Design an architecture block diagram and corresponding mixed ASM that is able
to implement problem 2-10, part f assuming the following building blocks: one 8-bit
shift register (section D.9), one 8-bit counter register, one 8-bit up/down counter regis-
ter (section D.8) and one 8-bit adder. You may not use any muxes. Give a system
diagram.

2-19. Like 2-18, except use: one 8-bit incrementor, one 8-bit decrementor, three 8-bit
enabled registers, one 8-bit adder, one 8-bit combinational shifter, and any number of
any kind of mux.mixed ASM that is able

ilding blocks: two 8-bit
I of mux. Give a system
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3. VERILOG HARDWARE
DESCRIPTION
LANGUAGE

The previous chapter describes how a designer may manually use ASM charts (to de-
scribe behavior) and block diagrams (to describe structure) in top-down hardware de-
sign. The previous chapter also describes how a designer may think hierarchically,
where one module's internal structure is defined in terms of the instantiation of other
modules. This chapter explains how a designer can express all of these ideas in a spe-
cial hardware description language known as Verilog. It also explains how Verilog can
test whether the design meets certain specifications.

3.1 Simulation versus synthesis
Although the techniques given in chapter 2 work wonderfully to design small ma-
chines by hand, for larger designs it is desirable to automate much of this process. To
automate hardware design requires a Hardware Description Language (HDL), a differ-
ent notation than what we used in chapter 2 which is suitable for processing on a gen-
eral-purpose computer. There are two major kinds of HDL processing that can occur:
simulation and synthesis.

Simulation is the interpretation of the HDL statements for the purpose of producing
human readable output, such as a timing diagram, that predicts approximately how the
hardware will behave before it is actually fabricated. As such, HDL simulation is quite
similar to running a program in a conventional high-level language, such as Java Script,
LISP or BASIC, that is interpreted. Simulation is useful to a designer because it allows
detection of functional errors in a design without having to fabricate the actual hard-
ware. When a designer catches an error with simulation, the error can be corrected with
a few keystrokes. If the error is not caught until the hardware is fabricated, correcting
the problem is much more costly and complicated.

Synthesis is the compilation of high-level behavioral and structural HDL statements
into a flattened gate-level netlist, which then can be used directly either to lay out a
printed circuit board, to fabricate a custom integrated circuit or to program a program-
mable logic device (such as a ROM, PLA, PLD, FPGA, CPLD, etc.). As such, synthe-
sis is quite similar to compiling a program in a conventional high-level language, such
as C. The difference is that, instead of producing object code that runs on the same
computer, synthesis produces a physical piece of hardware that implements the com-
putation described by the HDL code. For the designer, producing the netlist is a simple
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step (typically done with only a few keystrokes), but turning the netlist into physical
hardware is often costly, especially when the goal is to obtain a custom integrated
circuit from a commercial silicon foundry. Typically after synthesis, but before the
physical fabrication, the designer simulates the synthesized netlist to see if its behavior
matches the original HDL description. Such post-synthesis simulation can prevent costly
errors.

3.2 Verilog versus VHDL
HDLs are textual, rather than graphic, ways to describe the various stages in the top-
down design process. In the same language, HDLs allow the designer to express both
the behavioral and structural aspects of each stage in the design. The behavioral fea-
tures of HDLs are quite similar to conventional high-level languages. The features that
make an HDL unique are those structural constructs that allow description of the
instantiation and interconnection of modules.

There are many proprietary HDLs in use today, but there are only two standardized and
widely used HDLs: Verilog and VHDL. Verilog began as a proprietary HDL promoted
by a company called Cadence Data Systems, Inc., but Cadence transferred control of
Verilog to a consortium of companies and universities known as Open Verilog Interna-
tional (OVI). Many companies now produce tools that work with standard Verilog.
Verilog is easy to learn. It has a syntax reminiscent of C (with some Pascal syntax
thrown in for flavor). About half of commercial HDL work in the U.S. is done in Verilog.
If you want to work as a digital hardware designer, it is important to know Verilog.

VHDL is a Department of Defense (DOD) mandated language that is used primarily by
defense contractors. Although most of the concepts in VHDL are not different from
those in Verilog, VHDL is much harder to learn. It has a rigid and unforgiving syntax
strongly influenced by Ada (which is an unpopular conventional programming lan-
guage that the DOD mandated defense software contractors to use for many years
before VHDL was developed). Although more academic papers are published about
VHDL than Verilog, less than one-half of commercial HDL work in the U.S. is done in
VHDL. VHDL is more popular in Europe than it is in the U.S.

3.3 Role of test code
The original purpose of Verilog (and VHDL) was to provide designers a unified lan-
guage for simulating gate-level netlists. Therefore, Verilog combines a structural nota-
tion for describing netlists with a behavioral notation for saying how to test such netlists
during simulation. The behavioral notation in Verilog looks very much like normal
executable statements in a procedural programming language, such as Pascal or C. The
original reason for using such statements in Verilog code was to provide stimulus to the
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netlist, and to test the subsequent response of the netlist. The pairs of stimulus and
response are known as test vectors. The Verilgo that creates the stimulus and observes
the response is known as the test code or testbench. Snoopy's "woof" in the comic strip
of section 2.2 is analougus to the role of the test codes warning us that the expected
response was not observed. For example, one way to use simulation to test whether a
small machine works is to do an exhaustive test, where the test code provides each
possible combination of inputs to the netlist and then checks the response of the netlist
to see if it is appropriate.

For example, consider the division machine of the last chapter. Assume we have devel-
oped a flattened netlist that implements the complete machine. It would not be at all
obvious whether this netlist is correct. Since the bus width specified in this problem is
small (twelve bits), we can write Verilog test code using procedural Verilog (similar to
statements in C) that does an exhaustive test. A reasonable approach would be to use
two nested loops, one that varies x through all its 4096 possible values, and one that
varies y through all its 4095 possible values. At appropriate times inside the inner loop,
the test code would check (using an if statement) whether the output of the netlist
matches x/y. Verilog provides most of the integer and logical operations found in C,
including those, such as division, that are difficult to implement in hardware. The origi-
nal intent was not to synthesize such code into hardware but to document how the
netlist should automatically be tested during simulation.

Verilog has all of the features you need to write conventional high-level language pro-
grams. Except for file Input/Output (/O), any program that you could write in a con-
ventional high- level language can also be written in Verilog. The original reason Verilog
provides all this software power in a "hardware" language is because it is impossible to
do an exhaustive test of a complex netlist. The 12-bit division machine can be tested
exhaustively because there are only 16,773,120 combinations with the 24 bits of input
to the netlist. A well-optimized version of Verilog might be able to conduct such a
simulation in a few days or weeks. If the bus width were increased, say to 32-bits, the
time to simulate all 264 combinations would be millions of years. Rather than give up
on testing, designers write more clever test code. The test code will appear longer, but
will execute in much less time. Of course, if a machine has a flaw that expresses itself
for only a few of the 264 test patterns, the probability that our fast test code will find the
flaw is usually low.

3.4 Behavioral features of Verilog
Verilog is composed of modules (which play an important role in the structural aspects
of the language, as will be described in section 3.10). All the definitions and declara-
tions in Verilog occur inside a module.
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3.4.1 Variable declaration
At the start of a module, one may declare variables to be integer or to be real.
Such variables act just like the software declarations int and float in C. Here is an
example of the syntax:

integer x,y;
real Rain-fall;

Underbars are permitted in Verilog identifiers. Verilog is case sensitive, and so
Rain_fall and rain fall are distinct variables. The declarations integer and
real are intended only for use in test code. Verilog provides other data types, such as
reg and wire, used in the actual description of hardware. The difference between
these two hardware-oriented declarations primarily has to do with whether the variable
is given its value by behavioral (reg) or structural (wire) Verilog code. Both of these
declarations are treated like unsigned in C. By default, regs and wires are only
one bit wide. To specify a wider reg or wire, the left and right bit positions are
defined in square brackets, separated by a colon. For example:

reg [3:0] nibble,four bits;

declares two variables, each of which can contain numbers between 0 and 15. The most
significant bit of nibble is declared to be nibble [3], and the least significant bit
is declared to be nibble [] . This approach is known as little endian notation. Verilog
also supports the opposite approach, known as big endian notation:

reg [0:3] bigend nibble;

where now bigendnibble [3] is the least significant bit.

If you store a signed value' in a reg, the bits are treated as though they are unsigned.
For example, the following:

I four-bits = -5;

is the same as:

fourbits = 11;

1 In order to simplify dealing with twos complement values, many implementations allow integers with an
arbitrary width. Such declarations are like regs, except they are signed.
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Verilog supports concatenation of bits to form a wider wire or reg, for example,
{nibble[2], nibble [1] is a two bit reg composed of the middle two bits of
nibble. Verilog also provides a shorthand for obtaining a contiguous set of bits taken
from a single reg or wire. For example, the middle two bits of nibble can also be
specified as nibble [2 : 1] . It is legal to assign values using either of these notations.

Verilog also allows arrays to be defined. For example, an array of reals could be de-
fined as:

real monthly-precip[ll:0];

Each of the twelve elements of the array (from monthly-precip [0] to

monthlyprecip [11]) is a unique real number. Verilog also allows arrays of wires

and regs to be defined. For example,

reg [3:0] reg-arr[999:0];
wire[3:0] wirarr[999:0];

Here, regarr [0] is a four-bit variable that can be assigned any number between 0

and 15 by behavioral code, but wirarr [0] is a four-bit value that cannot be as-

signed its value from behavioral code. There are one thousand elements, each four bits

wide, in each of these two arrays. Although the [ ] means bit select for scalar values,

such as nibble [3] , the [ means element select with arrays. It is illegal to com-

bine these two uses of [ into one, as in i f (regarr [][3]) .To accomplish this

operation requires two statements:

nibble = reg_arr[O];

I ~~if (nibble[3]) ...

3.4.2 Statements legal in behavioral Verilog
The behavioral statements of Verilog include2 the following:

var = expression;

if (condition)
statement

where the italic s
replaced with apj
ment is one of tn
semicolons insic
real, reg or a

3.4.3 Expre
An expressic
(+- I .

(<, ==, ==,<

is an expression,
would be produc
or an expression
1. Except for ==
the result is stor
operators, for ex;
three:

2 There are other, more advanced statements that are legal. Some of these are described in chapters 6

and 7.
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Continued

if (condi

stateme

else
stateme

while (cc
stateme

for (var=

stateme

forever
stateme

case (exg
cons tar
...

default
endcase

3 Some results are di

M
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t, var, expression, condition and constant are
'erilog syntax for those parts of the language. A state-
tements or a series of the above statements terminated by
and end. A var is a variable declared as integer,
on of regs. A var cannot be declared as wire.

constants and variables (including wires) with arithmetic
Yical (&,&&, l I , , , <<, >>), relational

=,>) and conditional (?:) operators. A condition
tion might be an expression involving a single bit, (as

&&, !, <, ==, ===, <=, >=, !=, !==or>)
everal bits that is checked by Verilog to see if it is equal to
these symbols have the same meaning as in C. Assuming
it reg,) the following table illustrates the result of these

the left operand (if present) is ten and the right operand is

destination is declared differently.

g Hardware Description Language

if (condition)

statement

else
statement

ion; condition; var=var+expression)

ement

ien t

)

l
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name example 16-bit
unsigned
result

addition
subtraction
negation
multiplication
division
remainder
shift left
shift right
bitwise AND
bitwise OR
bitwise exclusive OR
bitwise NOT
conditional operator

13

7
6552 6

30
3
1
80

1
2

9

6552 5

3

10

10+3

10-3

-10

10*3

10 /3

10%3
10<<3

10>>3

10&3

10 13

10^3

-10

0?10:3

1?10:3

logical NOT
logical AND
logical OR
less than
equal to
less than or equal to
greater than or equal
not equal
greater than

10>3& I

3.4.4 Blocks
All procedural statements occur in what are called blocks that are defined inside mod-
ules, after the type declarations. There are two kinds of procedural blocks: the
initial block and the always block. For the moment, let us consider only the
initial block.An initial blockis like conventional software. It starts execution
and eventually (assuming there is not an infinite loop inside the initial block) it
stops execution. The simplest form for a single Verilog initial block is:

!10
10&&3
10113
10<3

10==30
10<=3
10>=3
10 ! =3
10>3

0

1
1
0

0
1
1

declarat

initial
begin

stat
. . .
stat

end

endmodule

The name oj
declaratic
men t is termi
rather than { a
may be omitte
tial block.

Here is an exa
section 3.3:

module tol
integer 
initial

begin
x = 
while

beg
f

x
end
$write 
$displa:

endmodule

The loop involi
as a while for
it is necessary t(
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ple 16-bit
unsigned
result

13

7
65526

30

33
3 81

80
1

3 ~~2
11
3 9

65525
3 3

10

0
31

3 ~~1
30

3 ~~0
31
31

3 ~~1

.t are defined inside mod-
procedural blocks: the
let us consider only the

ftware. It starts execution
the initial block) it

: ial block is:

The name of the module (top in this case) is arbitrary. The syntax of the
declarations is as described above. All variables shouldbe declared. Eachstate-
ment is terminated with a semicolon. Verilog uses the Pascal-like begin and end,
rather than { and . There is no semicolon after begin or end. The begin and end
may be omitted in the rare case that only one procedural statement occurs in the ini -
tial block.

Here is an example that prints out all 16,773,120 combinations of values described in
section 3.3:

The loop involving x could have been written as a f or loop also but was shown above
as a while for illustration. Note that Verilog does not have the ++ found in C, and so
it is necessary to say something like y = y + 1. This assignment statement is just like

Verilog Hardware Description Language

module top;

declarations;

initial
begin

statement;
...
statement;

end

endmodule

module top;
integer x,y;
initial
begin

x = 0;
while (x<=4095)

begin
for (y=l; y<=4095; y = y+1)
begin

$display("x=%d y=%d",x,y);
end

x = x + 1;

end
end
$write("all );
$display("done");

endmodule
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its counterpart in C: it is instantaneous. The varial
statement executes (unlike the RTN discussed in ti
play is a system task (which begin with $) that
printf("%d %d \n",x,y) does in C: it form
the string in the quotes. The system task $write d
except that it does not produce a new line:

x= 0 y= 1

x= 0 y= 2

x= 4095 y= 4094
x= 4095 y= 4095
all done

The above code would fail if the declaration had bee

reg [11:0] x,y;

because, although twelve bits are adequate for the ha
x and y become 4096 in order for the loop to stop.

3.4.5 Cons
By default, con
fied explicitly
syntax b, c
'hd, and 13a
representation,

3.4.6 Mac]
As an aid to rn
example, the a

Later in the coc
substituting the

if (aluctr
I $display(

Since infinite loops are useful in hardware, Verilo 1
which means the same thing as while (1). In additi
above can be described as an initial block cont,
simulation purposes, the following mean the same:

Note the synta
'DIFFERENC

anything. Macrn
quote.

You can detern
preprocessing f

prints the mess
defined. The 
'DIFFERENC.

For synthesis, one should use the always block for
is not a block and cannot stand by itself. Like other
must be inside an initial or always block.

Verilog allows,
clude in C an
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initial initial
begin begin
while(l) forever

begin begin
... ...

end end
end end

I
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es value before the next
is chapter). The $dis-
nething similar to what
Ltual output according to
ne thing as $display,

3.4.5 Constants
By default, constants in Verilog are assumed to be decimal integers. They may be speci-
fied explicitly in binary, octal, decimal, or hexadecimal by prefacing them with the
syntax 'b, o, d, or h, respectively. For example, 'bl l1, ol5, dl3,
'hd, and 13 all mean the same thing. If you wish to specify the number of bits in the
representation, this proceeds the quote: 4 bllOl, 4 ol5, 4 dl3, 4 hd.

3.4.6 Macros, include files and comments
As an aid to readability of the code, Verilog provides a way to define macros. For
example, the aluctrl codes described in 2.3.1 can be defined with:

'define DIFFERENCE 6'bO11001
'define PASSB 6'blO1010

Later in the code, a reference to these macros (preceded by a backquote) is the same as
substituting the associated value. The following i fs mean the same:

ie test code requires that if (aluctrl == 'DIFFERENCE) if (aluctrl == 6'bOllOOl)
$display("subtracting'); $display("subtracting");

ithe syntax f orever,
Lways block mentioned
y a forever loop. For

Note the syntax difference between variables (such as aluctrl), macros (such as
'DIFFERENCE), andconstants (such as 6 bO11001). Variables arenotprecededby
anything. Macros are preceded by backquote. Constants may include one forward single
quote.

You can determine whether a macro is defined using ' ifdef and ' endi f. This
preprocessing feature should not be confused with if. For example, the following:

'ifdef DIFFERENCE

$display("defined");

'endif

he statement forever
I statements, forever

prints the message regardless of the value of DIFFERENCE, as long as that macro is
defined. The message is not printed only when there is not a define for
'DIFFERENCE.

Verilog allows you to separate your source code into more than one file (just like #in-
clude in C and { $I) in Pascal). To use code contained in another file, you say:

| 'include "filename.v"

o Hardware
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There are two forms of comments in Verilog, which are the same as the two forms
found in C++. A comment that extends only for the rest of the current line can occur
after / /. A comment that extends for several lines begins with / * and ends with *

For example:

/* a multi line comment
that includes a declaration:

reg a;
which is ignored by Verilog

*/
reg b; // this declaration is not ignored

3.5.1 Instai
Of course, there
an xor gate (re(

3.5 Structural features of Verilog
Verilog provides a rich set of built-in logic gates, including and, or, xor, nand,
nor, not and buf, that are used to describe a netlist. The syntax for these structural
features of Verilog is quite different than for any of the behavioral features of Verilog
mentioned earlier. The outputs of such gates are declared to be wire, which by itself
describes a one-bit data type. (Regardless of width, an output generated by structural
Verilog code must be declared as a wire.) The inputs to such gates may be either
declared as wire or reg (depending on whether the inputs are themselves computed
by structural or behavioral code). To instantiate such a gate, you say what kind of gate
you want (xor for example) and the name of this particular instance (since there may
be several instances of xor gates, let's name this example xl). Following the instance
name, inside parentheses are the output and input ports of the gate (for example, say the
output is a wire named c, and the inputs are a and b). The output(s) of gates are
always on the left inside the parentheses:

The order in whi
so the following

People familiar with procedural programming languages, like C, mistakenly assume
this is "passing c, a and b and then calling on xor." It is doing no such thing. It
simply says that an xor gate named xl has its output connected to c and its inputs
connected to a and b. If you are familiar with graph theory, this notation is simply a
way to describe the edges (a, b, c) and vertex (xl) of a graph that represents the
structure of a circuit.

means the same
circuit diagram:

Figure 3-1. .

Verilog Digital Computer Design: Algorithms into Hardware

module easyxor;
reg a,b;
wire c;
xor xl(c,a,b);

endmodule
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same as the two forms
current line can occur

l / * and ends with * /.

3.5.1 Instantiating multiple gates
Of course, there is an equivalent structure of and/or gates that does the same thing as
an xor gate (recall the identity a-b == a& (-b) I (-a) &b):

Ld, or, xor, nand,
ntax for these structural
oral features of Verilog
wire, which by itself

generated by structural
ch gates may be either
e themselves computed
iu say what kind of gate
stance (since there may
Following the instance

kte (for example, say the
output(s) of gates are

The order in which gates are instantiated in structural Verilog code does not matter, and
so the following:

means the same thing, because they both represent the interconnection in the following
circuit diagram:

C, mistakenly assume
loing no such thing. It
cted to c and its inputs
his notation is simply a
aph that represents the

Figure 3-1. Exclusive or built with ANDs, OR and inverters.
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module hardxor;
reg a,b;
wire c;

wire tl,t2,nota,not-b;

not il(nota,a);
not i2(not-b,b);
and al(tl,nota,b);
and a2(t2,a,not-b);
or ol(c,tl,t2);

endmodule

module scrambled xor;
reg a,b;
wire c;

wire tl,t2,nota,not-b;

or ol(c,tl,t2);
and al(tl,nota,b);
and a2(t2,a,not-b);
not il(nota,a);
not i2(not-b,b);

endmodule
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3.5.2 Comparison with behavioral code
Structural Verilog code does not describe the order in which computations implemented
by such a structure are carried out by the Verilog simulator. This is in sharp contrast to
behavioral Verilog code, such as the following:

which is a correct behavioral rendition of the same idea. (The ellipses must be replaced
byaVerilogfeaturedescribedlater.)Also, c, tl, t2, not_a and notbmust
be declared as regs because this behavioral (rather than structural) code assigns val-
ues to them.

To rearrange the order of behavioral assignment statements is incorrect:

3.5.3 Inter(
In software, a bi
the case also, bi
produce electro
physical possibi
1 'bz or 1 'bx.

Obviously, 1 '
normally expec
are represented
represent 1 'bC
represent 1 lbC
such as CMOS
represent infon

3.5.3.1 HiA
In any technolc
a designer forq
means that ther
this as high iml
normally view
which this wire
active low, it.,
Furthermore, e

family. For the
tinct from 1 ' h
example from

because not_a must be computed before t 1 by the Verilog simulator. 4Verilog also alk
scope of this boc
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module behavioral xor;

reg a,b;

reg c;
reg tl,t2,nota,notb;

always ...

begin

nota = -a;
notb = -b;
tl = nota&b;
t2 = a&not-b;

c = tllt2;
end

endmodule

module bad xor;

reg a,b;

reg c;

reg t,t2,nota,notb;

always ...
begin

C = tllt2;
tl = not_a&b;
t2 = a&notb;
not-a = -a;
not-b = -b;

end
endmodule

76



iputations implemented
is is in sharp contrast to

3.5.3 Interconnection errors: four-valued logic
In software, a bit is either a 0 or a 1. In properly functioning hardware, this is usually
the case also, but it is possible for gates to be wired together incorrectly in ways that
produce electronic signals that are neither 0 nor 1. To more accurately model such
physical possibilities,4 each bit in Verilog can be one of four things: 1 ' bO, 1 ' bl,
1 'bz or 1 bx.

Obviously, 1 bO and 1 bi correspond to the logical 0 and logical 1 that we would
normally expect to find in a computer. For most technologies, these two possibilities
are represented by a voltage on a wire. For example, active high TTL logic would
represent 1 ' bO as zero volts and 1 ' bl as five volts. Active low TTL logic would
represent 1 ' bO as five volts and 1 ' bl as zero volts. Other kinds of logic families,
such as CMOS, use different voltages. ECL logic uses current, rather than voltage, to
represent information, but the concept is the same.

lipses must be replaced
._a and not_bmust
tural) code assigns val-

3.5.3.1 High impedance
In any technology, it is possible for gates to be miswired. One kind of problem is when
a designer forgets to connect a wire or forgets to instantiate a necessary gate. This
means that there is a wire in the system which is not connected to anything. We refer to
this as high impedance, which in Verilog notation is 1 'bz. The TTL logic family will
normally view high impedance as being the same as five volts. If the input of a gate to
which this wire is connected is active high, 1 bz will be treated as 1 b, but if it is
active low, it will be treated as 1 'bO. Other logic families treat 1 'bz differently.
Furthermore, electrical noise may cause 1 bz to be treated spuriously in any logic
family. For these reasons, it is important for a Verilog simulator to treat 1 ' bz as dis-
tinct from 1 bO and 1 b. For example, if the designer forgets the final or gate in the
example from section 3.5. 1:

ncorrect:

rnulator. 4 Verilog also allows each bit to have a strength, which is an electronic concept (below gate level) beyond the
scope of this book.

, Hardware Verilog Hardware Description Language

module forget-orthat_outputsc;

reg a,b;

wire c;

wire tl,t2,nota,notb;

not il(nota,a);

not i2(not-b,b);
and al(tl,nota,b);

and a2(t2,a,notb);

endmodule
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3.5.2 Comparison with behavioral code
Structural Verilog code does not describe the order in which computations
by such a structure are carried out by the Verilog simulator. This is in sh2
behavioral Verilog code, such as the following:
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which is a correct behavioral rendition of the same idea. (The ellipses mu:
byaVerilogfeaturedescribedlater.)Also, c, t, t2, nota and
be declared as regs because this behavioral (rather than structural) cod,
ues to them.

To rearrange the order of behavioral assignment statements is incorrect:

because not-a must be computed before t 1 by the Verilog simulator. 4 Verilog also all
scope of this boc
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module behavioral xor;

reg a,b;

reg c;
reg tl,t2,not-a,not-b;

always ...
begin

nota = -a;
notb = b;
tl = nota&b;
t2 = a&not-b;
c = tllt2;

end
endmodule

module bad.xor;

reg a,b;

reg c;
reg tl,t2,nota,not-b;

always ...

begin

c = tlt2;
tl = not_a&b;

t2 = a&notb;
not-a = -a;
not-b = -b;

end
endmodule
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3.5.3 Interconnection errors: four-valued logic
In software, a bit is either a 0 or a 1. In properly functioning hardware, this is usually
the case also, but it is possible for gates to be wired together incorrectly in ways that
produce electronic signals that are neither 0 nor 1. To more accurately model such
physical possibilities,4 each bit in Verilog can be one of four things: 1 bO, 1 'bl,
1 'bz or 1 bx.

Obviously, 1 'bO and 1 b correspond to the logical 0 and logical 1 that we would
normally expect to find in a computer. For most technologies, these two possibilities
are represented by a voltage on a wire. For example, active high TL logic would
represent 1 bO as zero volts and 1 'b as five volts. Active low TTL logic would
represent 1 as five volts and 1 hi as zero volts. Other kinds of logic families,
such as CMOS, use different voltages. ECL logic uses current, rather than voltage, to
represent information, but the concept is the same.

3.5.3.1 High impedance
In any technology, it is possible for gates to be miswired. One kind of problem is when
a designer forgets to connect a wire or forgets to instantiate a necessary gate. This
means that there is a wire in the system which is not connected to anything. We refer to
this as high impedance, which in Verilog notation is 1 bz. The TTL logic family will
normally view high impedance as being the same as five volts. If the input of a gate to
which this wire is connected is active high, 1 'bz will be treated as 1 bi, but if it is
active low, it will be treated as 1 'bO. Other logic families treat 1 'bz differently.
Furthermore, electrical noise may cause 1 bz to be treated spuriously in any logic
family. For these reasons, it is important for a Verilog simulator to treat 1 bz as dis-
tinct from 1bO and 1 bl. For example, if the designer forgets the final or gate in the
example from section 3.5.1:

module forgetor_that_outputsc;
reg a,b;
wire c;
wire tl,t2,nota,not-b;

not il(nota,a);
not i2(not b,b);
and al(tl,nota,b);
and a2(t2,a,notb);

endmodule

4 Verilog also allows each bit to have a strength, which is an electronic concept (below gate level) beyond the
scope of this book.
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s 1 'bz, regardless of

of two gates are wired
e of the gates wants to
'ample, if we tried to
fther:

Arithmetic and relational operators (including == and ! =) produce their usual results
only when both operands are composed of 1 bOs and 1 bis. In any other case, the
result is bx. This relates to the fact the corresponding combinational logic required to
implement such operations in hardware would not produce a reliable result under such
circumstances. For example:

if ( a == 'bx)
$display("a is unknown");

will never display the message, even when a is 1 bx, because the result of the ==
operation is always 1'bx. 1 bx is not the same as 1 'bl, and so the $display
never executes.

There are two special comparison operators (=== and ! ==) that overcome this limita-
tion. === and ! == cannot be implemented in hardware, but they are useful in writing
intelligent simulations. For example:

if ( a === l'bx)

| $display("a is unknown");e two and gates both
) when a is 1 bO and
er. Fighting gates can
'mes out of the chip).
problems before we

will display the message if and only if a is 1 'bx.

To help understand the last examples, you should realize that the following two if
statements are equivalent:

Uninitialized regs in
e for structural code,
Dperators, such as &,
les of commutativity,

if(expression) if((expression)===1'b1)
statement; statement; I

The following table summarizes how the four-valued logic works with common opera-
tors:

gs. When all the bits
rpretation (powers of
ach as 3 'bIzO, the
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a b a==b a===b a!=b a!==b a&b

0 0 1 1 0 0 0
0 1 0 0 1 1 0
O x x 0 x 1 0
O z x 0 x 1 0
1 0 0 0 1 1 0
1 1 1 1 0 0 1
1 x x 0 x 1 x
1 z x 0 x 1 x
x O x 0 x 1 0
x 1 x 0 x 1 x
x x x 1 x 0 x
x z x 0 x 1 x
z O x 0 x 1 0
z 1 x 0 x 1 x
z x x 0 x 1 x
z z x 1 x 0 x

This table was generated by the following Verilog

module xzOl;
reg a,b,val[3:0];
integer ia,ib;

initial

begin
val[O] = l'bO;
val[l] = l'bl;
val[2] = l'bx;
val[3] = l'bz;
$display

("a b a==b a===b a!=b a!==b a

for (ia = 0; ia<=3; ia=ia+l)
for (ib = 0; ib<=3; ib=ib+l)
begin

a = val[ia];
b = val[ib];

$display
("%b %b %b %b %b %b %b

a,b,a==b,a===b,a!=b,a!==b
end

end
endmodule

3.6 $ti
A Verilog sim
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simulation resi
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lowing discuss
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b allb ab"');

b %b %b ",

ajb,ajj|b,a-b);

3.6 $time
A Verilog simulator executes as a software program on a conventional general-purpose
computer. How long it takes such a computer to run a Verilog simulation, known as
real time, depends on several factors, such as how fast the general-purpose computer
is, and how efficient the simulator is. The speed with which the designer obtains the
simulation results has little to do with how fast the eventual hardware will be when it is
fabricated. Therefore, the real time required for simulation is not important in the fol-
lowing discussion.

Instead, Verilog provides a built-in variable, $ time, which represents simulated time,
that is, a simulation of the actual time required for a machine to operate when it is
fabricated. Although the value of $ time in simulation has a direct relationship to the
physical time in the fabricated hardware, $time is not measured in seco ads. Rather,
$ time is a unitless integer. Often designers map one of these units into one nanosec-
ond, but this is arbitrary.

3.6.1 Multiple blocks
Verilog allows more than one behavioral block in a module. For example:

The above simulates a system in which a and b are simultaneously assigned their
respective values. This means, from a simulation standpoint, $ time is the same when
a is assigned one as when b is assigned two. (Since both assignments occur in ini-
tial blocks, $time is 0.) Note that this does not imply the sequence in which these
assignments (or the corresponding $display statements) occur.
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1
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1
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x
x
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module twoblocks;

integer x,y;

initial

begin

a=l;

$display("a is one');
end

initial

begin

b=2;

$display("b is two');
end

endmodule

hardware
81



3.6.2 Sequence ve
In software, we often coni
it is possible for many st,
in which statements with
other high-level language
execute is something the
The advancing of $ t im

If you change the wires
always blocks, where e
the design is correct, the
lar $time is irrelevant,
gates in structural Veriloj
actions of each gate or n
each behavioral block yo

3.6.3 Scheduling 
Like a multiprocessing c
cesses, one for each stru
does not advance until th,
nity to execute at that $ t

If you are familiar with
recognize that this raises
units of computation, or
Verilog simulator?

The behavioral statemen
correct to model an exclh

3.7 Tim
Behavioral Ve:
control back tc
the Verilog sir
There are three
when to restart

3.7.1 # tin
When a staten
ecute the state
process that dc
before the curl

the Verilog simulator woi
computing c is not interr
ture of Verilog, discussed

Verilog Digi

in

e
the above wil

The order in w
-at a certain po'

There can be 
how the # wor

-

82



3.7 Time control
Behavioral Verilog may include time control statements, whose purpose is to release
control back to the Verilog scheduler so that other processes may execute and also tell
the Verilog simulator at what $time the current process would like to be restarted.
There are three forms of time control that have different ways of telling the simulator
when to restart the current process: #, @ and wait.

3.7.1 # time control
When a statement is preceded by # followed by a number, the scheduler will not ex-
ecute the statement until the specified number of $ time units have passed. Any other
process that desires to execute earlier than the $ time specified by the # will execute
before the current process resumes. If we modify the first example from section 3.6:

id sequence. In Verilog,
vancing. The sequence
he usual rules found in
within different blocks
)g will do consistently.
on 3.7.

is equivalent to several
t output by one gate. If
cs execute at a particu-
which you instantiate

in simulate the parallel
the parallel actions of

schedules several pro-
The $time variable

so desires an opportu-

semaphores, you will
;: what are the atomic
get interrupted by the

. Although it is nearly
I code:

the above will assign first to b (at $time=3) and then to a one unit of $ time later.
The order in which these statements execute is unambiguous because the # places them
at a certain point in $ time.

There can be more than one # in a block. The following nonsense module illustrates
how the # works:
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module twoblockstimecontrol;
integer x,y;

initial
begin
#4

a=1;
$display("a is one at $time=%d",$time);

end

initial
begin
#3

b=2;
$display("b is two at $time=%d",$time);

end

endmodule

rute because the block
tires an additional fea-
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In the above code, a becomes 10 at $time 0, 40 at $time 1, 20 at $time 2, 50 at
$time 4, 30 at $ tinme 7 and 60 at $ time 8. The interaction of parallel blocks creates
a behavior much more complex than that of each individual block.

3.7.1.1 Using # in test code
One of the most important uses of # is to generate sequences of patterns at specific
$ times in test code to act as inputs to a machine. The # releases control from the test
code and gives the code that simulates the machine an opportunity to execute. Test
code without some kind of time control would be pointless because the machine being
tested would never execute.

For example, suppose we would like to test the built-in xor gate by stimulating it with
all four combinations on its inputs, and printing the observed truth table:

Verilog Digital Computer Design: Algorithms into Hardware
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20 at $time 2, 50 at
parallel blocks creates

ock.

The first time through, a and b are initialized to be 0 at $ time 0. When #10 executes
at $time 0, the initial block relinquishes control, and xi is given the opportunity
to compute a new value (OAO=O) on the wire c. Having completed everything sched-
uled at $ time 0, the simulator advances $time. The next thing scheduled to execute
is the $display statement at $time 10. (The simulator does not waste real time
computing anything for $ t ime 2 through 9 since nothing changes during this $ t ime.)
The simulatorprints out that"a=0 b=0 c=0"at $time 10 and then goes through the
inner loop once again. While $time is still 10, b becomes 1. The #10 relinquishes
control, xl computes that c is now 1 and $time advances. The $displayprints out
that "a=0 b=l c=1" at $time 20. The last two lines of the truth table are printed out
in a similar fashion at $ times 30 and 40.

of patterns at specific
,s control from the test
Munity to execute. Test
use the machine being

by stimulating it with
uth table:

3.7.1.2 Modeling combinational logic with #
Physical combinational logic devices, such as the exclusive OR gate, have propagation
delay. This means that a change in the input does not instantaneously get reflected in
the output as shown above, but instead it takes some amount of physical time for the
change to propagate through the gate. Propagation delay is a low-level detail of hard-
ware design that ultimately determines the speed of a system. Normally, we will want
to ignore propagation delay, but for a moment, let's consider how it can be modeled in
behavioral Verilog with the #.

Verilog Hardware Description Language

module top;
integer ia,ib;
reg a,b;
wire c;

xor x(c,a,b);

initial
begin

for (ia=0; ia<=l; ia = ia+l)
begin

a = ia;
for (ib=0; ib<=l; ib = ib + 1)

begin
b = ib;
#10 $display(`a=%d b=%d c=

end
end

end
endmodul e

=%d,a,b, c);
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The behavioral exclusive OR example in section 3.6.3 deadlocks the simulator because
it does not have any time control. If we put some time control in this always block
(say a propagation delay of #1), the simulator will have an opportunity to schedule the
test code instead of deadlocking inside the always block:

There is an eq
control. The fo

Both model an
many (but not,
efficient from;

3.7.1.3 Ge
Registers and 
ate such a sigr
and an alway

As in the last example, a and b are initialized to be 0 at $time 0. When #10 executes
at $time 0, the initial block relinquishes control, which gives the always loop
an opportunity to execute. The first thing that the always block does is to execute #1,
which relinquishes control until $time 1. Since no other block wants to execute at
$ time 1, execution of the always block resumes at $t ime 1, and it computes a new
value (OAO=O) for the reg c. Because this is an always block, it loops back to the #1.
Since no other block wants to execute at $time 2, execution of the always block
resumes at $ time 2, and it recomputes the same value for the reg c that it just com-
puted at $time 1. The always block continues to waste real time by unnecessarily
recomputing the same value all the way up to $ time 9.

Finally, the $display statement executes at $time 10. The test code prints out "a=0
b=0 c=0" and goes through its inner loop once again. While $time is still 10, b
becomes 1. The #10 relinquishes control, and the always block will have another ten
chances to compute that c is now 1. The remaining lines of the truth table are printed
out in a similar fashion.

The above gei
$time.
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module top;
integer ia,ib;
reg a,b;
reg c;

always #1
c = ab;

initial
begin

for (ia=O; ia<=l; ia ia+l)
begin

a = ia;

for (ib=O; ib<=l; ib = ib + 1)
begin

b = ib;

#10 $display("a=%d b=%d c=%d",a,b,c);
end

end
$finish;

end
endmodule

.
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the simulator because
in this always block
rtunity to schedule the

re is an equivalent structural netlist notation for an always block with # time
trol. The following behavioral and structural code do similar things in $ time:

reg c; wire C;
always #2 xor #2 x2(c,a,b);

c = a^b;

i model an exclusive OR gate with a propagation delay of two units of $ t ime. On
.y (but not all) implementations of Verilog simulators, the structural version is more
ient from a real-time standpoint. This is discussed in greater detail in chapter 6.

.1.3 Generating the system clock with #for simulation
isters and controllers are driven by some kind of a clock signal. One way to gener-
;uch a signal is to have an initial block give the clock signal an initial value,
an always block that toggles the clock back and forth:

0. When #10 executes
ves the always loop
does is to execute #1,
k wants to execute at
and it computes a new
t loops back to the #1.
Of the always block
reg c that it just com-
time by unnecessarily

above generates a system clock signal, sysclk, with a period of 100 units of
ime.

.1.4 Ordering processes without advancing $t ime
permissible to use a delay of #0. This causes the current process to relinquish

trol to other processes that need to execute at the current $ time. After the other
-esses have relinquished control, but before $ time advances, the current process
resume. This kind of time control can be used to enforce an order on processes

)se execution would otherwise be unpredictable. For example, the following is
)rithmically the same as the first example in 3.7.1 (b is assigned first, then a), but
h assignments occur at $ time 0:

t code prints out "a= 0
$time is still 10, b

i will have another ten
truth table are printed

Hardware Verilog Hardware Description Language

reg sysclk;

initial
sysclk = 0;

always #50

sysclk = -sysclk;
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3.7.2 @ time control
When an @ precedes a statement, the scheduler will not execute the statement that
follows until the event described by the @ occurs. There are several different kinds of
events that can be specified after the @, as shown below:

When there is a single expression in parenthesis, the @ waits until one or more bit(s) in
the result of the expression change. As long as the result of the expression
stays the same, the block in which the @ occurs will remain suspended. When multiple
expressions are separated by or, the @ waits until one or more bit(s) in the result of
any of the expressions change. The word or is not the same as the operator 1.

In the above, onebi t is single-bit wire or reg (declared without the square bracket).
When posedge occurs in the parenthesis, the @ waits until onebi t changes from a
0 to a 1. When negedge occurs in the parenthesis, the @ waits until onebi t changes
from a I to a 0. The following mean the same thing:

reg a,b,c; reg a,bc;

@(c) a=b; @(posedge c or negedge c) a=b;
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module two blockstimecontrol;

integer x,y;

initial

begin

#0

a=l;

$display("a is one at $time=%d",$time);

end

initial

begin

b=2;
$display("b is two at $time=%d",$time);

end

endmodule

@ (expression)
@(expression or expression or ...)
@(posedge onebit)

@(negedge onebit)

@ event

An event is a special kind of Verilog variable, which will be discussed later.

.
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3.7.2.1 Efficient behavioral modeling of combinational
logic with @

Although you can model combinational logic behaviorally using just the #, this is not
an efficient thing to do from a simulation real-time standpoint. (Using # for combina-
tional logic is also inappropriate for synthesis.) As illustrated in section 3.7.1.2, the
always block has to reexecute many times without computing anything new. Al-
though physical hardware gates are continuously recomputing the same result in this
fashion, it is wasteful to have a general-purpose computer spend real time simulating
this. It would be better to compute the correct result once and wait until the next time
the result changes.

How do we know when the output changes? Recall that perfect combinational logic
(i.e., with no propagation delay) by definition changes its output whenever any of its
input(s) change. So, we need the Verilog notation that allows us to suspend execution
until any of the inputs of the logic change:

ute the statement that
veral different kinds of

or ... )

til one or more bit(s) in
of the expression

pended. When multiple
*e bit(s) in the result of
ne as the operator 1.

out the square bracket).
nebi changes from a
until onebi t changes

c) a=b;
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", $time);

", $time);

Mue the statement tha
veral different kinds o

module top;

integer ia,ib;

reg a,b;

reg c;

always (a or b)
c = ab;

initial
begin

for (ia=O; ia<=l; ia = ia+l)
begin

a = ia;

for (ib=O; ib<=l; ib = ib + 1)
begin

b = ib;

#10 $display("a=%d b=%d c=%d",a,b,c);
end

end
$finish;

end

endmodule

discussed later.
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At the beginning, both the initial and the always block start execution. Since
neither a nor b have changed yet, the always block suspends. The first time through
the loops in the initial block, a and bare initialized to be at $time 0. When #10
executes at $timeO, the initial block relinquishes control, andthe always block
is given an opportunity to do something. Since a and b both changed at $ time 0, the
@ does not suspend, but instead allows the always block to compute a new value
(OAO=O) for the reg c. The always block loops back to the @. Since there is no way
that a or b can change anymore at $ time 0, the simulator advances $ time. The next
thing scheduled to execute is the $display statement at $time 10. (Like the ex-
ample in section 3.7.1.1, but unlike the example in section 3.7.1.2, the simulator does
not waste real time computing anything for $ time I through 9 since nothing changes
during that $ time.) The simulator prints out that "a=O b= 0 c= 0" at $ time 1,and
then goes through the inner loop once again. While $time is still 10, b becomes 1.
The #10 relinquishes control, and the always block has an opportunity to do some-
thing. Since b just changed (though a did not change), the @ does not suspend, and c
is now 1. After $time advances, the $display prints out that "a=0 b= 1 c=l" at
$ time 20. The last two lines of the truth table are printed out in a similar fashion at
$times 30 and 40.

always @
begin

if (e
dol

else
if

eL

end

Note that the
controller sen,
will ignore the
one action (ch
of if stateme
hardware.Since this is a model of combinational logic, it is very important that every input to

the logic be listed after the @. We refer to this list of inputs to the physical gate as the
sensitivity list.

3.7.2.2 Modeling synchronous registers
Most synchronous registers that we deal with use rising edge clocks. Using @ with
posedge is the easiest way to model such devices. For example, consider an enabled
register whose input (of any bus width) is din and whose output (of similar width as
din) is dout. At the rising edge of the clock, when ld is 1, the value presented on
din will be loaded. Otherwise dout remains the same. Assuming din, dout, d
and sysclk are taken care of properly elsewhere in the module, the behavioral code
to model such an enabled register is:

Similar Verilog code can be written for a counter register that has cr, ld, and cnt
signals:

3.7.2.3 M
Most controlled
use posedgk
sysclk hav
chart in sectic
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Note that the nesting of if statements indicates the priority of the commands. If a
controller sends this counter a command to clr and cnt at the same time, the counter
will ignore the cnt command. At any $ time when this always block executes, only
one action (clearing, loading, counting or holding) occurs. Of course, improper nesting
of i f statements could yield code whose behavior would be impossible with physical
hardware.Ant that every input to

the physical gate as the

3.7.2.3 Modeling synchronous logic controllers
Most controllers are triggered by the rising edge of the system clock. It is convenient to
use posedge to model such devices. For example, assuming that stop, speed and
sysclk have been dealt with properly elsewhere in the module, the second ASM
chart in section 2.1.1.2 could be modeled as:clocks. Using @ with

ple, consider an enabled
put (of similar width as
the value presented on
iing din, dout, ld
ule, the behavioral code

has cr, ld, and cnt

always
begin

@(posedge sysclk)
stop = 0;
speed = 3;

@(posedge sysclk)
stop = 1;
speed = 1;

@(posedge sysclk)
stop = 1;

speed = 0;

//this models state GREEN

//this models state YELLOW

//this models state RED

end

There are several things to note about the above code. First, the indentation is used only
to promote readability. Assuming the code for generating sysclk given in section

Verilog Hardware Description Language

always (posedge sysclk)
begin

if (cir)
dout = 0;

else
if (d)
dout = din;

else
begin

if (cnt)
dout = dout + 1;

end
end

o Hardware
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3.7.1.3, the stop = 0 and speed = 3 statements execute at
... because there is no time control among them. The indentation
fact that these two statements execute atomically, as a unit, witi
by the simulator.
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The wait st
wait statem
way that @ 
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ware devices

The wait st
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The second thing to note is that the = in Verilog is just a softwE
ment. (The variable is modified at the $time the statement e
will retain the new value until modified again.) This is different
ASM chart notation. (The command signal is a function of the p
mand signal does not retain the new value after the rising edge o
instead returns to its default value.) Another way of saying th
default values in standard Verilog variables as there are for A
Despite the distinction between Verilog and ASM chart notati
ASM chart in Verilog by fully specifying every command outi
those states where a command is not mentioned in an ASM cha
Verilog assignment statement that stores the default value int(
corresponding to the missing ASM chart command. The stop=(
ments above were not shown in the original ASM chart but are rc
code to model what the hardware would actually do.

The third thing is the names of the states are not yet included in ,
comments are of course ignored by Verilog.) Eventually, we wil
ing meaningful state names in the actual code.

The fourth thing is that this ASM chart does not have any RTN
stage). We will need an additional Verilog notation to model ASR
This notation is discussed in section 3.8.

3.7.2.4 @for debugging display
@ can also be used for causing the Verilog simulator to print 
shows what happens as actions unfold in the simulation. For exs

always (a or b or c)

$display("a=%b b=%b c=%b at $time=%d",a,b,

The above block would eliminate the need for the designer t(
$display statements in the test code or in the code for the ma

With clocked systems, it is often convenient to display informa
rising edge of the clock:

For example,
described in c
result is. Furtl
of $time. Tl
machine:

module top

reg pb;

integer

wire [11

wire sys

...
initial

begin

pb=
x =

=
#250

@(po

whil1
be(
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:$time 50, 350, 650,
simply highlights the

,out being interrupted

always (posedge sysclk)

#20 $display("stop=%b speed=%b at $time=%d",
stop,speed,$time);

ire assignment state-
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than how we use = in

resent state. The com-
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the Verilog code. (The
I find a way of includ-

3.7.3 wait
The wait statement is a form of time control that is quite different than # or @. The
wait statement stands by itself. It does not modify the statement which follows in the
way that @ and # do (i.e., there must be a semicolon after the wait statement). The
wait statement is used primarily in test code. It is not normally used to model hard-
ware devices in the way @ and # are used. The syntax for the wait statement is:

wait(condition);

The wait statement suspends the current process. The current process will resume
when the condition becomes true. If the condition is already true, the current process
will resume without $ time advancing.

For example, suppose we want to exhaustively test one of the slow division machines
described in chapter 2. The amount of time the machine takes depends on how big the
result is. Furthermore, different ASM charts described in chapter 2 take different amounts
of $ time. Therefore, the best approach is to use the ready signal produced by the
machine:

(i.e., it is at the mixed
M charts that use RTN.

debugging output that
ample,

c, $time) ;l

o worry about putting
achine being tested.

ition shortly after each
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module top;
reg pb;
integer x,y;

wire [11:0] quotient;
wire sysclk;

initial

begin

pb= 0;

x = 0;

y = 0;
#250;

@(posedge sysclk);

while (x<=4095)
begin

for (y=l; y<=4095; y = y+1)
begin

@(posedge sysclk);
pb = 1;
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3.8.1 Blo,
The syntax fo
is described ii
ample, three 

Other variatic
assignment is
ecutes, but th
assuming te:
declared to be
the same thin,

This test code (based on the nested loops given in section 3.4) embodies the assump-
tions we made in section 2.2. 1. The first two @ s in the loop produce the pb pulse that
lasts exactly one clock cycle. The third @ makes sure that the machine has enough time
to respond (and make ready 0). The wait (ready) keeps the test code synchro-
nized to the division machine, so that the test code is not feeding numbers to the divi-
sion machine too rapidly. The fourth @ makes sure the machine will spend the required
time in state IDLE, before testing the next number.

The ellipsis shows where the code for the actual division machine was omitted in the
above. The quotient is produced by this machine which is not shown here. The
design of this code will be discussed in the next chapter.

3.8 Assignment with time control
The # and @ time control, discussed in sections 3.7.1 and 3.7.2, precede a statement.
These forms of time control delay execution of the following statement until the speci-
fied $time. There are two special kinds of assignment statements5 that have time
control inside the assignment statement. These two forms are known as blocking and
non-blocking procedural assignment.

initial
begin

a =

end 

Blocking pro(
RTN. The onc
from continui
blocking proc

3.8.2 Nor
The syntax fo
dural assignrr
This should t
charts. For ex
later chapters

5 Assignment with time control is not accepted by some commercial synthesis tools but is accepted by all
Verilog simulators. Since there are problems with intra-assignment delay (section 3.8.2.1), some authors
recommend against its use, but when used as recommended later in this chapter (section 3.8.2.2), it becomes
a powerful tool. Chapter 7 explains a preprocessor that allows all synthesis tools to accept the use proposed
in this book.
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Continued

@(posedge sysclk);

pb = 0;

@(posedge sysclk);

wait(ready);

@(posedge sysclk);

if (x/y === quotient)

$display("ok");

else
$display("error x=%d y=%d x/y=%d quotient=%d",

x,y,x/y,quotient);

end

x = x + 1;
end

$stop;
end

endmodule
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3.8.1 Blocking procedural assignment
The syntax for blocking procedural assignment has the # or @ notation (whose syntax
is described in sections 3.7.1 and 3.7.2) after the = but before the expression. For ex-
ample, three common forms of this are:

var = # delay expression;
var = (posedge onebit) expression;
var = (negedge onebit) expression;

i) embodies the assump-
roduce the pb pulse that
nachine has enough time
is the test code synchro-
ling numbers to the divi-
te will spend the required
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is not shown here. The
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*e known as blocking and
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Section 3.8.2.1), some authors
ter (section 3.8.2.2), it becomes
ools to accept the use proposed

Other variations are also legal. What distinguishes this from a normal instantaneous
assignment is that the expression is evaluated at the $time the statement first ex-
ecutes, but the variable does not change until after the specified delay. For example,
assuming temp is a reg that is not used elsewhere in the code and that temp is
declared to be the same width as a and b, the following two fragments of code mean
the same thing:

initial
initial begin
begin ...

... temp = b;
a = @(posedge sysclk) b; @(posedge sysclk) a = temp;

end end

Blocking procedural assignment is almost what we need to model an ASM chart with
RTN. The one problem with it, as its name implies, is that it blocks the current process
from continuing to execute additional statements at the same $ time. We will not use
blocking procedural assignment for this reason.

3.8.2 Non-blocking procedural assignment
The syntax for a non-blocking procedural assignment is identical to a blocking proce-
dural assignment, except the assignment statement is indicated with <= instead of =.
This should be easy to remember, because it reminds us of the - notation in ASM
charts. For example, the most common form of the non-blocking assignment used in
later chapters is:

var <= (posedge onebit) expression;

Verilog Hardware Description Language
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Typically, onebi t is the sysclk signal mentioned it section 3.7.1.3. Although other
forms are legal, the above (posedge onebi t) form of the non-blocking assign-
ment is the one we use in almost every case for - in ASM charts.6

The expression is evaluated at the $ t ime the statement first executes and further state-
ments execute at that same $time, but the variable does not change until after the
specified delay. For example, assuming temp is a reg that is not used elsewhere in the
left-hand code and that temp is declared to be the same width as a and b, the following
two fragments of code mean nearly the same thing:

alvays (posedge sysclk)

#0 a = temp;

initial initial
begin begin

a <= (posedge sysclk) b; temp = b;

end end

Note that, all by itself, the effect of the non-blocking assignment is like having a paral-
lel always block to store into a. An advantage of the <= notation is that you do not
have to code a separate always block for each register.

A subtle detail is that the right-hand always block is the last thing to execute (#O) at
a given $time. Similarly, the <= causes the reg to change only after every other
block (including the one with the <= ) has finished execution. This subtle detail causes
a problem, which is discussed in the next section, and which is solved in section 3.8.2.2.

3.8.2.1 Problem with <=for RTNfor simulation
An obvious approach to translating RTN from an ASM chart into behavioral Verilog is
just to put <= for each <- in the ASM chart. For example, assuming stop, speed,
count and sysclk are taken care of properly elsewhere, one might think that the
ASM chart from section 2.1.1.3 could be translated into Verilog as:

6 The exceptions are when the left-hand side of the *- is a memory being changed every clock cycle, in
which case (negedge onebi t) is appropriate, as explained in section 6.5.2, and for post-synthesis
behavorial modeling of logic equations, in which case # is appropriate, as explained in section 11.3.3.
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@(posedge sysclk) //this models state GREEN
stop = 0;

speed = 3;

@(posedge sysclk) //this models state YELLOW
stop = 1;

speed = 1;

count <= @(posedge sysclk) count + 1;

@(posedge sysclk) //this models state RED
stop = 1;

speed = 0;
count <= @(posedge sysclk) count + 2;

r, when one runs this code on a Verilog simulator, the following incorrect re-
roduced (assuming the debugging always block shown in section 3.7.2.4):

nt is like having a paral-
ation is that you do not

thing to execute (#0) at
only after every other
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ito behavioral Verilog is
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rom section 2.1.1.3 that at $time 370, count should be three instead of two.
Irlying cause of this error is the subtle detail mentioned above: The <= causes
to change only after every other block (including the one with the <=) has
execution.

ve Verilog starts to execute the statements for state YELLOW at $ time 150.
of these statements evaluates count+l at $time 150 and schedules the

of the result. Since count is still 3'bOOO at $time 150, the result scheduled to
I at the end of $time 250 is 3'bOO1. The @ (posedge sysclk) that starts
D causes the always block to suspend until $ time 250. The problem shown
ccurs at $time 250 because the assignment initiated by the <= at $time 150
he last thing that occurs at $ time 250. Prior to the assignment, the process
ime and execute the three statements, including count <= @ (posedge
k) count + 2. Since countis still 3'bOOO, this <= schedules 3'bOlO to be
at $ time 350, which is not what happens in an ASM chart. As soon as the

ent of 3'bO0l has been scheduled at $time 250, 3'bOO1 will be stored into
'as a result of the first <=).

:hanged every clock cycle, in

6.5.2, and for post-synthesis
dlained in section 11.3.3.
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stop=0 speed=ll count=000 at $time= 70
stop=l speed=01 count=000 at $time= 170
stop=l speed=00 count=001 at $time= 270
stop=0 speed=ll count=010 at $time= 370
stop=l speed=01 count=010 at $time= 470
stop=l speed=00 count=011 at $time= 570
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3.8.2.2 Proper use of <=for RTN in simulation
To overcome the problem described in the last section, you need to use a non-zero
delay after each @ (posedge sysclk) that denotes a rectangle of the ASM chart.
For example, here is the complete Verilog code to model (in a primitive way) the ASM
chart from section 2.1.1.3:

module top;

reg stop;

reg [1:0] speed;

reg sysclk;

reg [2:0] count;

initial

sysclk = 0;
always #50

sysclk = -sysclk;

toggles syscl
$time 0, it w

The only new 
#1 after each 
stop,speec

The test code i
real machine, 
test code for t
system task to
would otherwi

With the #1 afi

always

begin

@(posedge sysclk) #1

stop = 0;

speed = 3;
@(posedge sysclk) #1

stop = 1;

speed = 1;

count <= (posedge

@(posedge sysclk) #1

stop = 1;

speed = 0;

count <= (posedge
end

//this models state GREEN

//this models state YELLOW

sysclk) count + 1;

//this models state RED

sysclk) count + 2;

always (posedge sysclk)

#20 $display("'stop=%b speed=%b

stop,speed,count,$time);
count=%b at $time=%d",

initial

begin

count = 0;

#600 $finish;

end

endmodule

3.8.2.3 Tr
This book con
ASM with be]
kinds of ASMq
ASMs can be
that adhere to

3.8.2.3.1 1
The approach
while) is kn
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Let's analyze the reason why each block is required in this module. The first initial
block is required to give sysclk a value other than l'bx at $time 0. The next block
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need to use a non-zero
tangle of the ASM chart.
X primitive way) the ASM

ls state GREEN

te YELLOW

ls state RED

at $time=%d",

toggles sysclk so that the clock period is 100. If sysclk were not initialized at
$t ime 0, it would stay 1 bx forever (-1 bx is 1 bx).

The only new thing in the always block that models the ASM chart is the addition of
#1 after each @ (posedge sysclk). The always block that follows it displays
stop, speed and count during each state.

The test code in the final initial block simply initializes count to be 3'b00. (In a
real machine, this would occur in a state of the ASM, but instead here it is part of the
test code for the purposes of illustration only.) The test code schedules a $ f inish
system task to be called at $ time 600. This is required because the always blocks
would otherwise tell the simulator to go on forever.

With the #1 after each @, the Verilog simulator produces the following correct output:

stop=0 speed=ll count=000 at $time= 70
stop=i speed=01 count=000 at $time= 170
stop=l speed=00 count=001 at $time= 270
stop=0 speed=11 count=011 at $time= 370
stop=l speed=01 count=011 at $time= 470
stop=l speed=00 count=100 at $time= 570

3.8.2.3 Translating goto-less ASMs to behavioral Verilog
This book concentrates on several design techniques that all begin by expressing an
ASM with behavioral Verilog. Since Verilog is a goto-less language, only certain
kinds of ASMs can be translated in this fashion. Chapters 5 and 7 explain how arbitrary
ASMs can be translated into Verilog, but this section will concentrate only on ASMs
that adhere to this highly desirable goto -less style.

3.8.2.3.1 Implicit versus explicit style
The approach of expressing a state machine with high-level statements (like if and
while) is known as implicit style because the next state of the machine is described
implicitly through the use of @ (posedge sysclk) within the statements of an
always block. Implicit style is the opposite of the explicit style table (illustrated in
section 2.4.1) that requires the designer to say what state the machine goes to under all
possible circumstances.

Experienced hardware designers who are new to Verilog may find the implicit style
approach confusing because it requires thinking about a state machine in a different
way. The implicit style is much more like software concepts, such as the distinction
between i f and whi 1 e. On the other hand, experienced software designers may also
find this approach difficult at first because the timing relationship between <= and
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decisions in Verilog is different than in conventional software languages. The follow-
ing sections go through a series of examples that illustrate some typical kinds of ASM
constructs and how they translate into implicit style Verilog.

3 .8.2 .3 .2 Identifying the infinite oop
Unlike software, all ASMs have at least one infinite oop. Implicit style behavioral
Verilog is defined by an always block. Many times this always block can also serve
to implement the infinite loop of the ASM. In the following ASM, the transitions from
states FIRST, SECOND, THIRD and FOURTH are implicit. The designer does not
have to say anything about their next states. The transition from FIFTH to FIRST oc-
curs because of the always:

FIRST [

bLUUXNDI

11HIRD 

FOURTH [

FIFTH [

a-1

4,
b-a

a- b

b- 4

a-5 5

Figure 3.2 Every ASM has an infinite oop.

Inside the always, there is a one to one mapping of rectangles into (pos edge
syscik) statements. In this example, the ASM has five states, so the always uses
five (posedge syscik):

module top;
//Following are actual hardware registers of ASM

reg [11:0] a,b;

//Following is NOT a hardware register
reg sysclk;

I/The following always block models actual hardware

The above is 
emphasis of th
there are three
other two a~
later chapters

3.8.2.3.3 1
Most ASMs ha
if statement 
ware designers
the while is 

The following
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always

begin

@(posedge sysclk) #1;

a <= (posedge sysclk) 1;
@(posedge sysclk) #1;

b <= (posedge sysclk) a;
@(posedge sysclk) #1;
a <= @(posedge sysclk) b;
@(posedge sysclk) #1;
b <= @(posedge sysclk) 4;
@(posedge sysclk) #1;
a <= @(posedge sysclk) 5;

end

// state FIRST

// state SECOND

// state THIRD

// state FOURTH

// state FIFTH

//Following initial and always blocks do not correspond to
// hardware. Instead they are test code that shows what
// happens when the above ASM executes

always #50 sysclk = sysclk;
always (posedge sysclk) #20

$display("%d a=%d b=%d ', $time, a, b);

initial

begin

sysclk = 0;
#1400 $stop;

end

endmodule

The above is slightly more primitive than what will be used in later chapters, but the
emphasis of this example is to show how an ASM translates into Verilog. In the above,
there are three always blocks, but only the first one corresponds to hardware. The
other two always blocks and the initial block are necessary for simulation (in
later chapters these other blocks will be moved to other modules).

3.8.2.3.3 Recognizing if else
Most ASMs have decisions. Decisions in implicit Verilog are described either with the
if statement (possibly followed by else) or with the while statement. For hard-
ware designers without extensive software experience, determining whether the i f or
the while is appropriate for a particular decision can seem confusing at first.

The following ASM is an example where the i f else construct is appropriate:

Verilog Hardware Description Languagento Hardware 101



FI I

SECOND

FOURTH IRD

I a b I

FIFTH

Figure 3-3. ASM corresponding to if else.

For brevity, only the always block that corresponds to the actual hardware is shown:

always
begin

@(posedge sysclk) #1;
a <= @(posedge sysclk) 1;
@(posedge sysclk) #1;
b <= @(posedge sysclk) a;
if (a == 1)

begin
@(posedge sysclk) #1;

a <= (posedge sysclk) b;
end

else
begin

@(posedge sysclk) #1;
b <= (posedge sysclk) 4;

end
@(posedge sysclk) #1;
a <= @(posedge sysclk) 5;

// state FIRST

// state SECOND

// state THIRD

// state FOURTH

// state FIFTH

end

3.8.2.3.4 R.
Often, it is appr

S

The i f el s e is appropriate here because only one of the states (THIRD or FOURTH)
will execute. Because a is one in state SECOND, state THIRD will execute. In the
following very similar Verilog, state FOURTH rather than state THIRD will execute:
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always

begin

@(posedge sysclk) #1;

a <= (posedge sysclk) 1;
@(posedge sysclk) #1;

b <= (posedge sysclk) a;
if (a = 1)

begin

@(posedge sysclk) #1;
a <= (posedge sysclk)

end

else

begin

@(posedge sysclk) #1;

b <= (posedge sysclk) 4;
end

@(posedge sysclk) #1;
a <= (posedge sysclk) 5;

// state FIRST

// state SECOND

// state THIRD

// state FOURTH

// state FIFTH

end

ctual hardware is shown:
3.8.2.3.4 Recognizing a single alternative
Often, it is appropriate to omit the else, as in the following ASM:

SECOND

es (THIRD or FOURTH)
IRD will execute. In the
ate THIRD will execute: Figure 3-4. ASM without else.
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which translates to the

always

begin

@(posedge s

a <= @(pos

@(posedge s
b <= @(pos
if (a == 1
begin

@(POSE
a <=

@(pose
b <=

// state FIRST

// state SECOND

// state THIRD

// state FOURTH

// state FIFTH

end

@(posedge s

a <= @(pos
end

In the above, both stat
state SECOND. The fo
to state FIFTH:

always

begin

@(posedge s
a <= @(pos
@(posedge s
b <= @(pos
if (a = I

begin

@(pose

a <=
@(pose

b <=
end

@(posedge s
a <= @(pos

end

// state FIRST

// state SECOND

// state THIRD

// state FOURTH
4;

// state FIFTH

3.8.2.3.5 Recogn
The following two AS.
ASMs is very similar 1
not necessarily go to s

Figure 3-e
Verilog D

determines 
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the first of t]
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determines whether to go to state THIRD or state FIFTH. The second of the following
two ASMs is a much less desirable way to describe the identical hardware. It is undesir-
able because the a== 1 test is duplicated; however, its meaning is exactly the same as
the first of the following two ASMs:

ite because a is one in
ly from state SECOND

Figure 3-5. ASM with whi le.

;t of the following two
it state FOURTH does
es to a decision which

Figure 3-6. Equivalent tofigure 3-5.

te FIRST

te SECOND

te THIRD

te FOURTH

te FIFTH

:e FIRST

:e SECOND

:e THIRD

:e FOURTH

:e FIFTH
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The reason the first of the ASMs is preferred is because it is more obvious that it
translates into a while loop in Verilog:

always

begin

@(posedge sysclk) #1;
a <= @(posedge sysclk) 1;
@(posedge sysclk) #1;
b <= @(posedge sysclk) a;
while (a == 1)

begin

@(posedge sysclk) #1;
a <= @(posedge sysclk) b;

@(posedge sysclk) #1;
b <= (posedge sysclk) 4;

end

@(posedge sysclk) #1;
a <= (posedge sysclk) 5;

end

// state FIRST

// state SECOND

// state THIRD

// state FOURTH

// state FIFTH

In fact, the only syntactic difference between the above Verilog and the Verilog in
section 3.8.2.3.4 is that the word if has been changed to while. The advantage of
looking at this particular ASM as awhile loop is that the decision a==l is shared by
both state SECOND and state FOURTH. With the while loop, the designer does not
have to worry that the decision is actually part of two states. Many practical algorithms
that produce useful results (as illustrated in chapter 2) demand a loop of this style. The
while in Verilog makes this easy.

3.8.2.3.6 Recognizing forever
Sometimes machines need initialization states that execute only once. Since synthesis
tools only accept behavioral Verilog defined with always blocks, such ASMs still
begin with the keyword always. However, the looping action of the always is not
pertinent. (If the designer only wanted to simulate the machine, ini tial would work
just as well as always, but ultimately the synthesis tool will demand always.)

In order to describe the infinite loop that exists beyond the initialization states, the
designer must use f orever. For example, consider the following ASM:
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is more obvious that it

Lte FIRST

Lte SECOND

Lte THIRD

Lte FOURTH

tte FIFTH

SECOND

FIFTH

ilog and the Verilog in
tile. The advantage of
ision a== is shared by
ip, the designer does not
any practical algorithms
a loop of this style. The

Figure 3-7. ASM needing forever.

It is almost identical to the one in section 3.8.2.3.4, except that state FIFTH forms an
infinite loop to state SECOND instead of going to state FIRST. The corresponding
Verilog implements this using forever:

ly once. Since synthesis
blocks, such ASMs still
n of the always is not

, initial would work
demand always.)

initialization states, the
wing ASM:

always
begin

@(posedge sysclk) #1; / 
a <= @(posedge sysclk) 1;
forever

begin
@(posedge sysclk) #1; i

b <= @(posedge sysclk a;
if (a == 1)

begin
@(posedge sysclk) #1; //

a <= (posedge sysclk) b;
@ (posedge sysclk) #1; //

b <= @(posedge sysclk) 4;
end

@(posedge sysclk) #1;
a <= (posedge sysclk 5;

state FIRST

state SECOND

state THIRD

state FOURTH

// state FIFTH

end
end
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3.8.2.3.7 Translating into an if at the bottom of forever
The following two ASMs are equivalent. Many designers would think the one on the
left is more natural because it describes a loop involving only state THIRD. As long as
a==1, the machine stays in state THIRD. The noteworthy thing about this machine is
that state THIRD also forms the beginning of a separate infinite loop. (Such an infinite
loop might be described with an always or in this case a forever.) Because of this,
it is preferred to think of this ASM as an i f at the bottom of a forever, as illustrated
by the ASM on the right:

FIRST a 1

FOURTH

Figure 3-8. Two ways to draw i f at the bottom of forever.

The ASM on the right tests if a != 1 to see whether to leave the loop involving only
state THIRD and proceed to state FIFTH. The reason the ASM on the right is preferred
is that its translation into Verilog is obvious:

always 
begin

@ (pos
a 

@ (pos

b 

OI

end
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i f, but the coi
of nesting a n(
that forms the
behavioral Ver
gested that the
chapters. Desi

3.9 Tast
In convention;
use functions
apart into man
procedures: t
sometimes all(
dures) and fun

3.9.1 TasI
The syntax foi

Verilog Digital Computer Design: Algorithms into Hardware

e

108



forever
uld think the one on the
state THIRD. As long as
ng about this machine is
e loop. (Such an infinite
ever.) Because of this,
forever, as illustrated

In software, an i f never implements a loop. This is also true in Verilog of an isolated
if, but the combination of an i f at the bottom of forever or always has the effect
of nesting a non-infinite loop inside an infinite loop. It is the forever or always
that forms the looping action, not the if. This example illustrates a kind of implicit
behavioral Verilog that sometimes causes novice Verilog designers confusion. It is sug-
gested that the reader should fully appreciate this example before proceeding to later
chapters. Designers need to be careful not to confuse i f with while.

3.9 Tasks and functions
In conventional software programming languages, it is common for a programmer to
use functions and procedures (known as void functions in C) to break an algorithm
apart into manageable pieces. There are two main motivations for using functions and
procedures: they make the top-down design of a complex algorithm easier, and they
sometimes allow reuse of the same code. Verilog provides tasks (which are like proce-
dures) and functions, which can be called from behavioral code.

the loop involving only
on the right is preferred 3.9.1 Tasks

The syntax for a task definition is:

o Hardware

always

begin

@(posedge sysclk) #1; // state FIRST
a <= (posedge sysclk) 1;

@(posedge sysclk) #1; // state FOURTI
b <= (posedge sysclk) 4;
forever

begin

@(posedge sysclk) #1; // state THIRD
a <= (posedge sysclk) b;
if (a != 1)

begin

@(posedge sysclk) #1; // state FIFTH
a <= (posedge sysclk) 5;

end

end

end

er.
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]

always

begin

@(posedge sysclk) #1;
a <= (posedge sysclk) 1;

@(posedge sysclk) #1;
b <= (posedge sysclk) 4;
forever

begin

@(posedge sysclk) #1;
a <= (posedge sysclk) b;
if (a != 1)

begin

@(posedge sysclk) #1;

// state FIRST

// state FOURTH

// state THIRD

// state FIFTH
a <= (posedge sysclk) 5;

end

end
end

In software, an i f never implements a loop. This is also true in Verilog of an isolated
i f, but the combination of an i f at the bottom of f orever or always has the effect
of nesting a non-infinite loop inside an infinite loop. It is the f orever or always
that forms the looping action, not the if. This example illustrates a kind of implicit
behavioral Verilog that sometimes causes novice Verilog designers confusion. It is sug-
gested that the reader should fully appreciate this example before proceeding to later
chapters. Designers need to be careful not to confuse i f with while.

3.9 Tasks and functions
In conventional software programming languages, it is common for a programmer to
use functions and procedures (known as void functions in C) to break an algorithm
apart into manageable pieces. There are two main motivations for using functions and
procedures: they make the top-down design of a complex algorithm easier, and they
sometimes allow reuse of the same code. Verilog provides tasks (which are like proce-
dures) and functions, which can be called from behavioral code.

the loop involving only
on the right is preferred 3.9.1 Tasks

The syntax for a task definition is:

o Hardware Verilog Hardware Description Language
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In software, an i f never implements a loop. This is also true in Verilog of an isolated
if, but the combination of an i f at the bottom of forever or always has the effect
of nesting a non-infinite loop inside an infinite loop. It is the forever or always
that forms the looping action, not the if. This example illustrates a kind of implicit
behavioral Verilog that sometimes causes novice Verilog designers confusion. It is sug-
gested that the reader should fully appreciate this example before proceeding to later
chapters. Designers need to be careful not to confuse if with while.

3.9 Tasks and functions
In conventional software programming languages, it is common for a programmer to
use functions and procedures (known as void functions in C) to break an algorithm
apart into manageable pieces. There are two main motivations for using functions and
procedures: they make the top-down design of a complex algorithm easier, and they
sometimes allow reuse of the same code. Verilog provides tasks (which are like proce-
dures) and functions, which can be called from behavioral code.

the loop involving only
on the right is preferred 3.9.1 Tasks

The syntax for a task definition is:
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always
begin

@(posedge sysclk) #1; // state FIRST
a <= (posedge sysclk) 1;

@(posedge sysclk) #1; // state FOURTI
b <= (posedge sysclk) 4;
forever

begin
@(posedge sysclk) #1; // state THIRD

a <= (posedge sysclk) b;
if (a != 1)

begin
@(posedge sysclk) #1; // state FIFTH

a <= (posedge sysclk) 5;
end

end
end

I

I

Lo Hardware



This task definition must occur inside a module. The task is usually intended to be
called only by initial blocks, always blocks and other tasks within that module.
Tasks may have any behavioral statements, including time control.

Verilog lets the designer choose the order in which the input, output and inout
definitions are given. (The order shown above is just one possibility.) The order in
which input, output and inout definitions occur is based on the calling sequence
desired by the designer. The sequence in which the formal arguments are listed in some
combination of input, output and/or inout definitions determines how the actual
arguments are bound to the formal definitions when the task is called.

The purpose of an input argument is to send information from the calling code into
the task by value. An input argument may include a width (which is equivalent to a
wire of that width) or it may be given a type of integer or real in a separate
declaration. An input argument may not be declared as a reg.

The purpose of an output argument is to send a result from the task to the calling
code by reference. An output argument must be declared as a reg, integer or
real in a separate declaration.

An inout definition combines the roles of input and output. An inout argu-
ment must be declared as a reg, integer or real in a separate declaration.

3.9.1.1 Example task
Consider the following nonsense code:
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task name;
input arguments;
output arguments;
inout arguments;

declarations;
begin

statement;

end
endtask

After initial
groups (eaci
to be shorter
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After initializing sum and count, there is a great similarity in the following four
groups (each composed of four statements). Using a task allows this initial block
to be shortened:

Verilog Hardware Description Language

integer count,sum,prod;
initial
begin

sum = 0;
count = 1;

sum = sum + count;
prod = sum * count;
count = count + 2;
$display(sum,prod);

sum = sum + count;
prod = sum * count;
count = count + 3;
$display(sum,prod);

sum = sum + count;
prod = sum * count;
count = count + 5;
$display(sum,prod);

sum sum + count;
prod = sum * count;
count = count + 7;
$display(sum,prod);

$display(sum,prod,count);
end

integer count,sum,prod;
initial
begin

sum = 0;
count = 1;

example(sum,prod,count,2);
example(sum,prod,count,3);
example(sum,prod,count,5);
example(sum,prod,count,7);
$display(sum,prod,count);

end

,zto Hardware M1



The definition of the task example is:

task example;
inout sumarg;
output prod arg;
inout countarg;
input numb arg;

//lst positional argument
//2nd positional argument
//3rd positional argument
//4th positional argument

integer count-arg,numb-arg,sumarg,prod-arg;

begin
sum-arg = sum-arg + countarg;
prod arg = sum arg * count arg;
count-arg = countarg + numbarg;
$display(sumarg,prod arg);

end
endtask

Because the formal inout sumarg is defined first, it corresponds to the actual sum
in the initial block. Similarly, the formal output prodarg corresponds to
prod, and the formal inout count-arg corresponds to count. In order to pass
different numbers each time to example, the formal numb-arg is defined to be
input. The order in which the arguments are declared (in this case with the integer
type) is irrelevant. The $ display statements produce the following:

1 1
4 12

10 60
21 231
21 231 18

3.9.1.2 enternewstate task
The translation of the ASM chart from section 2.1.1.3 into Verilog given in section
3.8.2.2 is correct but could be improved in two ways. First, this translation did not
include state names as part of the Verilog code (they were only in the comments).
Second, this translation did not automatically provide default values for states where
command signals were not mentioned, as occurs in ASM chart notation.

To overcome both of these limitations, we will define a task, which is arbitrarily given
the name enternewstate. The purpose of this task is to do things that occur
whenever the machine enters any state. This includes storing into present state a
representation of a state (which is passed as an input argument, this state), doing
the #1 (which is legal in a task) to allow the <= to work properly and giving default
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values to the command outputs. In order to use this task, the designer needs to define
several arbitrary bit patterns for the state names, define the presentstate as a
reg and indicate the number of bits in the presentstate:

The always block that implements the ASM chart is similar to the one given in sec-
tion 3.8.2.2:

esponds to the actual sum
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Verilog given in section
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only in the comments).
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The only differences a that the state names are passed as arguments to
enternewstate, and default values do not have to be mentioned. For example,
state GREEN uses the default value 0 for stop, and state RED uses the default value
O for speed.

The task that accomplishes these things for this particular ASM is:

which is arbitrarily given
is to do things that occur
intopresentstate a
nt, this state), doing
operly and giving default
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'define NUMSTATE-BITS 2

'define GREEN 2'bOO

'define YELLOW 2'bO1

'define RED 2'blO

reg ['NUM_STATE_BITS-1:0] presentstate;

...

always
begin

@(posedge sysclk) enter-newstate('GREEN);
speed = 3;

@(posedge sysclk) enter newstate('YELLOW);
stop = 1;
speed = 1;
count <= @(posedge sysclk) count + 1;

@(posedge sysclk) enter newstate('RED);
stop = 1;
count <= @(posedge sysclk) count + 2;

end
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Even though default values are assigned for every state, since no time control occurs in
this task after the assignment of default values, those states where non-default values
are assigned work correctly. For example, assume the machine enters state GREEN at
$time 50. At that $time, present_state will be assigned 2'bOO. At $time 51,
stop and speed will assigned their defaults of 0, but since there is no more time
control, the always block which called on the task is not interruptable. At the same
$ time 51 speed changes to 3. Any other module concerned about speed at $ time
51 would only observe a change to a value of 3. To understand this, we need to distin-
guish between sequence and $time. Because the task was called, two changes oc-
curred to speed in sequence, but since they happened at the same $ time, the outside
world can only observe the last change. This creates exactly the effect we want. We are
now ready to model ASM charts that do practical things with behavioral Verilog. Ex-
amples of translating ASM charts into Verilog using tasks like this are given in chapter
4.

3.9.2 Functions
The syntax for a function is similar to a task:

except only input arguments are allowed. In the function definition, type is either
integer, real or a bit width defined in square brackets. The statement(s) in a
function never include any time control. The name of the function must be assigned
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task enternew state;
input ['NUM_STATEBITS-l:O] this_state;
begin
present-state = this_state;
#1 stop = 0;

speed = 0;
end

endtask
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function type name;
input arguments;

decl ara ti ons;
begin

statement;
...
name = expression;

end
endfunction
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the result to be returned (like the syntax of Pascal). These restrictions on functions
this_state; exist so that every use of a function could, in theory, be synthesized as combinational

logic.

3.9.2.1 Realfunction example
Verilog does not provide built-in trigonometric functions, but it is possible to define a
function that approximates such a function using a polynomial:

function real sine;

io time control occurs in input x;
here non-default values real x;

real y,y2,y3,y5,y7;enters state GREEN at begin
d2'bOO.At $time 1, y = x*2/3.14159;

there is no more time = y*y;
erruptable. At the same y3 = y*y2;
about speed at $ time y5 = y3*y2;
I this, we need to distin- y7 y5*y2;
called, two changes oc- sine = 1.570794*y - 0. 2 6 17 9 9 *y3 +
ine $time, the outside o.0130 8 9 9*y5 - .000311665*y7;
effect we want. We are end

behavioral Verilog. Ex -endfunction

this are given in chapter Such a function might be useful if a designer needs to test the Verilog model of a
machine, such as a math coprocessor, that implements an ASM to approximate tran-
scendental functions.

3.9.2.2 Using a function to model combinational logic
A more common use of a function in Verilog is as a behavioral way to describe combi-
national logic. For example, rather than being described by the logic gates given in
section 2.5, a half-adder can also be described by a truth table:

Verilog Hardware Description Language

inition, type is either
. The statement(s) in a
nction must be assigned

inputs output

a b c s

o a a 0
0 1 0 1
1 0 0 1
1 1 1 0
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Such a table can be written in Verilog as a function defined with a case statement.
Since the result of the function is composed of more than one bit, the function is better
documented by using local variables (c and s in this example), which are concatenated
to form the result:
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So half_add(0, 0) returns 2'bOO and half_add(1, 1) returns 2'blO. Both
hal fadd (1, 0) and hal fadd (0, 1) return 2'bOl. All other possibilities, such
as half add (1 'bx, 0) return 2'bx. In order to use this function to model the com-
binational logic of a half-adder, the designer would define an always block with @
time control as explained in section 3.7.2. 1:

The syntax for
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function [1:0] half-add;
input a,b;
reg c,s; //local for documentation

begin

case ({a,b})
2'bOO: begin

c = 0;
s = 0;

end
2'bOl: begin

c = 0;
s = 1;

end
2'blO: begin

c = 0;
s = 1;

end
2'bll: begin

c = 1;
s = 0;

end
default:begin

c = l'bx;
s = l'bx;

end
endcase

half-add = {c,s};
end

endfunction
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reg C,S;

always (A or B)
{C,S) = halfadd(A,B);

The actual argument A in the always block is bound to the formal a in hal f_add,
and the actual argument B is bound to the formal b. The locals c and s are concat-
enated to form a two-bit result (hence the [ 1:0] declaration for the function.) This two
bit result is stored in the two-bit concatenation { C, S } .

3.10 Structural Verilog, modules and ports
The preceding sections have covered many behavioral and a few structural (built-in
gate), features of Verilog. This section discusses the most central aspect of Verilog:
how the designer can define and instantiate Verilog modules to achieve hierarchical
design.

Verilog code is composed of one or more modules. Each module is either a top-level
module or an instantiated module. A top-level module is one (like all the earlier ex-
amples in this chapter) which is not instantiated elsewhere in the source code. There is
only one copy of a top-level module. The definition of a top-level module is the same
as the code that executes. The regs and wires in a top-level module are unique.

An instantiated module, on the other hand, is a unique executable copy of the defini-
tion. There may be many such copies. The definition is a "blueprint" for each of these
instances. For example, section 2.5 illustrates an adder that needs three instances of a
half-adder. It is only necessary to define the half-adder once. It can be instantiated as
many times as required. Each instance of an instantiated module has its own copy of
the regs and wires specified by the designer. For example, the value stored in a
particular reg in one instance of a module need not be the same as the value stored in
the reg of the same name in another instance of that module.

Instantiated modules should have ports that allow outside connections with each in-
stance. It is this interconnection (i.e., structure) with the system external to the instance
that gives each instance its unique role in the total system. Normally, each instance is
internally identical to other instances derived from the same module definition, and
how an instance is connected within the system gives that instance its characteristics.

The syntax for a module definition with ports is:
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module name (portl,port2, ... );
input ... ;
output ... ;
inout ... ;
decl arations;
structural instance;

behavioral instance;

tasks

functions

endmodule
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rect. There are two ways to declare the size: either as a wire of some size (regardless
of whether the module uses a behavioral instance or a structural in-
stance) or with the input definition.7

Failure to declare an input port as a wire will cause it to be treated as a single-bit
wire.

3.10.2 output ports
An output port is one through which information goes out of the module in question
to the outside world. When the module in question uses a behavioral instance
to produce the output port, the output port must be declared as a reg of some
size. When the module in question uses a structural instance, the output
port should be declared as a wire of some size. In other words, whether to declare an
output port to be a wire or reg depends on whether it is generated by structural or
behavioral code within the module in question.

3.10.3 inout ports
An inout port is one that is used to send information both directions. The advantage
of an inout port is that the same port can do two separate things (at different times).
The Verilog code for using an inout port is more complex than for simple input
and output ports. An inout port corresponds to a hardware device known as a tri-
state buffer. The details of inout ports and tristate buffers are discussed in appendix
E.

3.10.4 Historical analogy: pins versus ports
Consider the analogy that "ports are like the doors of a building." For buildings like a
store in a shopping center, some doors are labeled "IN," meaning that customers who
wish to enter the store in question should go through that door. Those who are finished
shopping leave through a different door labeled "OUT." It would be possible to look at
the world from the viewpoint of the parking lot, but it is more convenient to look at
things relative to the store in question (since there may be many stores in the shopping
center to choose from).

There is another analogy for ports: ports are like the pins on an integrated circuit.
Some pins are inputs and some pins are outputs. This is a very good analogy, but it is a
little dangerous because when a large design is fabricated by a modem silicon foundry,
most of the ports in the design do not correspond to a physical pin on the final inte-
grated circuit.

7 Some synthesis tools require that the input definition have the size.
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To understand this pin analogy, let's digress for a moment and look at the history of
hierarchical design and integrated circuit technology. Before the mid- 1960s, all digital
computers were built using discrete electronic devices (such as relays, vacuum tubes or
transistors). It takes several such devices, wired together by hand in a certain structure,
to make a gate, and of course, as we have seen in section 2.5, it takes many such gates
to make anything remotely useful. In the early 1960's, photographic technologies be-
came practical to mass-produce entire circuits composed of several devices on a wafer
of semiconductor material (typically silicon). The wafer is sliced into "chips," which
are mounted in epoxy (or similar material) with metal pins connecting the circuitry on
the chip to the outside. There are several standard sizes for the number and placement
of pins. For example, one of the oldest and smallest configurations is the 16-Pin Dual
Inline Package (DIP). It is a rectangle with seven data pins on each side, and no pins on
the top or bottom. (Two pins are reserved for power and ground.) A notch or dot at the
top of the chip indicates where pin one is.

Designers in the 1960s and 1970s were limited by the number of devices that fit onto
the chip and also by the number of pins allowed in these standard sizes. Realizing the
power of hierarchical design, these designers built chips that contain standard building
blocks that fit within the number of pins available. An example is a four-bit counter in
one chip, TTL part number 74xx 163, which is still widely used. Whenever designers
needed a four-bit counter, they could simply specify a 74xx 163, without worrying about
its internal details. This, of course, is hierarchical design and provides the same mental
simplification as instantiating a module. Physically, the pins of the 74xx 163 chip would
be soldered into the final circuit.

The relationship between these early integrated circuits and hierarchical design is not
perfect, hence the danger of saying ports are like pins. If a design needs one 13-bit
counter, a designer in the 1970s would have to specify that four 74xx163s be soldered
into the final circuit to act as a single counter. There is an interconnection between
these four chips so that they collectively count properly. From a hierarchical stand-
point, we want to see only one black box, with a 13-bit bus, but this counter is fabri-
cated as four 74xx1 63s wired together. Some of the physical pins (connected to another
one of the 74xx163s) have nothing to do with the ports of a 13-bit counter.

With modem silicon fabrication technologies, the limitations on the number of devices
on a chip have been eased, but the limitations on physical pins have become even more
severe. Although chips can contain millions of gates, the number of pins allowed is
seldom more than a few hundred. Hierarchical design should be driven by the problem
being solved (which is the fundamental principle of all top-down design) and not by
the limitations (such as pins) of the technology used. Every physical pin on a chip is
(part of) a Verilog port, but not every Verilog port necessarily gets fabricated as a physical
pin(s). Even so, the analogy is a good one: ports are like pins.
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3.10.5 Example of a module defined with a behavioral instance
Section 2.5 defines an adder several ways. The simplest way to explain what an adder
does is to describe it behaviorally. Since an adder is combinational logic, we can use
the @ time control technique discussed in section 3.7.2.1 to model its behavior. How-
ever, since an adder is used in a larger structure, we should make the always block
that models the adder's behavior part of a module definition. Those ports (a and b) that
are physical inputs to the fabricated adder will be input ports to this module, and are
exactly the variables listed in the sensitivity list. The port that is a physical output
(sum) is, of course, defined to be an output port. Since this module computes sum
with behavioral code, sum is declared to be a reg. (There are no "registers" in combi-
national logic, but a Verilog reg is used in a behavioral model of combinational logic.
A reg is not a "register" as long as the sensitivity list has all the inputs listed.) As in the
example of section 2.5, the widths of a and b are two bits each, and the width of sum
is three bits:
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To exhaustively test this small adder, test code similar to section 3.7.2.1 enumerates all
possible combinations of a and b:

SThe width will not be shown on later examples in this chapter, although describing the width on input and
output definitions would be legal in simulation. The width might be required to overcome the limitations
of some commercial simulation tools.
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module adder(sum,a,b);

input [1:0] a,b;

output [2:0] sum;
wire [1:0] ab;
reg [2:0] sum;

always @(a or b)

sum = a + b;
endmodule
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The important thing in this top-level test module is that adder (the name of the mod-ule definition) is instantiated in top with the name adderl. In the top-level module,
a and b are regs because, within this module (top), a and b are supplied by behav-ioral code. On the other hand, sum is supplied by adderl, and so top declares sumto be a wire. The syntax for instantiating a user defined module is similar to instanti-ating a built-in gate. In this example, the local sum of top corresponds to the output
port (coincidentally named sum) of an instance of module adder. If the names (suchas sum) in module adder were changed to other names (such as total), the modulewould work the same:
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module top;
integer ia,ib;
reg [1:0] a,b;
wire [2:0] sum;

adder adderl(sun,a,b);

initial
begin

for (ia=O; ia<=3; ia = ia+1)
begin

a = ia;
for (ib=O; ib<=3; ib = ib + 1)
begin
b = ib;
#1 $display(a=%d b=%d sum=%d,a,b,sum);

end
end

end
endmodule

module adder(total,alpha,beta);
input alphabeta;
output total;
wire [1:0] alphabeta;
reg [2:0] total;

always (alpha or beta)
total = alpha + beta;

endmodule

pump
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It is the position within the parentheses, and not the names, that matter9 when the
module is instantiated in the test code.

3.10.6 Example of a module defined with a structural instance
Of course, in hierarchical design, we need a structural definition of the module. As
described in section 2.5, the module adder can be defined in terms of instantiation of
an instance of a half_adder (which we will call hal) and an instance of a
full adder (which we will call fal):
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Since the adder is defined with two structural instances (named hal and
fal), all of the ports, including the output port, sum, are wires. The local wire c
sends the carry from the half-adder to the full-adder. Of course, we need identical test
code as in the last example, and we also need module definitions for full_adder
andhalfadder.

3.10.7 More examples of behavioral and structural instances
Even though half_adder and fulladder are instantiated structurally in section
3.10.6, they can be defined either behaviorally or structurally. For example, a behav-
ioral definition of these modules is:

9 Verilog provides an alternative syntax, described in chapter 11, that allows the name, rather than the posi-
tion, to determine how the module is instantiated.
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a,b, sum) ;

module adder(sum,a,b);

input a,b;

output sum;

wire [1:0] a,b;
wire [2:0] sum;

wire c;

halfadder hal(c,sum[0],a[0],b[0f);

fulladder fal(sum[2],sum[1l,a[l],b[1],c);
endmodule

;
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Once again, notice that the outputs are regs. Concatenation is used on the left of the =
to make the definition of the module simple. { cout, s} is a two-bit reg capable of
dealing with the largest possible number (2'bll) produced by a+b+cin.

An alternative would be to define the half_adder and full-adder modules with
structural instances, which means all outputs are wires:
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module half_adder(c,s,a,b);
input a,b;
wire a,b;
output s;
reg cs;

always (a or b)
{c,s) = a+b;

endmodule

module full_adder(cout,sa,b,cin);
input a,b,cin;
wire a,b,cin;
output couts;
reg cout,s;

always (a or b or cin)
{cout,s} = a+b+cin;

endmodule

module halfadder(cs,a,b);
input a,b;
wire a,b;
output Cs;
wire c,s;

xor xl(s,a,b);
and al(c,a,b);

endmodule

module full_adder(cout,s,a,b,cin);
input a,b,cin;
wire a,b,cin;
output couts;
wire cout,s;
wire coutl,cout2,stemp;

half-adder ha2(coutl,stemp,a,b);
half-adder ha3(cout2,s,cin,stemp);
or ol(cout,coutl,cout2);

endmodule
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There are two instances of halfadder (ha2 and ha3). The only difference be-
tween these two instances is how they are connected within full_adder. There are
three local wires (coutl, cout2 and stemp) that allow internal interconnection
within the module.

At this point, we have reduced the problem down to Verilog primitive gates (and,
or, xor) whose behavior is built into Verilog.

3.10.8 Hierarchical names
cin); Although ports are intended to be the way in which modules communicate with each

other in a properly functioning system, Verilog provides a way for one module to ac-
cess the internal parts of another module. Conventional high-level languages, like C
and Pascal, have scope rules that absolutely prohibit certain kinds of access to local
information. Verilog is completely different in this regard. The philosophy of Verilog
for accessing variables is very similar the philosophy of the NT or UNIX operating
systems for accessing files: if you know the path to a file (within subdirectories), you
can access the file. Analogously in Verilog: if you know the path to a variable (within

is used on the left of the = modules), you can access the variable.
a two-bit reg capable of
by a+b+cin. For example, using the definition of adder given in section 3.10.6, and the instance

adderl shown in the test code of section 3.10.5, adderl has a local wire c that is
1_adder modules with not accessible to the outside world. The following statement in the test code would

wires: allow the designer to observe this wire, even though there is no port that outputs C:

$display(adderl.c);

A name, such as adderl c is known as a hierarchical name, or path.

The following statement allows the designer to observe cout2 from the test code:

I_ $display(adderl.fal.cout2);

which happens to be the same as:
in);

$display(adderl.fal.ha3.c);

The parts of a hierarchical name are separated by periods. Every part of a hierarchical
name, except the last, is the name of an instance of a module. The names of the corre-
sponding module definitions (adder, full_adder and half_adder in the above

, b ); example) never appear in a hierarchical name.
temp);
t2);
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3.10.9 Data structures
The term "structure" has three distinct meanings in computer technology. Elsewhere in
this book, "structure" takes on its hardware meaning: the interconnection of modules
using wires. But you have probably heard of the other two uses of this word: "struc-
tured programming," and "data structures." The concept of "structured programming"
is a purely behavioral software concept which is closely related to what we call goto-
less programming (see section 2.1.4). "Data structures" are software objects that allow
programmers to solve complex problems in a more natural way.

The period notation used in Verilog for hierarchical names is reminiscent of the nota-
tion used in conventional high-level languages for accessing components of a "data
structure" (record in Pascal, struct in C, and class in C++). In fact, you can
create such software "data structures" in Verilog by defining a portless module that has
only data, but that is intended to be instantiated. Such a portless but instantiated mod-
ule is worthless for hardware description, but is identical to a conventional software
"data structure." Such a module has no behavioral instances or structural instances.
For example, a data structure could be defined to contain payroll information about an
employee:

Suppose we have two employees, j oe and j ane. Each employee has a unique in-
stance of this module:

The empty parentheses are a syntactic requirement of Verilog. In this example, the
fields of j ane contain the largest possible values.

Data structur
data. For exa
sponding tot,
since there ar
from the outs

module pa
reg [7:
reg [5:
reg [3:

task di
integ
begin

if

p
els

p
$di

end
endtask

endmodule

module to
payroll
payroll
initial

begin
joe
joe
joe
joe
j an
j ano
j an
jani

end
endmodule

This is very cli
like C++, exc
C++.
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module payroll;
reg [7:0] id;
reg [5:0] hours;
reg [3:0] rate;

endmodule

payroll joe();
payroll jane();

initial
begin

joe.id=254;
joe.hours=40;
joe.rate=14;
jane.id=255;
jane.hours=63;
jane.rate=15;

end
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Data structures usually have a limited set of operations that manipulate the fields of the
data. For example, the hours and rate fields can be combined to display the corre-
sponding total pay. This operation is defined as a local task of the module. However,
since there are no behavioral instances in this module, this task sits idle until it is called
from the outside (using a hierarchical name):

,hnology. Elsewhere in
onnection of modules

:s of this word: "struc-
actured programming"
I to what we call goto-
ware objects that allow

,miniscent of the nota-
:omponents of a "data
C++). In fact, you can
ortless module that has

but instantiated mod-
conventional software
Dr structural instances.
11 information about an

loyee has a unique in-

This is very close to the software concept of object-oriented programming in languages
like C++, except the current version of Verilog lacks the inheritance feature found in
C++.
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module payroll;

reg [7:0] id;
reg [5:0] hours;
reg [3:0] rate;

task display-pay;

integer pay; //local
begin

if (hours>40)

pay = 40*rate + (hours-40)*rate*3/2;
else

pay = hours*rate;

$display("employee %d earns %d",id,pay);
end

endtask

endmodule

module top;

payroll joe();

payroll jane();

initial

begin

joe.id=254;

joe.hours=40;

joe.rate=14;

joe.display-pay;

jane.id=255;

jane.hours=63;

jane.rate=15;

jane.display-pay;

end

endmodule

. In this example, the
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Data structures are a powerful use of hierarchical names, but they are somewhat afield
from the central focus of this book: hardware structures. Application of hierarchical
names are useful in test code, and so it is important to understand them. Also, the above
example helps illustrate what instantiation really means in Verilog.

Verilog requ
reg declara
wide, the pa
put port, dot

3.10.10 Parameters
Verilog modules allow the definition of what are known as parameters. These are con-
stants that can be different for each instance. For example, suppose you would like to
define a module behaviorally that models an enabled register of arbitrary width:

Since there i
theses:

Sometimes,
ample, a con
same:

By convention, we use capital letters for parameters, but this is not a requirement. Note
that parameters do not have a backquote preceding them.

If you instantiate this module without specifying a constant, the default given in the
parameter statement (in this example, 1) will be used as the WIDTH, and so the
instance R1 will be one bit wide:

Here is an ex

To specify a non-default constant, the syntax is a # followed by a list of constants in
parentheses. Since there is only one parameter in this example, there can be only one
constant in the parentheses. For example, to instantiate a 1 2-bit register for R 2:

3.11 Cc
Modules are 
are either top.
Instantiated n
inout. Con!
module is eit]
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module enabled register(dout, din, ld, sysclk);
parameter WIDTH = 1;
input din,ld,sysclk;
output dout;
wire [WIDTH-1:0] din;
reg [WIDTH-1:0] dout;
wire ld,sysclk;

always @(posedge sysclk)
if (d)

dout = din;
endmodule

wire ldRl,sysclk;
wire Rldout,Rldin;
enabled-register Rl(Rldout,Rldin,ldRl,sysclk);

wire ldR2,sysclk;
wire [11:0] R12dout,R12din;
enabledregister #(12) R1 2 (Rl2dout,R12din,ldRI2,sysclk);
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I sysclk);

not a requirement. Note
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the WIDTH, and so the

ysclk);

Verilog requires that the width of a wire that attaches to an output port match the
reg declaration within the module. In this example, R12dout is a wire twelve bits
wide, the parameter WIDTH in the instance Rl 2 is twelve, and the corresponding out-
putport,dout,isdeclaredasreg[WIDTH-1:0],whichisthesameasreg [11:0].

Since there is only one constant in the parentheses above, it is legal to omit the paren-
theses:

enabled-register #12 R12(Rl2dout,R12din,ldRl2,sysclk); I

Sometimes, you need more than one constant in the definition of a module. For ex-
ample, a combinational multiplier has two input buses, whose widths need not be the
same:

module multiplier(prod,a,b);

parameter WIDTHA=l,WIDTHB=l;

output prod;

input a,b;

reg [WIDTHA+WIDTHB-l:0] prod;
wire [WIDTHA-l:0] a;

wire [WIDTHB-l:0] b;

always @(a or b)

prod = a*b;

endmodule

Here is an example of instantiating this:

wire [5:0] hours;

wire [3:0] rate;

wire [9:0] pay;

multiplier #(6,4) ml(pay,hours,rate);

by a list of constants in
, there can be only one
.t register for R12:

R12,sysclk);

3.11 Conclusion
Modules are the basic feature of the Verilog hardware description language. Modules
are either top-level or instantiated. Top-level modules are typically used for test code.
Instantiated modules have ports, which can be defined to be either input, output or
inout. Constants in modules may be defined with the parameter statement. A
module is either defined with a behavioral instance (always or initial
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block(s) or with a structural instance (built-in gates or instantiation of otherdesigner-provided modules). Behavioral and structural instances may be mixed in thesame module.
SMrIH, DOUG]
and Simulatij
son, AL, I199

STERNHEim, El
Automata Pui

Variables produced by behavioral code, including outputs from the module, are de-clared to be regs. Behavioral modules have the usual high-level statements, such asif and while, as well as time control (#, @ and wait) that indicate when the processcan be suspended and resumed. The $ time variable simulates the passage of time inthe fabricated hardware. Verilog makes a distinction between algorithmic sequenceand the passage of $ t ime. The most important forms of time control are # followed bya constant, which is used for generating the clock and test vectors; @ (posedgesysclk), which is used to model controllers and registers; and @ followed by asensitivity list, which is used for combinational logic. Verilog provides the non-block-ing assignment statement, which is ideal for translating ASM charts that use RTN intobehavioral Verilog. Verilog also provides tasks and functions, which like similar fea-tures in conventional high-level languages, simplify coding.

ThOMAS, DON
guage, Third
internally.

3.13 Exi
3-1. Design b,
described in e

de s i d

Structural modules have a simple syntax. They may instantiate other designer-pro-vided modules to achieve hierarchical design. They may also instantiate built-in gates.The syntax for both kinds of instantiation is identical. All variables in a structural mod-ule, including outputs, are wires.

3-2. Design a s
instances of ar

Hierarchical names allow access to tasks and variables from other modules. Use ofhierarchical names is usually limited to test code.

The next chapter uses the features of Verilog described in this chapter to express thethree stages (pure behavioral, mixed and pure structural) of the design process for thechildish division machine designed manually in chapter 2. The advantage of usingVerilog at each of these stages is that the designer can simulate each stage to be sure itis correct before going on to the next stage. Also, the final Verilog code can be synthe-sized into a working piece of hardware, without the designer having to toil manually toproduce a flattened circuit diagram and netlist.

3-3. Modify th(
instantiation of
For example, th
drawn in sectioi

3.12 Further reading

LEE, JAMES M., Verilog Quickstart, Kluwer, Norwell, MA, 1997. Gives several ex-amples of implicit style.

PALNITKAR, S., Verilog HDL: A Guide to Digital Design and Synthesis, Prentice HallPTR, Upper Saddle River, NJ, 1996. An excellent reference for all aspects of Verilog.
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SMITH, DOUGLAS J., HDL Chip Design: A Practical Guide for Designing, Synthesizing,
and Simulating ASICs and FPGAs Using VHDL or Verilog, Doone Publications, Madi-
son, AL, 1997. A Rosetta stone between Verilog and VHDL.

STERNHEIM, ELIEZER, RAJVIR SINGH and YATIN TRIVEDI, Digital Design with Verilog HDL,
Automata Publishing, San Jose, CA, 1990. Has several case studies of using Verilog.

THoMAs, DONALD E. and PHILIP R. MooRBY, The Verilog Hardware Description Lan-
guage, Third edition, Kluwer, Norwell, MA., 1996. Explains how a simulator works
internally.

3.13 Exercises
3-1. Design behavioral Verilog for a two-input 3-bit wide mux using the technique
described in section 3.7.2.1. The port list for this module should be:

I module mux2(iO, il, sel, out);

3-2. Design a structural Verilog module (mux2) equivalent to problem 3-1 using only
instances of and, or, not and buf.

3-3. Modify the solution to problem 3-1 to use a parameter named SIZE that allows
instantiationofanarbitrary width for i0, il and out as explainedin section 3.10.10.
For example, the following instance of this device would be useful in the architecture
drawn in section 2.3.1:

wire muxctri;
wire [11:0] x,y,muxbus;
mux2 #12 mx(x,y,muxctrl,muxbus);

L, 1997. Gives several ex-

7d Synthesis, Prentice Hall
e for all aspects of Verilog.

3-4. Given the instance (mx) of the module (mux2) shown in problem 3-3, what hierar-
chical names are equivalent to x, y, muxctrl and muxbus?

3-5. Design behavioral Verilog for combinational incrementor and decrementor mod-
ules using the technique described in section 3.7.2.1. Use a parameter named SIZE
that allows instantiation of an arbitrary width for the ports as explained in section 3.10. 10.
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3-6. Design behavioral Verilog for an up/down counter (section D.8) using the tech-
nique described in section 3.7.2.2. The port list for this module should be:

to become:

@ (pose(
a =_ I module updown-register(din,dout,ld,up,count,clk); I

3-7. Modify the solutions to problem 3-6 to use a parameter named SIZE that allows
instantiation of an arbitrary width for the ports as explained in section 3.10.10.

3-8. Design behavioral Verilog for a simple D-type register (section D.5) using the
technique described in section 3.7.2.2. Use a parameter named SIZE that allows
instantiation of an arbitrary width for the ports as explained in section 3.10.10. The port
list for this module should be:

I module simpled register(din,dout,clk);
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file for the modif
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3-9. Design a structural Verilog module (updown-register) equivalent to problem
3-7 using only instances of the modules defined in problems 3-3, 3-5 and 3-8.

3-10. For each of the ASM charts given in problem 2-10, translate to implicit style
Verilog using non-blocking assignment for - and @ (posedge sysclk) #1 for
each rectangle, as explained in section 3.8.2.3.1. As in that example, there should be
one always that models the hardware, one always for the $display and an
always and initial for sysclk. Compare the result of simulation with the manually
produced timing diagram of problem 2-10.

3-11. Without using a Verilog simulator, give a timing diagram for the machine de-
scribed by the ASM chart of section 3.8.2.3.3. Show the values of a and b in the first
twelve clock cycles, and label each clock cycle to indicate which state the machine is
in. Next, run the original implicit style Verilog code equivalent to the ASM and make
a printout of the log file. On this printout, write the name of the state that the machine
is in during each clock cycle. The manually created timing diagram should agree with
the Verilog .log file. Finally, modify the following:
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@(posedge sysclk) #1; // state FIRST
a <= (posedge sysclk) 1;
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a = 1;
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Run the modified Verilog code and make a printout of its .log file. On this printout,
circle the differences, if any, that exist between the correct timing diagram and the log
file for the modified Verilog. In no more than three sentences, explain why there are or
are not any differences between = and <=.

3-12. Without using a Verilog simulator, give a timing diagram for the machine de-
scribed by the ASM of section 3.8.2.3.4. Show the values of a and b in the first twelve
clock cycles, and label each clock cycle to indicate which state the machine is in. Next,
run the original implicit style Verilog code equivalent to the ASM and make a printout
of the .log file. On this printout write the name of the state that the machine is in during
each clock cycle. The manually created timing diagram should agree with the Verilog
.log file. Finally, modify the code to change the if to a while. Run the modified
Verilog code and make a printout of its .log file. On this printout, circle the differences,
if any, that exist between the correct timing diagram and the log file for the modified
Verilog. In no more than three sentences, explain why there are or are not any differ-
ences between i f and whi le.

3-13. Without using a Verilog simulator, give a timing diagram for the machine de-
scribed by the ASM of section 3.8.2.3.5. Show the values of a and b in the first twelve
clock cycles, and label each clock cycle to indicate which state the machine is in. Next,
run the original implicit style Verilog code equivalent to the ASM and make a printout
of the .log file. On this printout write the name of the state that the machine is in during
each clock cycle. The manually created timing diagram should agree with the Verilog
.log file. Finally, modify the code to eliminate all #s. Run the modified Verilog code
and make a printout of its .log file. On this printout, circle the differences, if any, that
exist between the correct timing diagram and the .log file for the modified Verilog. In
no more than three sentences, explain why there are or are not any differences between
using and omitting #s.
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4. THREE STAGES FOR
VERILOG DESIGN

The design of the childish division machine described in chapter 2 can be expressed in
Verilog using the language features discussed in chapter 3. This chapter uses variations
on the childish division machine as a simple but practical example of how to design
hardware with Verilog.

As described in sections 2.1.5.1 through 2.1.5.3, the three-stages of the top-down de-
sign process are: pure behavioral, mixed behavior/structure and pure structural. Be-
cause Verilog allows both behavioral and structural constructs, one can transform a
design through these three stages by minor editing of the Verilog source code. Section
4.1 gives several examples of how the pure behavioral ASMs of chapter 2 can be writ-
ten in pure behavioral Verilog using the implicit style of section 3.8.2.3. Section 4.2
uses one of these behavioral examples to illustrate translation into the mixed stage.
Section 4.3 translates the mixed example from section 4.2 into the pure structural stage
(the "explicit style" often used by Verilog designers). Section 4.4 shows that, having
completed the three phases of our design process, Verilog allows additional structure
(in this case, dealing with the controller) to be instantiated in place of behavior using
the hierarchical design process described in section 2.5.

Chapter 7 and appendix F describe an alternate way (which can be automated) for
translating pure behavioral (implicit style) Verilog directly to a form that can be syn-
thesized into physical hardware. The manual technique in this chapter is more intricate
and involved than the one in chapter 7, but an understanding of the three-stage tech-
nique in this chapter will give the reader a better appreciation for the behavioral and
structural aspects of Verilog simulation.

4.1.1.1 Ov,
First, we have
the number of I

'define N
'define I
'define I
'define C
'define C

These definitio
of a module the
output as a pori

module cl

para

outp

reg

init

cl

alwa

#5

alwa

if

endmodule

The purpose of
amount of $tii

ment, the simul

4.1 Pure behavioral examples
This section gives examples of modeling various ASM charts for the childish division
algorithm with pure behavioral Verilog.

4.1.1 Four-state division machine
Let's consider translating the second ASM chart of section 2.2.3 (the one that has four-
states, with state COMPUTE1 at the top of the loop) into Verilog, using the
enternew-state approach described in section 3.9.1.2.

Third, the modi
needs to be defi

module sli
input pi
output 
wire ..
reg...

endmodule
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4.1.1.1 Overview of the source code
First, we have to define the arbitrary bit patterns that represent the states and indicate
the number of bits required:
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These definitions occur outside any modules. Next, we need to include the definition
Ifa module that generates the clock in a fashion similar to 3.7.1.3, except the clock is
<utput as a port of the module:

module cl(clk);

parameter TIMELIMIT = 110000;
output clk;

reg clk;

initial
clk = 0;

always

#50 clk = -clk;

h can be automated) for
) a form that can be syn-
; chapter is more intricate
g of the three-stage tech-
)n for the behavioral and

always (posedge clk)

if ($time > TIME-LIMIT) #70 $stop;
endmodule

Ihe purpose of the parameter TIMELIMIT is to stop the simulation after a certain
mount of $time has elapsed. Without scheduling such a $stop (or $ finish) state-

nent, the simulation could continue forever.

hird, the module that implements the behavioral simulation of the actual hardware
eds to be defined with an appropriate portlist:

s for the childish division module slowdiv system(pb,ready,x,y,r2,sysclk);
input pb,x,y,sysclk;

output ready,r2;

wire ...
reg...

.. .2.3 (the one that has four-
into Verilog, using the

endmodule

Three Stages for Verilog Design

'define NUMSTATEBITS 2
'define IDLE 2'bOO

'define INIT 2'bOl

'define COMPUTEl 2'b10
'define COMPUTE2 2'bll
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This module corresponds to the first block diagram in section 2.5.2. At this stage, we
are leaving the details of this module ambiguous. The discussion of the details inside
this module will continue in section 4.1.1.2.

Finally, the last module that needs to be defined is the top-level test code. Using a
technique involving #, @ and wait that is similar to the one described in section 3.7.3,
the test code checks if the simulated hardware can divide values of x that vary from 0
to 14 properly when y is held fixed at 7:

module top;
reg pb;
reg [11:0] x,y;

wire [11:0] quotient;
wire ready;
integer s;

wire sysclk;

cl #20000 clock(sysclk);
slowdiv system slowdiv_machine(pb,ready,xy,

quotient,sysclk);
initial

begin

pb= 0;
x = O;
y = 7;

#250;

@(posedge sysclk);
for (x=0; x<=14; x = x+l)
begin

@(posedge sysclk);
pb = 1;
@(posedge sysclk);
pb = 0;

@(posedge sysclk);
wait(ready);

@(posedge sysclk);
if (x/y === quotient)
$display("ok');

else

$display("error x=%d y=%d x/y=%d quotient=%d",
x,y,x/y,quotient);

end

$stop;

end
endmodule
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2.5.2. At this stage, we
;ion of the details inside

Even for a small machine like this, an exhaustive test (such as was given in section
3.7.3) would be too time consuming to use as an illustration.

level test code. Using a
-scribed in section 3.7.3,
ies of x that vary from 0

In the above code, note that slow division system is instantiated with the in-
stance name slowdivision machine. The first port in the module, the input
pb, corresponds to a reg in the test code of the same name. The second port in the
module, the output ready, corresponds to a wire of the same name in the test code.
The third and fourth ports of the module, the inputs x and y, correspond to 12-bit regs
of the same names in the test code. The fifth port of the module, an output named r2,
corresponds to a 12-bit wire whose name is quotient in the test code. The final
port of the module, an input named sys cl k, corresponds to a wire of the same name
in the test code.

'X, y,
,clk);

quotient=%d",

The reason syscik is a wire is because it happens to be an output port of the in-
stance of the cl module named clock. This means clock, rather than the test code,
supplies sysclk. The test code therefore has a little bit of structure connecting clock
to slowdiv machine. The variables in the test code that are regs are so declared
because the test code must supply them to slowdivisionmachine using the
behavioral =. The remaining wires are so declared because the behavioral test code
does not supply them.

4.1.1.2 Details on slowdivision-system
Let's return to the definition of the slowdivisionsystem module. We need to
declare the types of the inputs and outputs. Also, we need to declare local variables,
such as those that model the physical registers of the hardware (rl and r2), and also
the presentstate:

These declarations were constrained by the portlist, how the module was instantiated
in the test code and by the description of the problem given in chapter 2.

Three Stages for Verilog Design

module slowdiv system(pb,ready,x,y,r2,sysclk);
input pb,x,y,sysclk;

output ready,r2;

wire pb,sysclk;

wire [11:0] x,y;
reg ready;

reg [11:0] rl,r2;
reg ['NUM_ STATE_BITS-l:0] present_state;

endmodule
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As described in section 3.9.1.2, we should define a task that simplifies the code for the
sequence of statements that must occur when the machine enters each state: always @(

$disr

The net effect 
the module giv

The definition of this task will be nearly identical for every pure behavioral ASM. The
only distinction from one problem to another is the list of external command outputs
(see section 2.1.3.2.1) specific to the particular machine. In this case, the only external
command output is ready. It has a default value of 0; thus this task must initialize it at
the beginning of every clock cycle.

Having defined the above task within the slowdivisionsystem module, it is
possible to translate the ASM from section 2.2.3 into Verilog:

The regs ri ai
by the $displ
machine return
is the same as,
code uses to deThe only other thing that would be desirable to put in this module is a debugging

display, as described in section 3.7.2.4:
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task enternewstate;
input ['NUM STATEBITS-1:0] thisstate;
begin

present_state = this-state;
#1 ready=O;

end

endtask

always

begin

@(posedge sysclk) enternewstate('IDLE);
rl <= (posedge sysclk) x;
ready = 1;
if (pb)

begin

@(posedge sysclk) enter_newstate('INIT);
r2 <= (posedge sysclk) 0;
while (rl >= y)

begin

@(posedge sysclk) enter newstate('COMPUTEl);
rl <= (posedge sysclk) rl - y;
@(posedge sysclk) enter newstate('COMPUTE2);
r2 <= @(posedge sysclk) r2 + 1;

end

end

end
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;implifies the code for the
iters each state:

The net effect of the other modules defined in section 4.1.1.1 and all the details inside
the module given above is to produce the following simulation output from Verilog:

ure behavioral ASM. The
ternal command outputs

lis case, the only external

is task must initialize it at

n-system module, it is

'NIT);

e('COMPUTEl);

.e('COMPUTE2);

The regs ri and r2 are not initialized at $time O, and so the value 12 'bx is printed
by the $disp lay simply as x (not to be confused with the variable x). Each time the
machine returns to state IDLE (ready= 1), the outputs of the machine from r2 (which
is the same as quotient) are highlighted above. These are the values that the test
code uses to determine that everything is "ok" each time.

Three Stagesfor Verilog Design

always @(posedge sysclk) #20
$display("%d rl=%d r2=%d pb=%b ready=%b",

$time, rl,r2, pb, ready);

70 rl= x r2= x pb=0 ready=l
170 rl= 0 r2= x pb=0 ready=l
270 rl= 0 r2= x pb=0 ready=l
370 rl= 0 r2= x pb=l ready=1
470 rl= 0 r2= x pb=l ready=l
570 rl= 0 r2= 0 pb=0 ready=1

ok

670 rl= 0 r2= 0 pb=0 ready=l
770 rl= 1 r2= 0 pb=l ready=l
870 rl= 1 r2= 0 pb=0 ready=0
970 rl= 1 r2= 0 pb=0 ready=l

ok

6670 rl= 12 r2= 1 pb=0 ready=l
6770 rl= 13 r2= 1 pb=1 ready=l
6870 rl= 13 r2= 1 pb=0 ready=0
6970 rl= 13 r2= 0 pb=0 ready=0
7070 rl= 6 r2= 0 pb=0 ready=0
7170 rl= 6 r2= 1 pb=0 ready=l

ok

7270 rl= 13 r2= 1 pb=0 ready=l
7370 rl= 14 r2= 1 pb=l ready=l
7470 rl= 14 r2= 1 pb=0 ready=0
7570 rl= 14 r2= 0 pb=0 ready=0
7670 rl= 7 r2= 0 pb=0 ready=0
7770 rl= 7 r2= 1 pb=0 ready=0
7870 rl= 0 r2= 1 pb=0 ready=0
7970 rl= 0 r2= 2 pb=0 ready=l

ok

module is a debugging
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nplifies the code for the
,rs each state:

The net effect of the other modules defined in section 4.1.1.1 and all the details inside
the module given above is to produce the following simulation output from Verilog:

*e behavioral ASM. The
rnal command outputs
case, the only external

task must initialize it at

_system module, it is

('COMPUTEl);

('COMPUTE2);

The regs rl and r2 are not initialized at $ time 0, and so the value 12 'bx is printed
by the $display simply as x (not to be confused with the variable x). Each time the
machine returns to state IDLE (ready= 1), the outputs of the machine from r2 (which
is the same as quotient) are highlighted above. These are the values that the test
code uses to determine that everything is "ok" each time.

Three Stages for Verilog Design

always @(posedge sysclk) #20
$display("%d rl=%d r2=%d pb=%b ready=%b",

$time, rl,r2, pb, ready);

70 rl= x r2= x pb=0 ready=l
170 rl= 0 r2= x pb=0 ready=l

270 rl= 0 r2= x pb=0 ready=l
370 rl= 0 r2= x pb=l ready=l

470 rl= 0 r2= x pb=0 ready=0
570 rl= 0 r2= 0 pb=0 ready=l

ok

670 rl= 0 r2= 0 pb=0 ready=l

770 rl= 1 r2= 0 pb=1 ready=l
870 rl= 1 r2= 0 pb=0 ready=0

970 rl= 1 r2= 0 pb=0 ready=l
ok

6670 rl= 12 r2= 1 pb=0 readyzi

6770 rl= 13 r2= 1 pb=0 ready=l

6870 rl= 13 r2= 1 pb=l ready=l

6970 rl= 13 r2= 0 pb=0 ready=O
7070 rl= 6 r2= 0 pb=0 ready=0

7170 rl= 6 r2= 1 pb=0 ready=0

ok

7270 rl= 13 r2= 1 pb=0 ready=l

7370 rl= 14 r2= 1 pb=l ready=l
7470 rl= 14 r2= 1 pb=0 ready=0
7570 rl= 14 r2= 0 pb=0 ready=0

7670 rl= 7 r2= 0 pb=0 ready=0
7770 rl= 7 r2= 1 pb=0 ready=0

7870 rl= 0 r2= 1 pb=0 ready=0
7970 rl= 0 r2= 2 pb=0 ready=l

ok

nodule is a debugging
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Continued.4.1.2 Verilog catches the error
The first ASM chart in section 2.2.3 (with state COMPUTE2 at the top of the loop) has

an error. An advantage of using Verilog to simulate such a machine while it is still in the

behavioral stage is that Verilog can usually catch such errors before they become costly.
In this case, the Verilog code would be identical to section 4.1.1.2, except the ASM
chart would be translated as:

always

begin

while (rl >= y)
begin

@(posedge sysclk) enternewstate('COMPUTE2);

r2 <= @(posedge sysclk) r2 + 1;

@(posedge sysclk) enter_new_state('COMPUTE1);
rl <= (posedge sysclk) rl - y;

end

end

end

The output from the Verilog simulator makes the problem obvious:

2670 rl= 5 r2= 0 pb=0 ready=l

2770 rl= 6 r2= 0 pb=l ready=l

2870 rl= 6 r2= 0 pb=0 ready=0

2970 rl= 6 r2= 0 pb=0 ready=l

ok
3070 rl= 6 r2= 0 pb=0 ready=l

3170 rl= 7 r2= 0 pb=l ready=l

3270 rl= 7 r2= 0 pb=0 ready=0

3370 rl= 7 r2= 0 pb=0 ready=0

3470 rl= 7 r2= 1 pb=0 ready=0

3570 rl= 0 r2= 1 pb=0 ready=0

3670 rl= 0 r2= 2 pb=0 ready=0

3770 rl=4089 r2= 2 pb=0 ready=l

error x= 7 y= 7 x/y= 1 quotient= 2

8670 rl= 13 r2= 2.pb= ready=1

8770 rl= 14 r2= 2 pb=1 ready=l

8870 rl= 14 r2= 2 pb=l ready=l

8970 rl= 14 r2= 0 pb=0 ready=O

9070 rl= 14 r2= 1 pb=0 ready=0

9170 rl= 7 r2= 1 pb=0 ready=0

Because of th
complete the t
thus the test o
quotient is

Rather than sl
designer can

4.1.3 ImE
Do not be del
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automated to(
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signer is resp
designing tes

When we beE
assumptions
things: there
this user nee
state IDLE (1
a single cloc]

The test cod
vided in the
chine stay in
ever, a probl
illustrated b

Consider the
identical to I

Verilog Digital Computer Design: Algorithms into Hardware140



Continued.
at the top of the loop) has
chine while it is still in the
efore they become costly.
4.1.1.2, except the ASM

ate('COMPUTE2);

1;
Ite('COPUTEl);
Y;

vious:

ady=1
ady=1
ady= O
ady=1

ady=1
ady=1
ady=O
ady=O
ady=O
ady=0
eady=O
!ady=l
.ent= 2

ady=1
!ady=l
!ady=O
~ady= O
~ady=O
~ady=O

9270 rl= 7 r2= 2 pb=0 ready=0

9370 rl= 0 r2= 2 pb=0 ready=0

9470 rl= 0 r2= 3 pb=0 ready=0
9570 r=4089 r2= 3 pb=0 ready=1

error x= 14 y= 7 x/y= 2 quotient= 3

Because of the error (which causes the loop to execute an extra time), the time to
complete the test is longer. The wait statement in the test code compensates for this;
thus the test code is checking r2 via quotient at the proper time, but when y>=7,
quotient is just plain wrong.

Rather than spending thousands of dollars actually fabricating a faulty computer, the
designer can observe the problem simply from the behavioral Verilog code.

4.1.3 Importance of test code
Do not be deluded that because Verilog can sometimes catch errors such as described
in section 4.1.2 that it will always catch such errors. Just because a designer uses an
automated tool like a Verilog is not the same as saying that the designer does not have
to think. In fact, using such tools requires a higher level of thought process. The de-
signer is responsible not just for trying to design a machine that works, but also for
designing test code that aggressively checks to see if the design fails.

When we began with this example in section 2.2.1, we stated in informal English some
assumptions about the environment in which this machine operates. We assumed two
things: there is a friendly user (who provides inputs in a specific sequence), and that
this user needs the output of the machine to remain constant when the machine is in
state IDLE (because the user is a person who cannot perceive events that happen within
a single clock cycle, which are typically less than a millionth of a second).

The test code given in section 4.1.1.1 satisfies the assumption that the inputs are pro-
vided in the order demanded in section 2.2.1 (in particular the test code lets the ma-
chine stay in state IDLE two clock cycles before the button is pressed). There is, how-
ever, a problem with the above test code with regard to the second assumption, as is
illustrated below.

Consider the ASM chart of section 2.2.4. The Verilog code to simulate this machine is
identical to the previous examples, except for the following:

Three Stages for Verilog Design

Mous:Mous:

ady=1
ady=1
ady=O
ady=1

ady=1
ady=1
!ady=O
!ady=O
!ady=O
�ady=O
�ady=O
!ady=l
.ent= 2

iady=1
�ady=l
!ady=O
�ady=O
�ady=O
�ady= 0
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always
begin

@ (pos
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be
w

en
end

1 See J. Cooley, It
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always
begin
@(posedge sysclk) enter-newstate('IDLE);
rl <= @(posedge sysclk) x;
r2 <= (posedge sysclk) 0;
ready = 1;

if (pb)
begin
while (rl >= y)

begin
@(posedge sysclk) enternew state('COMPUTEl);
rl <= (posedge sysclk) rl - y;

@(posedge sysclk) enter new state('COMPUTE2);
r2 <= (posedge sysclk) r2 + 1;

end
end

end

70 rl= x r2= x pb=0 ready=1
170 rl= 0 r2= 0 pb=0 ready=l
270 rl= 0 r2= 0 pb=0 ready=l
370 rl= 0 r2= 0 pb=l ready=l
470 rl= 0 r2= 0 pb=l ready=l
570 rl= 0 r2- 0 pb=0 ready=l

ok

6070 rl= 12 r2= 0 pb=0 ready=l
6170 rl= 13 r2= 0 pb=l ready=l
6270 rl= 13 r2= 0 pb=0 ready=0
6370 rl= 6 r2= 0 pb=0 ready=0
6470 rl= 6 r2= 1 pb=O ready=1

ok
6570 rl 13 r2= 0 pb=0 ready-l
6670 rl= 14 r2= 0 pb=l ready=l
6770 rl= 14 r2= 0 pb=0 ready=0
6870 rl= 7 r2= 0 pb=0 ready=0
6970 rl= 7 r2= 1 pb=0 ready=0
7070 rl= 0 r2= 1 pb=0 ready=0
7170 rl= 0 r2- 2 pb=0 ready=l

ok
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('COMPUTEl);

('COMPUTE2);

But as was discussed in section 2.2.4, it is unacceptable from a user interface stand-
point because it throws away the correct answer after only one clock cycle. For ex-
ample, at $ time 6470, the correct answer 1 is present in r2, and the test code notes
this. But at $ t ime 6570, the machine has thrown away the correct answer even though
ready still indicates that the correct answer should be displayed.

The proper approach is to take all details in the informal English specification and
make these details part of the test code. The test code should be a formal specification
of what the machine is supposed to do under all circumstances. This raises the interest-
ing, and somewhat unsolvable dilemma: how does the designer test the test code?'
Nevertheless, it is important to put reasonable effort into creating robust test code.

4.1.4 Additional pure behavioral examples

The first ASM chart of 2.2.5 can be translated into Verilog as:
t detects no errors:

ly=l
ly=l
ly=l
Iy=l

ly=l
ly=l

Iy=l

Iy=l
[y=o

ly=O
Lyn1

LIyr
Iy=l
Ly=0

Ly= 0
Ly= 0
Ly= 0
Ly=l

1 See J. Cooley, Integrated System Design, July 1995, pp. 56-60 for a description of a Verilog contest where
the test code provided to the contestants was erroneous. The "winning design" would not actually work
correctly because the test code could not detect a flaw in the design.
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always

begin

@(posedge sysclk) enter_new state('IDLE);

rl <= (posedge sysclk) x;

r2 <= (posedge sysclk) 0;

ready = 1;

if (pb)

begin

while (rl >= y)
begin
0(posedge sysclk) enternew-state('COMPUTE1);
rl <= (posedge sysclk) rl - y;

*(posedge sysclk) enter new state('COMPUTE2);
r2 <= (posedge sysclk) r2 + 1;
*(posedge sysclk) enternew state('COMPUTE3);
r3 <= (posedge sysclk) r2;

end

end

end
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where everything else is the same as earlier examples, except the states are represented
as:

30'
31'

32'
33'
34'
35'

ok
. . .

The second X
and the portlist now has r3 rather than r2 as the output:

Also, r3 must be mentioned in the debugging $display statement. As was described
in chapter 2, this machine fails for x<y (the quotient is unknown):

although it does work for larger values:

always
begin

@ (pos
rl <
r2 <
read
if (

be
i

e

en
end

where the stat
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'define NUMSTATEBITS 2
'define IDLE 2'bO0
'define COMPUTEl 2'bOl
'define COMPUTE2 2'blO
'define COMPUTE3 2'bll

module slowdivsystem(pb,ready,x,y,r3,sysclk);
input pb,x,y,sysclk;
output ready,r3;
wire pb;
wire [11:0] x,y;
reg ready;
reg [11:0] r,r2,r3;
reg ['NUM_STATEBITS-1:0] present-state;

70 rl= x r2= x r3=x pb=0 ready=l
170 rl= 0 r2= 0 r3=x pb=0 ready=l
270 rl= 0 r2= 0 r3=x pb=0 ready=l
370 rl= 0 r2= 0 r3=x pb=l ready=l
470 rl= 0 r2= 0 r3=x pb=0 ready=l
570 rl= 0 r2= 0 r3=x pb=0 ready=l

error x= 0 y= 7 x/y= 0 quotient=x
...
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he states are represented

Lk);

,ment. As was described
wn):

3070 rl= 6 r2= 0 r3= x pb=0 ready=l
3170 rl= 7 r2= 0 r3= x pb=l ready=l
3270 rl= 7 r2= 0 r3= x pb=0 ready=0
3370 rl= 0 r2= 0 r3= x pb=0 ready=0
3470 rl= 0 r2= 1 r3= x pb=0 ready=0
3570 rl= 0 r2= 1 r3= 1 pb=0 ready=1

ok

The second ASM chart of section 2.2.5 can be translated as:

where the states are represented as:

Three Stages for Verilog Design

always

begin

@(posedge sysclk) enternew state('IDLE);
rl <= @(posedge sysclk) x;
r2 <= @(posedge sysclk) 0;
ready = 1;

if (pb)

begin

if (rl >= y)
while (rl >= y)

begin
@(posedge sysclk) enternew state('COMPUTEl);
rl <= @(posedge sysclk) rl - y;
@(posedge sysclk) enter new state('COMPUTE2);
r2 <= @(posedge sysclk) r2 + 1;
@(posedge sysclk) enter_new state('COMPUTE3);
r3 <= @(posedge sysclk) r2;

end

else

begin

e (posedge sysclk) enternew state('ZEROR3);
r3 <= (posedge sysclk) 0;

end

end

end
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'define NUMSTATEBITS 3

'define IDLE 3'b000

'define COMPUTE1 3'bO01

'define COMPUTE2 3'bOlO

'define COMPUTE3 3'bOll

'define ZEROR3 3'blO0

which does work correctly for all values, including x<y:

70 rl= x r2= x r3= x pb=0 ready=l
170 rl= 0 r2= 0 r3= x pb=0 ready=l
270 rl= 0 r2= 0 r3= x pb=0 ready=l
370 rl= 0 r2= 0 r3= x pb=l ready=l
470 rl= 0 r2= 0 r3= x pb=0 ready=0
570 rl= 0 r2= 0 r3= 0 pb=0 ready=l

ok

The second ASM of section 2.2.6 can be translated as:

Continued

end
end

The above correct
state COMPUTE

3070
3170
3270
3370
3470

error x=

The corrected A'
in state COMPU

always
begin
@ (posed

rl <=
r2 <=
ready
if (pb

begi
if

w

els

end
end
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always

begin

@(posedge sysclk) enter-newstate('IDLE);

rl <= @(posedge sysclk) x;

r2 <= @(posedge sysclk) 0;

ready = 1;

if (pb)

begin

if (rl >= y)
while (rl >= y)

begin
@(posedge sysclk) enter-newstate('COMPUTE);

rl <= @(posedge sysclk) rl - y;

@(posedge sysclk) enternewstate('COMPUTE23)

r2 <= (posedge sysclk) r2 + 1;
r3 <= (posedge sysclk) r2;

end

else

begin
@(posedge sysclk) enternew-state('ZEROR3);
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:ly= 1

iy=1
ay= 1
:ly=1
Iy=0

aly=l

:e('COMPUTE);

:e('COMPUTE23);

'ZEROR3);

Continued

r3 <= @(posedge sysclk) 0;
end

end

end

The above correctly models the design error due to inappropriate use of parallelism in
state COMPUTE23 that causes r3 to be assigned a value too early:

3070 rl= 6 r2= 0 r3. 0 pb=0 ready=l
3170 rl= 7 r2= 0 r3= 0 pb=0 ready=l
3270 rl= 7 r2= 0 r3= 0 pb=l ready=l
3370 rl= 0 r2= 0 r3= 0 pb=0 ready=0
3470 rl= 0 r2= 1 r3= 0 pb=0 ready=0

error x= 7 y= 7 x/y= 1 quotient= 0

The corrected ASM chart of 2.2.6 that has all three computations happening in parallel
in state COMPUTE123 can be translated into Verilog as:
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always

begin

@(posedge sysclk) enternew-state('IDLE);
rl <= @(posedge sysclk) x;
r2 <= @(posedge sysclk) 0;
ready = 1;
if (pb)

begin

if (rl >= y)
while (rI >= y)

begin

@(posedge sysclk) enter new state('COMPUTE123);
rl <= (posedge sysclk) rl - y;
r2 <= (posedge sysclk) r2 + 1;
r3 <= (posedge sysclk) r2;

end

else

begin

@(posedge sysclk) enternewstate('ZEROR3);
r3 <= @(posedge sysclk) 0;

end

end

end
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'define NUMSTATEBITS 2
'define IDLE 2'bOO
'define COMPUTE123 2'bOl
'define ZEROR3 2'bll

The simulator shows that this version works correctly:

. .0.
3070 rl= 6 r2= 0 r3= 0 pb=O ready=l
3170 rl= 7 r2= 0 r3= 0 pb=1 ready=0
3270 rl= 7 r2= 0 r3= 0 pb=O ready=O
3370 rl= 0 r2= I r3= 0 pb=O ready=O
3470 r=4089 r2= 2 r3= 1 pb=O ready=1

ok

4.1.5 Pure behavioral stage of the two-state division machine
The best correct design proposed in chapter 2 for the division machine is described by
the ASM chart in section 2.2.7. It has the advantage that it takes only one clock cycle
each time it goes through the loop, and it only needs an ASM with two states. Here is
how this ASM chart can be translated into a pure behavioral module, similar to the
earlier examples:
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(E
rJ

r:

rE

ii

end

task 
inpi
beg:

pi

end
endta!

alway!

$di:

endmodu:'define NUM_STATEBITS 1
'define IDLE l'b0
'define COMPUTE l'bl

'include "clock.v"

module slowdiv system(pb,ready,x,y,r3,sysclk);
input pb,x,y,sysclk;

output ready,r3;
wire pb;

wire [11:0] x,y;

reg ready;

reg [11:0] rl,r2,r3;

reg ['NUMSTATEBITS-l:0] present state;

always

begin

For brevity, t
simulation th

2

2'
2

2
ok

3
3

3

3

3

where the states are defined as: Continued
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Continued

ay=l
Iy=l
Iy=O
Iy=O

Iy=1

ision machine
machine is described by
:es only one clock cycle
with two states. Here is
.module, similar to the

Fo
sin

_ I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

r brevity, the cl module has been placed in the "clock . v" file. Here is the Verilog
nulation that shows it working:
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@(posedge sysclk) enter newstate('IDLE);
rl <= @(posedge sysclk) x;
r2 <= @(posedge sysclk) 0;
ready = 1;

if (pb)

begin

while (rl >= y I pb)
begin

@(posedge sysclk) enternew state('COMPUTE);
rl <= @(posedge sysclk) rl - y;

r2 <= @(posedge sysclk) r2 + 1;
r3 <= @(posedge sysclk) r2;

end
end

end

task enternewstate;
input ['NUM_STATE_BITS-1:0] thisstate;
begin

present_state = this_state;
#1 ready=0;

end

endtask

always (posedge sysclk) #20
$display("%d rl=%d r2=%d r3=%d pb=%b ready=%b",

$time, rl,r2,r3, pb, ready);
endmodule

2670 rl= 5 r2= 0 r3= 0 pb=0 ready=1
2770 rl= 6 r2= 0 r3= 0 pb=0 ready=1
2870 rl= 6 r2= 0 r3= 0 pb=l ready=0
2970 rl=4095 r2= 1 r3= 0 pb=0 ready=l

ok

3070 rl= 6 r2= 0 r3= 0 pb=0 ready=l
3170 rl= 7 r2= 0 r3= 0 pb=l ready=l
3270 rl= 7 r2= 0 r3= 0 pb=0 ready=0
3370 rl= 0 r2= 1 r3= 0 pb=0 ready=0
3470 rl=4089 r2= 2 r3= 1 pb=0 ready=l
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Continued

ok

6570 rl= 13 r2= 0 r3= 1 pb=0 ready=1
6670 rl= 14 r2= 0 r3= 1 pb=1 ready=1
6770 rl= 14 r2= 0 r3= 1 pb=0 ready=0
6870 rl= 7 r2= 1 r3= 0 pb=0 ready=0
6970 rl= 0 r2= 2 r3= 1 pb=0 ready=0
7070 rl=4089 r2= 3 r3= 2 pb=0 ready=l

ok

4.2.1.1 en
This module h,
sized data outl
modeled by thi
current value
rising edge of

This two-state machine will be the basis for the examples that show how to translate
from pure behavioral Verilog into mixed Verilog (section 4.2) and into pure structural
Verilog (section 4.3). This example is also used to illustrate the hierarchical refinement
of the controller to become a netlist (section 4.4).

4.2 Mixed stage of the two-state division machine
As was explained in section 2.3.1, to translate an algorithm into hardware eventually
requires that the designer decide upon a particular architecture. The mixed stage is the
point in the design process when the designer decides how the registers and combina-
tional logic devices of the architecture are to be interconnected. The only constraint is
that this interconnection be able to implement all of the RTN commands used in the
pure behavioral stage at the times required.

4.2.1 Building block devices
Verilog only provides built-in primitives for elementary gates, such as and. In order to
model the mixed stage of the design, we need to define modules that simulate the bus
width devices that are instantiated in the architecture. The devices outlined here are a
few of the common ones from appendixes C and D.

The details of just exactly how these modules work internally need not concern us now.
We just need to know the (arbitrary) order and definition of ports in the portlist for
devices we want to use in the architecture. We will assume these devices are fully
defined in a file, "archdev . v," with behavioral code.

All of these modules have a parameter, SIZE, that indicates the bus width of the data
inputs and outputs of the module. (The widths of command and status ports, if any, on
the device are determined by the nature of the device.)

module er

pare

inp-

outr

reg

wirE

wirE
wirE

endmodule

The ellipsis inc
and 3.10.10) g
ter) and 74xx3
signal. This me
value at the ne
used in the sin
stantiating the

4.2.1.2 cc
This module I
section D.7 foi
output, tc, th,
count and c
next rising edE

module c(
pare
inpi
out]
reg
wir(
reg
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(=1

1=1

(=0

1=0

(=o

.er(di,do,enable,clk);
1;

cik;

o;
di;

. . .endmodule

er(di,do,tc,load,count,clr,clk);

1;
unt,clr,clk;

.0;

di;
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Continued

wire load,count,clr;
wire clk;

...endmodule

This module was inspired by the 74xx 163 (4-bit up counter), which has active low ci r
and load signals (see the discussion in section 4.2.1.1.) Also, this chip has two inputs

that must both simultaneously be one to cause counting. The reason for having two

inputs, rather than just the one count shown above, is to simplify the connections

required to cascade the four-bit chip to form larger counters. Since at this stage of the

design we are not at all concerned with such physical details, the above module was

simplified to have a single count signal.

4.2.1.3 alui81portlist
This module models a combinational ALU inspired by the 74xx181. (See section C.6

for a description of the hardware being modeled by this module.) It has two data

inputs, a and b, and a similar sized data output bus, f. It also has status outputs, cout

(I when addition and similar operations produce a carry) and zero (1 when f is zero).

It is controlled by the commands: s, m and cin:

In chapter 2, the ALU was considered to have a six-bit command input, aluctrl.

When this module is instantiated, this input should be subdivided in the following

fashion:

4.2.1.4 cor

This module mo
scription of the b
b, and three static
the outputs will 1

module com

param

outpu

input
wire

reg a

endmodule

4.2.1.5 mm

This module mi
description of th
and ii, and a si
the output is i 0

module mu)

parar
input

outpi

wire

wire

reg

...endmodule
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module alul8l(a,b,s,m,cin,cout,f,zero);

parameter SIZE = 1;

input a,b,smcin;

output cout,f,zero;

wire [SIZE-l:0] a,b;

wire mcin;

wire [3:0] s;

reg [SIZE-l:0] f;

reg cout,zero;

...endmodule

alul81 #size instancename(a,b,aluctrl[5:21,

aluctrl[l,aluctrl[0],cout,f,zero);
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4.2.1.4 comparatorportlist

This module models a comparator inspired by the 74xx85. (See section C.7 for a de-
scription of the hardware being modeled by this module.) It has two data inputs, a and
b, and three status outputs, alt b, aeqjb, agt-b. At any time, only one of
the outputs will be 1, depending on a and b:

thich has active low ci r
this chip has two inputs

e reason for having two
implify the connections
Since at this stage of the
, the above module was

,xxl8l. (See section C.6
odule.) It has two data
has status outputs, cout
Nero (1 when f is zero).

4.2.1.5 mux2portlist

This module models a multiplexor inspired by the 74xx157. (See section C.4 for a
description of the hardware being modeled by this module.) It has two data inputs, i 0
and i, and a similarly sized data output, out. When the command input, sel, is 0,
the output is i . When sel is 1, the output is i:

tmand input, aluctri.
livided in the following

module comparator(a_lt-b, a_eq_b, agt-b, a, b);
parameter SIZE = 1;
output altb, a_eqb, agtb;
input a, b;

wire [SIZE-l:0] a,b;
reg altb, a_eq_b, agt-b;

endmodule

module mux2(iO, i, sel, out);
parameter SIZE = 1;
input i0, i, sel;

output out;
wire [SIZE-1:0] i, i;
wire sel;

reg [SIZE-l:0] out;

endmnodule

f' zero) 

ito Hardware
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4.2.2 Mixed stage
As discussed in chapter 2, the system is no longer described simply in terms of its
behavior. Instead, in the mixed stage, there is a specific structure that interconnects the
controller and the architecture:

x 0
12 r

y 1
12

ml

sysclk -

Figure 4-1. A

Here is how tl

This version of slowdiv sys tem replaces the behavioral version of this module
discussed in section 4.1. The test code that instantiates slowdiv-system should
not notice any difference between this mixed stage module and the earlier pure behav-
ioral stage. Note that all ports and locals in this module are now declared to be wire
since this module is composed simply of two structural instances, and there are no
behavioral assignment statements.

4.2.3 Architecture for the division machine
At the end of section 2.3.1, a particular architecture for the division machine was cho-
sen that handles all the RTN and decisions required by the division machine. To aid in
understanding the Verilog that is equivalent to this architecture, figure 4-1 shows the
same architecture from section 2.3.1 redrawn with the names to be used in the Verilog
code:

module s

input a

output

wire [5

wire mu

wire [1

wire [1

enabled

mux2

alul8l

compara
not

counter
enabled
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module slow div system(pb,ready,x,y,r3,sysclk);

input pb,x,y,sysclk;

output ready,r3;

wire pb;

wire [11:0] x,y;

wire ready;

wire [11:0] r3;

wire sysclk;

wire [5:0] aluctrl;

wire muxctrl,ldrl,clrr2,incr2,ldr3,rlgey;

slowdiv arch a(aluctrl,muxctrl,ldrl,clrr2,

incr2,ldr3,rlgey,x,y,r3,sysclk);

slowdiv-ctrl c(pb,ready,aluctrl,muxctrl,ldrl,

clrr2,incr2,ldr3,rlgey,sysclk);

endmodule
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I simply in terms of its
re that interconnects the

Lk);
Y

sysclk -

Figure 4-1. Architecture with names usedfor Verilog coding.

Here is how this architecture can be described as a structural Verilog module:

I version of this module
div-system should

i the earlier pure behav-
)w declared to be wire
ances, and there are no

'ision machine was cho-
ision machine. To aid in
re, figure 4-1 shows the
Do be used in the Verilog

module slowdivarch(aluctrl,muxctrl,ldrl,

clrr2,incr2,ldr3,rlgey,x,y,r3bus,sysclk);
input aluctrl,muxctrl,ldrl,clrr2,incr2,ldr3,x,y,sysclk;
output rgey,r3bus;

wire [5:0] aluctrl;
wire muxctrl,ldrl,clrr2,incr2,ldr3,rlgey,sysclk;

wire [11:0] x,y,r3bus;
wire [11:0] muxbus,alubus,rlbus,r2bus;

enabledregister

mux2

alul81

comparator
not

#12 rl(alubus,rlbus,ldrl,sysclk);

#12 mx(x,y,muxctrl,muxbus);
#12 alu(rlbus,muxbus,aluctrl[5:2j,

aluctrl[l],aluctrl[0],,alubus,);

#12 cmp(rllty, ,,rlbus,y);
inv(rlgey,rllty);

counterregister #12 r2(,r2bus,,l'bO,incr2,clrr2,sysclk);
enabledregister #12 r3(r2bus, r3bus,ldr3,sysclk);

o Hardware
Three Stages for Verilog Design

-

155



Continued

The portlist for this module includes the commands that are input to this architecture
(that were output from the controller). These commands include the six-bit aluctrl
as well as muxctrl, ldrl, clrr2, incr2 and ldr3. Also, the portlist has the
status output rlgey. The portlist has the twelve bit data inputs x and y and the 12-bit
data output r3bus. Of course, since there are clocked registers in the architecture,
they must be supplied with sysclk. The order in this portlist matches the order where
this is instantiated in section 4.2.2.

The first three structural instances (rl, mx and alu) define the portion of the block
diagram that relates to register rl. This name is no longer a reg as it was in the pure
behavioral stage, but is instead the instance name for an enabled register, whose
portlist is defined in section 4.2.1.1. This instance is for a twelve bit wide register
(because the parameter is instantiated with 12). The input to this enabled-register
comes from alubus, which is described below. The output from this
enabled-register is known as rlbus. Of course both alubus and rlbus are
wires since this module is defined only with structure. The load signal for rl is ldrl,
and as is necessary in synchronous design, rl is connected to sysclk.

There is an instance (named mx) of mux2 (see section 4.2.1.5) instantiated to be 12 bits
wide. It selects the data input x when muxctrl is 0, and y when muxctrl is 1. Its
outputismuxbus.All of thesebuses areof course 12-bits wide. The instance of alul8l
(see section 4.2.1.3) named alu takes its inputs from rlbus and muxbus. The
aluctrl is provided to the appropriate ports. The cout and zero ports of alul 81
are left disconnected. The f output connects to the alubus (mentioned in the last
paragraph) that provides the input to rl.

Verilog Digital Computer Design: Algorithms into Hardware

always (posedge sysclk) #20
begin

$display("%d rl=%d r2=%d r3=%d pb=%b ready=%b", $time,
rlbus,r2bus,r3bus,
slowdivmachine.pb,slow-divmachine.ready);

$write(" %b %b WI,
ldrl,{clrr2,incr2},ldr3);

$display(" muxbus=%d alubus=%d",muxbus,alubus);
$write(" '1);
$display(" muxctrl=%b aluctrl=%b",

muxctrl,aluctrl);
$write ("

$display(" x=%d rgey=%b",x,rlgey);
end

endmodule
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.dy=%b", $time,

kachine.ready);
I",

us,alubus);

nput to this architecture
le the six-bit aluctrl
Iso, the portlist has the
s x and y and the 12-bit
ters in the architecture,
matches the order where

io structural instances (cmp and inv) produce rgey. The instance of
or (see section 4.2.1.4) produces the output rlty when ribus is less
a_eq-b and a-gt b outputs of comparator are left disconnected.
not produces rgey from rilty.

2-bit instance of counterregister (see section 4.2.1.2) named r2.
ut is left disconnected. Normally this is a bad idea to leave an input (as
in output) disconnected. However, in this case, the counter is only cleared
nted, so the data input is not needed. The output of this counter is r2bus.
put of this register is not used. The load port of this instance is not utilized,
be specified as being tied to 1 bO. (In the physical TTL active low logic of
,, this would be equivalent to tying this to the five-volt supply. In active
his would be equivalent to tying it to ground.) The load port cannot be
ected. The commands incr2 and clrr2 are provided to r2, as is sysclk.

re is another instance (r3) of enabledregister whose input comes
3 and whose output is r3bus, which is the data output of this entire mod-
nmand ldr3 is provided to r3, as is sysclk.

m of this module are debugging $ display statements. Some of the names
ed from those used in the pure behavioral version of this machine. We now
us, r2bus and r3bus. Also, this module does not have pb or ready in
and so to produce the same style output as earlier simulations, the $dis-
nent must use hierarchical names. (Since the $display statement does
)nd to synthesized hardware, and is only there for the convenience of the
would be inappropriate to use ports to access such information. Hierarchi-
re exactly what we need for a situation like this.) Two extra $display
how signals that were not present in the pure behavioral stage. The corn-
s (ldrl, {clrr2, incr2 and dr3) are displayed directly below the
e registers they affect. Also, the values of internal buses are shown. Directly
are the command signals that affect them. Also, the status signal output to
(rlgey) and the data input from the test code (x) are displayed. The other
r) is not displayed because in this test code it remains unchanged at 7.

introller for the division machine

stantiating the components for the architecture as described in section 4.2.3
task that could have been done in a variety of ways, translating the pure
tage into the mixed stage controller is a straightforward process that does
any creativity. For a particular pure behavioral machine, and for a chosen
there is only one correct controller. To arrive at this controller,

the portion of the block
-eg as it was in the pure
ed-register, whose
twelve bit wide register
enabledregister

'he output from this
lubus and rlbus are

id signal for rl is drl,
osysclk.

instantiated to be 12 bits
when muxctrl is 1. Its
The instance of alul81
:us and muxbus. The
zero ports of alul81

s (mentioned in the last
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1. Define a module (slowdivctrl in this example) for the controller with ap-
propriate declarations that match how it was instantiated in the mixed system
module (in this example, it is instantiated inside slowdiv system as shown
in section 4.2.2).

2. Initialize all the internal command signals (aluctrl, muxctrl, ldrl,

clrr2, incr2 and ldr3 in this example) used by the architecture to their
default values in the enternewstate task.

3. Move the always block from the pure behavioral system (in this example,
slowdiv system of section 4.1.5) to inside the controller module, and com-
ment out all non-blocking assignment statements (using / /).

4. Following each non-blocking assignment that is commented out, put assignment
statement(s) that assert the equivalent command signals. For example, / / r2 <=

@(posedge sysclk) 0; isfollowedbyclrr2 = 1.
5. Replace relational conditions, such as rl >= y, with status signals, such as

rlgey.

Here is the module that is instantiated in section 4.2.2 and corresponds to pure behav-
ioral Verilog of section 4.1.5, and that is equivalent to the mixed ASM chart of section
2.3.1:

Continued

end

task er
input

begin

presE
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end

endtask
endmodule
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module slowdivctrl(pb,ready,aluctrl,muxctrl,ldrl,

clrr2,incr2,1dr3,rlgey,syscik);
input pb,rigey,sysclk;

output ready,aluctrl,muxctrl,ldrl,clrr2,incr2,ldr3;

reg ['NUN_STATE_BITS-1:0] presentstate;

wire pb;

reg ready;

reg [5:0] aluctrl;
reg muxctrl,ldrl,clrr2,incr2,ldr3;

wire rgey,sysclk;

always

begin

@(posedge sysclk) enternewstate('IDLE);

//rl <= (posedge sysclk) x;

//r2 <= @(posedge sysclk) 0;

ready = 1;

aluctrl = 'PASSB;

muxctrl = 0;

ldrl = 1;

clrr2 = 1;

if (pb)
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Continued

The boldface above shows the editing done to transform the pure behavioral Verilog
into this mixed stage. Of some interest is the fact that the pure behavioral while,
which has the condition ( (rl>=y) I pb),is translated above into (rlgey I pb).
Use of single bit & and | (or perhaps more clearly && and I I ) is permitted inside a
mixed controller. This notation is not a data computation that must occur in the archi-
tecture (although the designer could have chosen to put a single or gate in the architec-
ture to accomplish this). It is important to distinguish this decision-making use of I
from a data manipulation use of , such as rl I y, which should be performed by com-
binational logic (such as theALU) in the architecture. In the case of ( (rl>=y) I pb),
there are two reasonable ways to translate this into the mixed stage: the way that was
shown above, and the way that requires introducing an extra signal in the architecture
to represent the or of rlgey and pb. (pb would then be classified as an external data
input to the architecture, in addition to being an external status input to the controller.)
Since we would like to minimize the number of wires that interconnect the controller to
the architecture, we chose the former approach where pb is simply an external status
signal.

Three Stages for Verilog Design

begin

while (rigey I pb)
begin

@(posedge sysclk) enternew-state('COMPUTE);
ready = 0;
//rl <= @(posedge sysclk) rl - y;

//r2 <= @(posedge sysclk) r2 + 1;
//r3 <= @(posedge sysclk) r2;
aluctrl = 'DIFFERENCE;

muXCtrl = 1;
1drl = 1;

incr2 = 1;

ldr3 = 1;

end

end
end

task enternewstate;

input [NUM_STATE-BITS-1:0] thisstate;
begin

presentstate = this_state;

#l(ready,aluctrl,muxctrl,ldrl,clrr2,incr2,ldr3}=O;

end

endtask

endmodule

.
-

.
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Of course, the bit patterns for controlling the ALU must be defined outside this mod-
ule:

'define DIFFERENCE 6'bO11001

'define PASSB 6'blO1010

The test code is the same as the pure behavioral system. Here is the output from the
completed mixed stage:

70 rl= x r2= x r3= x pb=O ready=1

1 10 0 muxbus= 0 alubus= 0

muxctrl=0 aluctrl=101010

x= 0 rlgey=x

170 rl= 0 r2= 0 r3= x pb=O ready=1

1 10 0 muxbus= 0 alubus= 0

muxctrl=0 aluctrl=101010

x= 0 rlgey=0

270 rl= 0 r2= 0 r3= x pb=O ready=1

1 10 0 muxbus= 0 alubus= 0

muxctrl=0 aluctrl=101010

x= 0 rlgey=0

370 rl= 0 r2= 0 r3= x pb=1 ready=1

1 10 0 muxbus= 0 alubus= 0

muxctrl=0 aluctrl=101010
x= 0 rgey=O

470 rl= 0 r2= 0 r3= x pb=O ready=O

1 01 1 muxbus= 7 alubus=4089

muxctrl=1 aluctrl=011001

x= 0 rlgey=0

570 r=4089 r2= 1 r3= 0 pb=O ready=1

1 10 0 muxbus= 0 alubus= 0

muxctrl=0 aluctrl=101010
x= 0 rlgey=1

ok

rl=

1

6670 rl=

1

13 r2=

10

14 r2=

10

0 r3=

0

0 r3=

0

1 pb=O ready=1

muxbus= 14 alubus= 14

muxctrl=0 aluctrl=101010

x= 14 rlgey=1

1 pb=1 ready=1

muxbus= 14 alubus= 14

muxctrl=0 aluctrl=101010

x= 14 rlgey=1

6970 rl=

1

7070 rl=z

1
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Continued

6770 rl-

1

6870 rl=

1

6570
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Fined outside this mod-

is the output from the

Lbus= 0

ictrl=101010

ibus= 0

ictrl=101010

abus= 0

actrl=101010

ubus= 0

uctrl=101010

ubus=4089

uctrl=011001

.ubus= 0

.uctrl=101010

Lubus= 14

Luctrl=101010

L

Lubus= 14

Luctrl=101010

rl

rl

7rl

7rl

1= 14 r2= 0 r3= 1 pb=0 ready=0

1 01 1 muxbus= 7 alubus= 7

muxctrl=1 aluctrl=011001

x= 14 rgey=1

7 r2= 1 r3= 0 pb=0 ready=0

1 01 1 muxbus= 7 alubus= 0

muxctrl=1 aluctrl=011001
x= 14 rgey=1

0 r2= 2 r3= 1 pb=0 ready=0

1 01 1 muxbus= 7 alubus=4089

muxctrl=1 aluctrl=011001
x= 14 rlgey=0

1=4089 r2= 3 r3= 2 pb=0 ready=1

1 10 0 muxbus= 14 alubus= 14

muxctrl=0 aluctrl=101010

x= 14 rlgey=1

Pure structural stage of the two state division
machine

ing from the mixed stage to the "pure" structural stage is an easy and mechani-
cugh somewhat tedious) process. All modules except the controller remain the
s explained in section 2.4.1, the controller module becomes a structure com-
Ia present state register (which is an instance of an actual register module, and
eg) and the next state logic.

)ure" structural stage, the definition of the next state logic may remain as be-
code (a function) that is a transformation of the code inside the always block
nixed stage. In section 4.4, we will see how the next state logic could also be
in terms of built-in gates, using hierarchical design. Fortunately, it is not nor-
ecessary to worry about the details given later in section 4.4, because synthesis
st that can automatically transform the behavioral next state function described
action into a netlist. For this reason, we consider this section to be the final step
Jesigner has to be involved with. Section 4.4 is presented later only to motivate
of transformations that synthesis tools are capable of.

Three Stagesfor Verilog Design
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4.3.1 The pure structural controller
The structure of the controller is quite simple. The instance name of the

nextstatelogic is nsl. As shown in the diagram in section 2.4.1, rlgey and

pb are the inputs to nsl. Also, next_state, ldrl, incr2, clrr2, ldr3,

muxctrl, aluctrl, ready and nextstate are outputs of nsl. The input to

ps-reg is nextstate and its output is present-state. The portlist of the

controller module is identical to the mixed stage, except the outputs are declared to be

wires:

For simplicity, we are using an enabled-register for psreg with its enable

tied to 1 bl.

4.3.2 nextstatelogic module
The combinational logic that computes the next state needs to be defined. Following

the technique outlined in section 3.7.2.1, there is an always block with an @ sensitiv-

ity list which has all the inputs to this module. Since the calculation of the next state

and corresponding outputs is quite lengthy, this calculation is isolated in a function,

stategen, that is defined in the file "divbookf .v":
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module 

output

input
reg ['
reg lc
reg [E
wire [
wire 

inclt

always
{next

ree
endmodu]

module slow-div ctrl(pb,ready,aluctrl,muxctrl,ldrl,
clrr2,incr2,ldr3,rlgey,sysclk);

input pb,rlgey,sysclk;
output ready,aluctrl,muxctrl,ldrl,clrr2,incr2,ldr3;

wire ['NUMSTATEBITS-l:0] presentstate;

wire pb;
wire ready;
wire [5:0] aluctrl;
wire muxctrl,ldrl,clrr2,incr2,ldr3;
wire rlgey,sysclk;

nextstate-logic nl(next-state,
ldrl,incr2,clrr2,ldr3,
muxctrl,aluctrl,ready,
presentstate, rigey, pb);

enabled-register #('KUN_STATEBITS) psreg(next-state,
present-state,l'bl,sysclk);

endmodule
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4.3.3 stategen function
To create the file that contains the state gen function is a simple matter of editing
a portion of the mixed code:

I . Create a function header that returns the proper number of bits and has the appro-
priate input arguments. The number of bits to be returned is ' NUMSTATEBITS-
1 plus the number of command output bits. The input arguments of the function
are the same as the input ports of nextstate-logic. (In this example, the
inputs are ps, pb and rlgey.)

2. The output regs of the mixed controller become local regs in the function. (In
this example, ldrl, incr2, clrr2, ldr3, muxctrl, aluctrl and ready
are local regs in the function.) A local ns reg is also defined to hold the next
state within the function. Remember that local regs of a function would never be
synthesized as physical registers. They are regs simply because the function uses
behavioral assignment.

3. The assignment of default values that occurs in the enternewstate task of
the mixed stage becomes the first executable statement of the function. Also, ns
is also given a default value (the starting point of the algorithm).

4. The next executable statement of the function is a case statement based on the
present state, ps. This case statement is equivalent to a truth table, as explained

Three Stages for Verilog Design

module nextstatelogic(nextstate,

ldrl,incr2,clrr2,ldr3,

muxctrl,aluctrl, ready,
presentstate, rlgey, pb);

output nextstate,ldrl,incr2,clrr2,ldr3,muxctrl,

aluctrl,ready;
input present_state, rgey, pb;

reg ['NUM_STATE_BITS-l:0] next_state;
reg ldrl,incr2,clrr2,ldr3,muxctrl,ready;

reg [5:0] aluctrl;

wire ['NUN_STATE_BITS-l:0] presentstate;
wire rlgey,pb;

'include "divbookf.v"

always (presentstate or rlgey or pb)
{nextstate,ldrl,clrr2,incr2,ldr3,muxctrl,aluctrl,

ready} = stategen(presentstate, pb, rgey);
endmodule
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in section 3.9.2.2. The advantage of the case statement for this purpose is that it
is more compact than a truth table, and it documents some of the thought process Continued
of the earlier stages through meaningful identifiers (such as aluctrl).

5. The statements that follow each @ (posedge sysclk) inside the always
block of the mixed controller are moved to a place within the case statement that
corresponds to that state. The @ and the call to enternewstate are elimi-
nated. The commented-out non-blocking assignment statements are retained for
documentation.

6. In each block of code that corresponds to a state, ns is computed. This computa-
tion, in effect, acts like a goto. It says which state in the case statement will
execute when this function is called during the next clock cycle (after ns be-
comes ps). Unlike the mixed stage, the order in which the designer types the
states into the case statement has no effect on the order in which the states ex-
ecute. The ns computation determines the order in which they execute. By put-
ting the ASM into a function, we have lost the perfect correspondence to the goto-
less style that we had in the mixed stage.

7. The next state and the outputs are concatenated to be returned from this function
in the order needed (see section 4.3.2).

Here is the state-gen function for the two-state division machine:

enfunction 'NUNSTATE_BITS-1+12:0] stategen; St
input [NUM STATEBITS-1:O ps;
input pb,rlgey; end
reg ready; endfun
reg [5:0] aluctrl;
reg muxctrl,1drl,clrr2,incr2,ldr3;
reg ['INUSTATE-BITS-1:0 ns; Here boldface

begin
{nsready,aluctrl,muxctrl,ldrl,clrr2,incr2,ldr3}=0; 4.3.4 Test
case (ps) Since state

'IDLE: begin some trivial V
//rl <= (posedge sysclk) x;
//r2 <= (posedge sysclk) 0;
ready = 1; 'defineI
aluctr = 'PASSB; 'define
muxctrl = 0;
ldrl =1; 'define I

ifrr2 1; 'defineif (pb)'dfn

module t(
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Continued

ns = 'COMPUTE;

else

else
n = 'IDLE;

ns = 'IDLE;

end
'COMPUTE: begin

ready = 0;
//rl <= @(posedgi
//r2 <= @(posedg
//r3 <= @(posedg
aluctrl = 'DIFFE]
muxctrl = 1;

ldrl = 1;

incr2 = 1;
ldr3 = 1;

if (rlgeylpb)
ns = 'COMPUTE;

else
ns = 'IDLE;

endcase
state-gen

end
endfunction

e sysclk) rl - y;

e sysclk) r2 + 1;
e sysclk) r2;

RENCE;

end

= ns,ldrl,clrr2,incr2,ldr3,
muxctrl,aluctrl,ready);

Here boldface shows some changes that were made to make this work as a function.

4.3.4 Testing stategen
Since state gen is isolated in a file by itself, we can test state-gen by writing
some trivial Verilog, unrelated to any of the earlier code:

Three Stages for Verilog Design

'define DIFFERENCE 6'bO11001

'define PASSB 6'blO1010

'define NUMSTATEBITS 1

'define IDLE 1'bO

'define COMPUTE l'bl

module test;
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This produces an output which agrees with the manual derivation given in section
2.4.1. The bit patterns used in the function must be defined, as shown above, because
they are not defined in Am divbookf . v AK

4.3.5 It seems to work
Having tested the function to see that it behaves as expected, we can now put the
controller code from sections 4.3.1 through 4.3.3 together with the architecture code
from section 4.2.3 to obtain the pure structural version of the two-state division ma-
chine. The simulation of this produces the same output as that of the mixed stage,
shown in section 4.2.4.

There is one additional detail, described in the next section, that we will want to con-
sider in all future designs. Since the code (including this additional detail) that the
designer develops in the pure structural stage can be run through a synthesis tool, it is
not necessary for the designer to manually transform Verilog code after reaching the
pure structural stage. In the next section, we will see how the synthesis tool continues
to transform the Verilog code for the designer automatically.

module nE

output

input 
reg ['5
reg ldi
reg [5:
wire ['
wire ri

always

Verilog Digital Computer Design: Algorithms into Hardware

Continued.

'include "divbookf.v"

integer i;
reg ps,pb,rlgey;

initial
begin

for (i=O;i<=7;i=i+l)
begin

{ps,pb,rlgey} = i;
$display("%b %b %b %b",ps,pb,rlgey,

stategen(ps,pb,rlgey));
end

end
endmodule
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4.4 Hierarchical refinement of the controller
Except for one small physical problem to be explained in this section, the Verilog code
in section 4.3 can be submitted to a synthesis tool, which produces the netlist that can
be used to fabricate the chip. Assuming we recognize and fix this little problem, we do
not need to write any more Verilog. The synthesis tool can do the rest of the job of
creating the netlist.

On the other hand, since the two-state division machine, with its childish algorithm, is
so simple, it makes a good example to illustrate what a synthesis tool does. Also, by
looking at the netlist, we will discover this small physical problem alluded to earlier.
This problem, which occurs with most controllers, has a simple solution; however, it
was previously hidden from view because behavioral Verilog usually does not model
all the physical details of a circuit. The power of top-down design is to hide those
details until the last moment. We have reached this moment of truth when we get down
to gates!

This section illustrates the need to do post-synthesis simulation prior to fabrication. All
three-stages of design (including the pure structural stage) have some behavioral as-
pects that are well above the gate level. To predict more accurately what the fabricated
circuit will do, we need to simulate the synthesized netlist. With this simple machine,
the netlist for the controller is simple enough that we can generate it manually, but in
most machines, an automatically produced netlist would be incomprehensible to the
designer.

4.4.1 A logic equation approach
The s tategen function defined in section 4.3.3 can be replaced by a series of logic
equations representing the low-level behavior of ns 1, as explained in section 2.5:
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module nextstatelogic(nextstate,

ldrl,incr2,clrr2,ldr3,

muxctrl,aluctrl, ready,

presentstate, rgey, pb);
output nextstate,ldri,incr2,clrr2,ldr3,muxctrl,

aluctrl,ready;

input present_state, rgey, pb;
reg ['NUN_STATE_BITS-l:0] nextstate;
reg ldrl,incr2,clrr2,ldr3,muxctrl,ready;

reg [5:0] aluctrl;

wire ['NUNSTATE_BITS-1:0] present-state;
wire rlgey,pb;

always (present state or rlgey or pb)
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Even though this is a rather tedious way to describe the controller, it is still a behavioral
description as explained in section 3.7.2.1. This module has an always block with @
followed by a sensitivity list naming all the inputs to the combinational logic, and the
outputs are defined as regs. Although using logic equations in this fashion is perfectly
legal, this is not the preferred style of Verilog coding for three reasons: it is not a
netlist, a designer can easily make a mistake when deriving the logic equations manu-
ally, and even if the logic equations are correct, they are usually meaningless to the
designer. One reason why we practice top-down and hierarchical design is to minimize
our exposure to details, especially details as tedious as a page full of logic equations.

Algorithms to manipulate Boolean equations are some of the most studied aspects of
computer design. Even prior to the introduction of Verilog, software existed to auto-
matically produce logic equations from truth tables. It would be a giant leap backward
to use Verilog with manually produced logic equations. We will not consider writing
modules of this style again.

4.4.2 At last: a netlist
Even though logic equations should not normally be your first choice when designing
behavioral code, it is important for you to be aware of the properties of Boolean alge-
bra. Ultimately, at the lowest levels, all computation carried out on digital computers
are the result of iterative application of Boolean equations.

module n

output

input
wire [

wire 1
wire [

wire [

wire r

buf bO

buf bl

buf b2

not il

and al

and a2

or 01
or o2

endmodul

Figure 4-2 sh

Of course, ,
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Continued

begin

nextstate =

-presentstate&pblpresent-state&(rlgeylpb);

ldrl = 1;
clrr2 = -present state;
incr2 = present state;
ldr3 = present state;
muxctrl = present state;
aluctrl[5] = -present state;
aluctrl[41 = present state;
aluctrl[3] = 1;
aluctrl[21 = 0;
aluctrl[l] = -present state;
aluctrl[O] = present state;
ready = -present_state;

end

endmodule
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;It was popular to use logic equations manually before the introduction of HDLs be-
cause there is a one-to-one mapping between logic equations and a netlist. For the same
reason, a synthesis tool internally manipulates logic equations as it explores the vast
space of possible hardware structures that correctly implement a combinational func-
tion. When the synthesis tool decides what the optimum logic equation is, it is trivial
for it to produce the netlist. Using the logic equations from section 4.4.1, we have at
last gotten all the way down to the netlist:
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Figure 4-2 shows the corresponding circuit diagram.

Of course, many other possible solutions exist that produce the same truth table. The
built-in Verilog gate bu f (non-inverting buffer) passes through its last port unchanged
to all the other ports, which are outputs. The only difference between buf and not is
that the latter inverts its outputs.

We will ignore discussing the netlist for the architectural devices, such as mux2, since
this is a trivial but tedious task. The synthesis tool would do this identically to the way
the controller was synthesized.

Three Stages for Verilog Design

Iylpb);

module nextstate logic(next state,

ldri,incr2,clrr2,ldr3,

muxctrl,aluctrl, ready,

present_state, rlgey, pb);

output next-state,ldri,incr2,clrr2,ldr3,muxctrl,

aluctrl,ready;

input present_state, rlgey, pb;

wire ['NUM_STATE_BITS-1:0] nextstate;

wire ldrl,incr2,clrr2,ldr3,muxctrl,ready;

wire [5:0] aluctrl;

wire ['NUN_STATE_BITS-l:0] presentstate;

wire rlgey,pb;

buf bO(ldrl,aluctrl[3J,1'bl);

buf bl(aluctrl[2J,1'bO);

buf b2(incr2,ldr3,muxctrl,aluctrl[4],aluctrl[0],

presentstate[OJ);

not il(not ps,clrr2,aluctrl[5],aluctrl[1],ready,

presentstate[O]);

and a1(not_ps_and pb,not ps,pb);

and a2(psandor,present_state[O],rlgeyorpb);

or o1(rlgeyor pb,rlgey,pb);

or o2(nextstate(O],not psand_pb,psand or);

endmodule
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4.4.3 Post-synthesis simulation
Even though up to this point all the simulation results indicate that our synthesized
division machine should work, it is wise to conduct post-synthesis simulation prior to
fabricating the hardware. This is why Verilog was developed in the first place: to simu-
late gate level netlists. Synthesis from behavioral code is now the predominate use of
Verilog, but synthesis tools appeared later in the history of Verilog than simulators for
netlists.

So let's use Verilog in the way it was originally intended to be used and simulate the
netlist given in section 4.4.2. When this simulation runs, we get a very interesting but
discouraging output:
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that continues like this for as long as you are willing to let the simulator run. This is the
physical problem alluded to earlier: as the controller is currently interconnected, the
gate level netlist does not seem to work. The simulator's output is splattered with 1 bxs
and 1 bzs.

Although you might think something is wrong with the logic equations (given in sec-
tion 4.4.1) or the equivalent netlist (given in section 4.4.2), there is not. The logic
equations and equivalent netlist are correct. What's the problem?

To understand the problem, you need to remember the intent behind having the four-
valued logic system. When 1 bxs or 1 ' bzs appear where you were expecting a 1 or a
0, this is an indication of some flaw in the design. Although major interconnection
errors can cause this (see section 3.5.3), more subtle problems can cause this as well.
Since everything is interconnected properly in this netlist, we need to understand what
the 1 bxs and 1 bzs are trying to tell us here.

At $time 0, all regs start as bxs and all wires start as bzs. If the simulation does
not change these values, that is how they will stay. The ps_ reg of the controller has
an internal reg that holds the present state. At $ time 0, it is 1 bx. The next state that
the machine computes from psreg is also unknown. A Boolean function of ' bx is
usually ' bx. Therefore, the ps reg is reloaded with 1 bx, rather than the proper
sequence of states. The four-valued logic of the simulation has detected a potential
flaw in the design: we do not know what state the controller starts out in, so we cannot
predict what happens next.

Why didn't the pure structural version (see section 4.3.3) detect this problem? The
reason is found in the definition of the stategen function. The first statement of
this function initializes ns (which is what becomes next_state) to be 1 bO:
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{nsready,aluctrl,muxctrlldrl,clrr2,incr2,ldr3>=O;
case (s)

endcase

position withii
so they start at
pure structural
the problem. A

Unfortunately, this also means that even though ps is 'bx at $ time 0, ns will be-
come 0 after the first rising edge. This is a disguised way of saying:

If you are at all
time ago. We r
$time 0, and
type resettable

The reason this is cheating is because hardware cannot implement the === operation.
Each physical wire can only carry one bit of information. Each simulated wire tested
with === carries two bits of information (to represent 0, 1, 1 bx and 1 bz). At $time
0, all regs are intialiazed to bx. As soon as the above function detects bx, it turns
it into 0. In this indirect way, the function is informed when $time is 0. The fabri-
cated hardware has no way to know when $ time is 0, because a wire is simply either

or 1.

We can make the pure structural stage act more like the netlist by omitting ns from the
default initialization:

{ready,aluctrl,muxctrl,ldrl,clrr2,incr2,ldr3l=O;
case (ps)

...

By omitting ns here, the simulation using stategen fails similarly to the netlist.

4.4.4 Resetting the present state
What post-synthesis simulation discovered is a problem that all state machines exhibit,
and that happily has a simple solution. When the power is first turned on, we do not
know what state the machine will be in. The pure behavioral and mixed stages use
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always
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{ready,aluctrl,muxctrl,ldrl,clrr2,incr2,ldr3}=O;
if (ps === l'bx I Ps === l'bz)
ns = l'bO;

else
case (s)

endcase
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ncr2,ldr3l=O;

$time 0, ns will be-
ying:

2,ldr3}=0;

position within behavioral code (rather than the psreg) to indicate the current state,
so they start at the top of the code at $ t ime 0. As explained above, the way we did the
pure structural stage (with the stategen function) tricked Verilog into disguising
the problem. At the netlist level, the problem cannot be hidden any longer.

If you are at all familiar with state machines, you probably spotted this problem a long
time ago. We need an asynchronous reset for the ps-reg that is activated soon after
$ time 0, and left inactive thereafter. Here is a behavioral model of such a simple D-
type resettable register:

ient the === operation.
h simulated wire tested
and l bz).At $time
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a wire is simply either
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2, ldr3}=0;

similarly to the netlist.
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The above is patterned after the 74xx 175 (six-bit resettable D-type register), except as
is typical with TTL logic, the reset signal on the 74xx175 is active low.

This is the first and only time that we will admit an asynchronous signal into our de-
sign. Asynchronous means that a change happens in a register at a $time other than
the rising edge of sys cl k. Notice the difference between the cl r signal used in the
synchronous counterregister (described in sections 3.7.2.2 and 4.2.1.2) and
the reset signal described here. Although both signals cause the register to become
zero at some point in $ t ime, the c r signal simply schedules the change to happen at
the next rising edge, but the reset signal causes the clearing to happen instantly. The
register is continually rezeroed for as long as reset is asserted because of the if,
even should a rising edge of the clock occur. Without the posedge reset, the regis-
ter would be a synchronous, clearable D-type register.
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module resetableregister(di,do,reset,sysclk);
parameter SIZE=l;

input di,reset,sysclk;
output do;
wire [SIZE-1:0] di;

reg [SIZE-l:0] do;

wire reset,sysclk;

always (posedge sysclk or posedge reset)
begin

if (reset)
do = 0;

else
do = di;

end
endmodule
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The psreg needs to have an asynchronous reset so that it is zero prior to the arrivalof the first rising edge of sysclk. The reset signal must be provided by our friendlyuser, which means for the Verilog simulation that reset becomes a port of severalmodules and must be provided by the test code. It is a input port of the controller:

module slowdiv-ctrl(b.readv I,..,-
clrr2,incr2,ldr3,rlgey,reset,sysclk);

input pb,rlgey,sysclk,reset;
output ready,aluctrlmuxctrlldrl,clrr2,incr2,ldr3;

wire
wire
wire
wire
wire
wire

['NUM STATEBITS-1:0] presentstate;
pb;
ready;
[5:0] aluctrl;
muxctrl,ldrl,clrr2,incr2,ldr3;
rlgey,sysclk,reset;

nextstatelogic nsl(nextstate,
ldrl,incr2,clrr2,ldr3,
muxctrl,aluctrl,ready,
presentstate, rgey, pb);

rA.*tWmh1 - ... s .( 'UMSTATE-BITS) preg(nextstate,
present-state,reset,sysclk);

endinodul e

and of the system that instantiates the controller:

I - -
module slow div-system(pb,readyxyr3,resetsysclk);

input pb,x,y,sysclkreset;
output ready,r3;
wire pb;
wire [11:0] x,y;
wire ready;
wire [11:0] r3;
wire sysclk,reset;

wire [5:0] aluctrl;
wire muxctrl,ldrl,clrr2,incr2,ldr3,rlgey;

slow div-arch a(aluctrl,muxctrl,ldrl,clrr2,
incr2,ldr3,rlgey,x,y,r3,sysclk);
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zero prior to the arrival
rovided by our friendly
omes a port of several
rt of the controller:

1, 1drl,
ysclk);

cr2, ldr3;

Ir3,
ady,
ey, pb);
ig(nextstate,
t,sysclk);

,sysclk);

Continued

v_ctrl c(pb,ready,aluctrl,muxctrl,ldrl,
clrr2,incr2,ldr3,rlgey,reset,sysclk);

pear in the test code:

op;

1:0] xy;

1:0] quotient;
!ady;

s;
ysclk;
set;

000 clock(sysclk);
.v_system
_machine(pb,ready,x,y,quotient,reset,sysclk);

O;
0;

7;
let 0;
I reset = 1;
I reset = 0;
.0;

issues a reset pulse that lasts for 30 units of $time, which causes the
: become zero. When the netlist for the controller (section 4.4.2) is re-
h the above, it produces the same correct answers we obtained for the
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4.5 Conclusion
The three stages of top-down design can be expressed in Verilog. The pure behavioral
stage requires writing a single system module to model the machine. The only structure
at this stage is the portlist of the module. During this stage, the designer also develops
test code that instantiates the pure behavioral module. The test code is important be-
cause it is a specification of what the machine is supposed to do. By translating the
ASM that describes the machine with the enternewstate approach, the pure
behavioral Verilog is organized so that it will be easy to translate to the mixed stage.
In the mixed stage, the designer develops structural Verilog code for the architecture.
The modules instantiated inside the architecture may themselves be defined behavior-
ally. The architecture and a controller are instantiated as the system module. The con-
troller is behavioral code derived from the pure behavioral stage. The <= statements
are commented out and replaced with appropriate command signals for the chosen
architecture, and relational conditions are replaced with appropriate status signals. The
default values for the command signals are indicated in the enternew state task.
In the pure structural stage, the controller is edited to become a structural module that
instantiates a next state generator and a resettable register. The test code and portlists
must be edited to include a reset signal. The next state generator has an always
block modeling combinational logic which calls a function defined with a case state-
ment. The cases in this statement are copied from the mixed controller code. Additional
statements must be provided in each state to describe the calculation of the next state.
Default values are indicated prior to the case statement.

The next state logic and all of the architectural building blocks of the pure structural
stage could be refined down to the gate level by using hierarchical design. However,
synthesis tools can take a pure structural description (with all of its instantiated mod-
ules still defined behaviorally) and produce a gate-level netlist. In most cases, the pure
structural stage is equivalent to working hardware. It is important to do post-synthesis
simulation before fabrication to insure the netlist solves the problem correctly because
it is cheaper to find flaws before fabrication.

4.6 Exercises
4-1. Use a simulator to take problems 2-1, 2-2 and 2-3 through the three-stages in
Verilog.

4-2. Use a simulator to take problems 2-4, 2-5 and 2-6 through the three stages in
Verilog.

4-3. Use a simulator to take problems 2-7, 2-8 and 2-9 through the three-stages in
Verilog.
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5. ADVANCED ASM
TECHNIQUES

Although the ASM techniques illustrated in chapter 2 and the corresponding Verilog
notation given in chapter 4 are adequate to solve any problem, they may yield a hard-
ware solution that is not optimal in terms of speed (number of clock cycles) and cost
(number of gates.) Despite all the marketing hype one hears, neither speed nor cost
should be the primary concern of the designer. The primary responsibility of the de-
signer is producing a correct design. (Intel Corporation illustrated the wisdom that
before one produces a fast chip one ought to design a correct chip when they sold a
version of the Pentium in 1994 whose division algorithm was incorrect.)

Despite the fact speed should not be our first concern, in many problems a correct
solution demands that an algorithm find its answer by a certain time. Consider, for
example, the onboard computers of the space shuttle. They need to compute the correct
result in a timely enough fashion that the shuttle may correct its course. In such a
context, a machine that c omputes a correct answer too late is not a solution at all.

Our search for a faster solution should always begin in the abstract world of algo-
rithms, and not in the gruesome world of gates. The best way to speed up a machine is
not to do some trickery with gates; instead the best way is to describe a better algorithm
that solves the same problem. Chapter 2 illustrates this point with several different
variations on the division machine with the final solution being three times faster than
the slowest solution. One difficulty is that certain faster algorithms cannot be expressed
with the notations discussed in chapters 2 and 4. This chapter discusses an additional
ASM feature that helps us describe more efficient algorithms. Also, this chapter ex-
plains how any ASM can be written in Verilog, including those that use such notations,
as well as those that have complex branches that do not follow the goto-less style we
adhered to in earlier examples.

5.1 Moore versus Mealy
Recall that an ASM chart is composed of diamonds, rectangles and ovals connected by
arrows. Chapter 2 ignored the use of ovals. Such ASM charts that do not have ovals are
referred to as Moore machines. All the ASM charts discussed previously were for Moore
machines. ASM charts that also include ovals are known as Mealy machines. Mealy
ASM charts provide a way to express algorithms that are faster (and in some instances
less costly) than Moore ASM charts.
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Commands (both RTN and signal names) that occur inside a rectangle are known as
unconditional commands, because the commands are issued regardless of anything
when the machine is in the state corresponding to the rectangle. Ovals are used to
describe conditional commands, that are sometimes (but not always) issued when a
machine is in a particular state. Ovals are not by themselves a state, but rather they are
the children of some parent state that corresponds to a rectangle in the ASM chart.
Because ovals represent a conditional command, they must occur after one or more
diamond(s). If you follow the arrows of a Mealy ASM, you would first come to a
rectangle, then you would come to one or more diamond(s) and finally you would
come to the oval. After the oval, the arrow might go to another diamond or a rectangle.

The actions in one rectangle and all ovals and diamonds that are connected (without
any intervening rectangles) to that one rectangle occur in the same clock cycle. In
essence, a combination of diamonds and ovals allows the designer to implement an
arbitrarily nested i f e l s e construct that executes in a single clock cycle. Large num-
bers of decisions can be carried out in parallel by such ASM charts, allowing some
algorithms to be sped up considerably.

5.1.1 Silly example of behavioral Mealy machine
Suppose we take the silly ASM of section 2.1.2.1 and include two conditional com-
mand signals: STAY and LEAVE. STAY is supposed to be 1 while the machine stays in
state YELLOW, and LEAVE is 1 during the last cycle that the machine is in state
YELLOW. STAY and LEAVE are never asserted at the same time. Here is the ASM
chart:

GREEN

YELLOW

Assuming, as
clock is 0.5 se
the hardware

present
time St

0.0 GF
0.5 YE
1.0 RE
1.5 GF
2.0 YE
2.5 YE
3.0 YE
3.5 YE
4.0 YE
4.5 YE
5.0 RE
5.5 GE
6.0 YE
. . ...

Between 0.5,
the decision d
on the path s
LEAVE signa
the unconditi
which is on a

Between 2.0 
non-zero, the
is the oval tha
cycle.

Because COL
the last clock
not asserted b

5.1.2 Sill,
An architectu:
attached to ai
comparator tc
sponding mix

Figure 5-1. Behavioral Mealy ASM.
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Assuming, as was the case for the example in section 2.1.2.1, that the period of the
clock is 0.5 seconds, the following illustrates what would be observed physically when
the hardware corresponding to this ASM operates:

Between 0.5 and 1.0, the machine is in state YELLOW, but because COUNT is zero,
the decision does not go on the path that loops back to state YELLOW but instead goes
on the path where the next state is state RED. On this path is an oval that asserts the
LEAVE signal. This conditional signal is asserted during the entire clock cycle, just as
the unconditional signal STOP is asserted during the same time. The signal STAY,
which is on a different path, is not asserted during this clock cycle.

Between 2.0 and 2.5, the machine again is in state YELLOW, but because COUNT is
non-zero, the decision goes on the path that loops back to the same state. On this path
is the oval that asserts the STAY signal. The signal LEAVE is not asserted in this clock
cycle.

Because COUNT is three bits, COUNT is zero again between 4.5 and 5.0, and so this is
the last clock cycle that the machine loops in state YELLOW. This means that STAY is
not asserted but that LEAVE is asserted.

5.1.2 Silly example of mixed Mealy machine
An architecture that implements the silly example of section 5.1.1 is a counter register
attached to an adder. One input of the adder is tied to the constant two. There is a
comparator to see when COUNT is equal to zero. Here are the architecture and corre-
sponding mixed ASM:

Advanced ASM Techniques

present

time state
0.0 GREEN stop=0 speed=11 count=000 stay=0 leave=0
0.5 YELLOW stop=1 speed=01 count=000 stay=0 leave=1
1.0 RED stop=1 speed=00 count=001 stay=O leave=0
1.5 GREEN stop=0 speed=11 count=011 stay=0 leave=0
2.0 YELLOW stop=1 speed=01 count=011 stay=1 leave=0
2.5 YELLOW stop=1 speed=01 count=100 stay=1 leave=0
3.0 YELLOW stop=1 speed=01 count=101 stay=1 leave=0
3.5 YELLOW stop=1 speed=01 count=110 stay=1 leave=0
4.0 YELLOW stop=1 speed=01 count=111 stay=1 leave=0
4.5 YELLOW stop=1 speed=01 count=000 stay=0 leave=1
5.0 RED stop=1 speed=00 count=001 stay=0 leave=0
5.5 GREEN stop=0 speed=11 count=011 stay=O leave=0
6.0 YELLOW stop=1 speed=01 count=011 stay=1 leave=0
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5.1.3 Silly example of structural Mealy machine
The generic diagram of the pure structural controller given in section 2.4.1 applies to
any machine, whether it is a Mealy or Moore machine. The next state combinational
logic will be a little different when the machine is a Mealy machine than when it is a
Moore machine. With a Moore machine, only the next state bits (and not the command
bits) are a function of both the present state and the status inputs. With a Moore ma-
chine, the commands are a function of the present state only. In other words, for a
Moore machine, every line of the truth table where ps is the same has the same com-
mand outputs.

The problem i
tional commar
INIT without 
state IDLE for
computing the
a transition fro
Here is the AS
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Fig 5-2. Mixed Mealy ASM.
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,Mealy machine is completely general. The commands as well as the next state are a
inction of both the present state and the status. To illustrate this, consider the truth
ble of the next state combinational logic for the machine described by the ASM chart
id architecture of section 5.1.2:

ps COUNTEQO ns STOP SPEED LEAVE STAY INC LD
00 - 01 0 11 0 0 0 0
01 0 10 1 01 1 0 1 0
01 1 01 1 01 0 1 1 0
10 - 00 1 00 0 0 0 1

PEED, STOP, INC and LD are unconditional commands that are a function of ps
ily. LEAVE and STAY are a function of both ps and COUNTEQO. The conditional
gnals LEAVE and STAY are the only things here that make this a Mealy machine.

.2 Mealy version of the division machine
action 2.2 gives many variations of Moore ASMs that implement the childish division
gorithm. This section describes how this algorithm can be improved by including
Wals in the ASM.

.2.1 Eliminating state INIT again
action 2.2.3 describes a correct four-state version of the division machine that uses
nly two registers (rl and r2) in the architecture. Section 2.2.4 describes an unsuc-
essful attempt to remove state INIT from this ASM. Register r3 was introduced in
ction 2.2.5 to compensate for the user interface bug that exists in the ASM of section
2.4.

'e problem in section 2.2.4 is that the assignment to r2 was written as an uncondi-
)nal command in state IDLE. By using a Mealy ASM, it is possible to eliminate state
TIT without destroying the contents of register r2 when the machine is waiting in
ate IDLE for pb to be pressed. Only when the machine is leaving state IDLE to begin
imputing the quotient does r2 get cleared. In other words, when the machine makes
:ransition from state IDLE to state COMPUTEI is the time when r2 becomes zero.
-re is the ASM:
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Here is an example that shows the machine works when x=14 and y=7 :

Figure 5-4.

To illustrate ho

The highlighted line shows where the conditional command to clear r2 occurs. This
takes effect at the next rising edge of the clock, which is when the machine enters state
COMPUTE1 (r2 = 0 on the next line is also highlighted to illustrate this).

Based on the assumptions used throughout all of the chapter 2 examples, the above
ASM executes in 2+2 *quotient clock cycles, which is one clock cycle faster than
the correct ASM of section 2.2.3.

IDLE

IDLE

IDLE

COMPUTE

COMPUTE

COMPUTE

IDLE

IDLE

By the point w
time too many.
save the correc
tion here, it wo
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Figure 5-3. Mealy division machine with two states in loop.

IDLE rl= ? r2= ? pb=O ready=1
IDLE rl= ? r2= ? pb=O ready=1
IDLE rl= 14 r2= ? pb=1 ready=1
COMPUTE1 rl= 14 r2= 0 pb=O ready=O
COMPUTE2 rl= 7 r2= 0 pb=0 ready=O
COMPUTE1 rl= 7 r2= 1 pb=0 ready=O
COMPUTE2 rl= 0 r2= 1 pb=0 ready=O
IDLE rl= 0 r2= 2 pb=0 ready=1
IDLE rl= ? r2= 2 pb=O ready=1
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5.2.2 Merging states COMPUTE1 and COMPUTE2
The above ASM requires about twice as long as the best solution discussed in chapter
2. To achieve the same kind of speed up with the Mealy ASM, we need to do the same
thing we did in chapter 2: the operations in the loop need to occur in parallel. Consider
the following incorrect ASM:

and y7:

Figure 5-4. Incorrect Mealy division ASM.
ready=1

ready=1

ready=.
ready=0

ready=O
ready=O

ready=O
ready=1

clear r2 occurs. This
machine enters state

rate this).

examples, the above
lock cycle faster than

illustrate how this ASM fails, consider when x=14, and y=7:

IDLE
IDLE

IDLE

COMPUTE12

COMPUTE12

COMPUTE12
IDLE

IDLE

rl=
rl=

rl=

rl=

rl=

rl=

rl=

rl=

14

14

7

0
4089

r2=
r2=

r2=

r2=

r2=

r2=

r2=

r2=

? pb=0
? pb=0

? pb=1

0 pb=0
1 pb=0
2 pb=0
3 pb=0
3 pb=0

ready=1

ready=1

ready=1

ready=0

ready=0

ready=0

ready=1

ready=1

I'

By the point when the machine returns to state IDLE, r2 has been incremented one
time too many. In section 2.2.5, this problem was solved by using the r3 register to
save the correct quotient. However, since we are striving for a faster and cheaper solu-
tion here, it would be better to avoid introducing the r3 register in this design.
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5.2.3 Conditionally loading r2
To solve the bug illustrated in section 5.2.2, we need to load r2 only when the machine
stays in the loop, and to keep the old value of r2 when the machine leaves the loop to
return to state IDLE. This of course requires another oval in the ASM:

5.2.4 Ass
The reason tl
machine in 2
cycles while t
ing READY 
be possible to
ing READY
COMPUTE ii
so r2 is not s
state the macd
pb can be pre

The following
state COMPU
bottom of the
loop. When th
machine will I

Figure 5-5. Mealy division ASM with conditional load.

To illustrate that this ASM works correctly, consider the case we looked at in the last
section:

This machine can achieve the correct result in 3 +quotient clock cycles using only
two (instead of three) registers. Therefore, it is as fast as the fastest Moore machine in
chapter 2 using fewer registers.

IDLEE

0

Figure 5-6.
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IDLE rl= ? r2= ? pb=0 ready=1
IDLE rl= 13 r2= ? pb=0 ready=1
IDLE rl= 14 r2= ? pb=1 ready=1
COMPUTE rl= 14 r2= 0 pb=0 ready=0
COMPUTE rl= 7 r2= 1 pb=0 ready=0
COMPUTE rl= 0 r2= 2 pb=0 ready=0
IDLE rl= 4089 r2= 2 pb=0 ready=1
IDLE rl= ? r2= 2 pb=0 ready=1
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only when the machine
whine leaves the loop to
e ASM:

5.2.4 Asserting READY early
The reason that the Mealy machine in section 5.2.3 is no faster than the the Moore
machine in 2.2.7 is because of the assumption that the user waits at least two clock
cycles while the machine asserts READY. In the Moore machines of chapter 2, assert-
ing READY was the same as being in state IDLE, but with a Mealy machine, it would
be possible to assert READY one clock cycle earlier. There are two reasons why assert-
ing READY one clock cycle early works. First, during the last clock cycle of state
COMPUTE in the ASM of section 5.2.3, r2 already contains the correct quotient, and
so r2 is not scheduled to be incremented again. Second, the user is unaware of what
state the machine is in and instead relies on READY to indicate the proper time when
pb can be pressed again.

The following machine asserts READY in state IDLE and in the last clock cycle of
state COMPUTE. When the machine is in state COMPUTE, the rl >= y test at the
bottom of the loop is evaluated at the same time as the rl >= y test at the top of the
loop. When the machine stays in the loop another time, r2 is incremented. When the
machine will leave the loop, READY is asserted instead.

e we looked at in the last

D ready=1

0 ready=l

. ready=1

0 ready=O

0 ready=O

0 ready=O

0 ready=1

0 ready=1

it clock cycles using only
fastest Moore machine in

Figure 5-6. Mealy division ASM with conditional READY
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It would not be legal to attempt to assert READY after leaving the loop because READY
is already asserted in state IDLE. The conditional assertion of READY as shown above
is legal because it can only happen in state COMPUTE. The following illustrates how
READY is asserted for the example when x=14 and y=7 :

Continued

@(posedge

r2 <=
end

en(

end

Although there
sysclk) 0 (
conditional dt

As another ex;

IDLE rl= ? r2= ? pb=0 ready=l
IDLE rl= 14 r2= ? pb=l ready=l
COMPUTE rl= 14 r2= 0 pb=0 ready=0
COMPUTE rl= 7 r2= 1 pb=0 ready=0
COMPUTE rl= 0 r2= 2 pb=O ready=1
IDLE rl= 4089 r2= 2 pb=0 ready=l

The last time in state COMPUTE, r2 is already the correct quotient, and the condi-
tional signal READY is asserted. The user can begin counting clock cycles from this
moment, rather than having to wait an extra clock cycle.

This machine can achieve the correct result in 2 +quotient clock cycles using only
two (instead of three) registers. Therefore, this Mealy machine is cheaper and faster
than any of the Moore machines given in chapter 2.

5.3 Translating Mealy ASMs into behavioral Verilog
Pure behavioral Mealy ASMs that use only RTN can usually be translated into Verilog
quite easily. Often it is as simple as using an i f statement, where the first statement
inside the i f is not time control. (A Moore machine that has an i f decision must have
time control as the first statement inside the body of the i f . Of course nested i f s are
allowed in both Moore and Mealy machines.) The statements inside an i f without
intervening time control correspond to ovals in a Mealy ASM. For example, consider
how the ASM of section 5.2.1 translates into Verilog:

always

begir

end

The condition
because no $t
reevaluated by

As a final exai

always

begi
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always

begin

@(posedge sysclk) enternewstate('IDLE);
rl <= @(posedge sysclk) x;
ready = 1;

if (pb)

begin

r2 <= (posedge sysclk) 0;
while (rl >= y)

begin

@(posedge sysclk) enter_new state('COMPUTEl);
rl <= @(posedge sysclk) rl - y;
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he loop because READY
READY as shown above
following illustrates how

)=O ready=l

)=1 ready=l

)=O ready=O

)=O ready=O
,=O ready=1

)=O ready=l

Continued

@(posedge sysclk) enternewstate('COMPUTE2);
r2 <= (posedge sysclk) r2 + 1;
end

end
end

Although there is time control later inside the if, the statement r2 <= @ (posedge
sysclk) 0 occurs directly after the if with no intervening time control, and so is
conditional during state IDLE.

As another example, consider translating the Mealy ASM of section 5.2.3 into Verilog:
quotient, and the condi-
ig clock cycles from this

clock cycles using only
ine is cheaper and faster

vioral Verilog
be translated into Verilog
where the first statement
an if decision must have
Of course nested i f s are
nts inside an if without
A. For example, consider

COMPUTE1);

The condition (ri >= y) always produces identical results in the if and in thewhile
because no $time passes from when it is evaluated by the if and when it is later
reevaluated by the while.

As a final example, consider translating the Mealy ASM of section 5.2.4:

always
begin

@(posedge sysclk) enternewstate('IDLE);
rl <= @(posedge sysclk) x;
ready = 1;
if (pb)

begin

Advanced ASM Techniques

always

begin

@(posedge sysclk) enternewstate('IDLE);
rl <= (posedge sysclk) x;
ready = 1;
if (pb)

begin

r2 <= (posedge sysclk) 0;
while (rl >= y)

begin

@(posedge sysclk) enternewstate('COMPUTE);
rl <= @(posedge sysclk) rl - y;
if (rl >= y)
r2 <= (posedge sysclk) r2 + 1;

end
end

end

nto Hardware
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5.4 Translating complex (goto) ASMs into behavioral
Verilog

Section 2.1.4 discusses the goto-less style for ASM charts, where every decision is
described in terms of high-level while, if and case constructs. Since Verilog has
statements that correspond to these constructs, it is usually straightforward to translate
such an ASM chart into behavioral Verilog, regardless of whether it is a Moore or
Mealy ASM. It is incorrect to
On the other hand, because Verilog does not provide a goto statement, there are three
situations when translating an ASM chart into Verilog is more difficult. First, transla-
tion is difficult when an ASM chart uses a bottom testing loop construct, similar to the
repeat . . . until of Pascal or do . . . while ( ) of C. Second, translation is
difficult when an ASM chart has intervening time control before the loop exit decision
(as in the ASM of section 2.2.2). Third, translation is difficult when the decision can
only be described with gotos.

The general solution to these difficulties involves using the present_state vari-
able inside if s and whiles. In the behavioral Verilog model of an ASM, the
presentstate variable indicates which algorithmic state the ASM is currently
performing. By testing the present state inside if s and whiles with the ! ==
operator, it is possible to implement arbitrary (goto-like) decisions without needing a
goto statement. Such tests are not part of what the hardware does. Mentioning
present_state in an ASM chart is unnecessary since an ASM chart allows arbi-
trary gotos to any state. Such decisions are required only to overcome a limitation of
Verilog, and so using ! == (rather than ! =) is appropriate. The need for using ! ==

always
begin

@ (posed
stop
speed
while

bec
@d

end
@(poseds

stop 

speed
count

end
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Continued.

r2 <= (posedge sysclk) 0;
while (rl >= y)

begin

@(posedge sysclk) enternewstate('COMPUTE);
rl <= (posedge sysclk) rl - y;
if (rl >= y)

r2 <= (posedge sysclk) r2 + 1;
else

ready = 1;
end

end
end
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ite('COMPUTE);

r- Y;

r2 + 1;

comes from the fact that present_state may be bx. The following three sec-
tions illustrate the three kinds of difficulties, and how testing present_state with

== can solve the problem.

5.4.1 Bottom testing loop
A bottom testing loop is, technically speaking, "goto-less," but such a loop is still
difficult to translate because Verilog does not provide a bottom testing loop construct
in the language. In essence, since such a construct does not exist, the decision at the
bottom of the loop has to be thought of as a conditional goto that branches to the top
of the loop. (In the pure structural stage, this is how the loop would be implemented by
the computation of the next state in the stategen function.) In the pure behavioral
stage, since Verilog lacks a goto statement, the only choice is to describe such a loop
using awhile.

As an illustration, consider the nonsense ASM chart from section 2.1.2.1. Suppose the
states are assigned the following representations:

into behavioral

where every decision is
tructs. Since Verilog has
aightforward to translate
vhether it is a Moore or

It is incorrect to translate the loop involving state YELLOW using just a while:

statement, there are three
re difficult. First, transla-
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ecisions without needing a
rdware does. Mentioning
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. The need for using ! ==

)always
begin

l. (posedge sysclk) enter new state('GREEN);
stop = 0;
speed = 3;

while(count 1= 0)

begin
@(posedge sysclk) enter newstate('YELLOW);

stop = 1;
speed = 1;
count <= @(posedge sysclk) count + 1;

end

@(posedge sysclk) enter_new-state('RED);

stop = 1;

speed = 0;
count <= @(posedge sysclk) count + 2;

end

189into Hardware Advanced ASM Techniques

'define NUMSTATEBITS 2

'define GREEN 2'bOO

'define YELLOW 2'bOl

'define RED 2'blO



because the count ! = 0 test in the while occurs as part of both states GREEN as well
YELLOW, but in the original ASM the test is part of state YELLOW only. To illustrate
this problem, consider the simulation of the above while loon

end

When the m
!== will be 

whether the
state GREEI
condition is 
tion. It does i

simulation of

The condition in the while is evaluated in state GREEN at $time 51, which is the
problem. At $ time 170, the machine has gone directly to state RED, rather than to
state YELLOW where it is supposed to be. This error occurs because the whi 1 e loop
has inserted an extra (incorrect) test whether count ! = 0 in state RED. Because count
is zero, the machine avoids state YELLOW altogether, which is not the desired behav-
ior.

It is an unavoidable feature of Verilog that the behavioral construct that we have to
implement this loop is the while statement. Awhile loop always tests at the top of
the loop, but in hardware, as is the case here, we often want to test at the bottom of the
loop. To implement the ASM of section 2.1.2.1 correctly for Verilog simulation re-
quires nullifying the fact that this while loop executes both in state GREEN and in
state YELLOW. To overcome this problem, the correct code ORs the original ASM
condition with a ! == test that mentions the bottom state of the loop. In this example,
because there is only the state YELLOW in the loop, the whi le condition ORs count
!= 0 withpresentstate !== 'YELLOW:

$timne
$ t ime:$time:
$time-

$time-

$time=
$time=

$time=

$time=

$time=

$time=

$time=

. . .

At$ time 17C
clock cycle cc

5.4.2 Tim
An ASM chart
section 2.2.2 ft
problem with 
algorithmic tof
that Verilog ha
"while" loop
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$time= 70 ps=00 stop=0 speed=1l count=000
$time= 170 ps=10 stop=1 speed=00 count=000
$time= 270 ps=00 stop=0 speed=1l count=010
$time= 370 ps=00 stop=1 speed=01 count=010
$time= 470 ps=01 stop=l speed=01 count=011
$time= 570 ps=01 stop=1 speed=01 count=100
$time= 670 ps=01 stop=1 speed=01 count=101
$time= 770 ps=01 stop=1 speed=01 count=110
$time= 870 ps=01 stop=1 speed=01 count=111
$time= 970 ps=01 stop=1 speed=01 count=000
$time= 1070 ps=10 stop=1 speed=00 count=001

always

begin

@(posedge sysclk) enternew state('GREEN);
speed = 3;
while(count != 0 present-state !== 'YELLOW)

begin

@(posedge sysclk) enternewstate('YELLOW);
stop = 1;
speed = 1;
count <= @(posedge sysclk) count + 1;

end

Continued.

190



th states GREEN as well
.LOW only. To illustrate

.1 count=000
10 count=000

A1 count=010
)1 count=010

)1 count=011
)1 count=100
)1 count=101
)1 count=110
)1 count=111
)1 count=000
)0 count=001

Continued.

@(posedge sysclk) enter-newstate('RED);
stop = 1;
count <= (posedge sysclk) count + 2;

end

When the machine is in the bottom state of the loop (YELLOW in this example), the
!== will be false, and the original ASM condition will be the only thing that decides
whether the while loop continues. When the machine is in any other state, such as
state GREEN, the ! == will be true (even if present state is bx), and so the ORed
condition is true. The loop will begin execution, regardless of the original ASM condi-
tion. It does not matter whether count ! = 0; the loop will execute at least once. The
simulation of this code shows that it correctly models the behavior of the original ASM:

$time 51, which is the
tate RED, rather than to
iecausethewhile loop
te RED. Because count
is not the desired behav-

)nstruct that we have to
always tests at the top of
test at the bottom of the
r Verilog simulation re-
t in state GREEN and in
, ORs the original ASM

ie loop. In this example,
e condition ORs count

GREEN);

- 'YELLOW)

te('YELLOW);

ount + 1;

At $ time 170, the machine has entered state YELLOW as it should. Since during that
clock cycle count is zero, the machine proceeds to state RED.

5.4.2 Time control within a decision
An ASM chart that is translated directly from a software paradigm while loop (see
section 2.2.2 for an example) would appear to be goto-less, but in fact it is not. The
problem with such an ASM chart is that it must have @ time control between the
algorithmic top of the loop and the place where the decision occurs. Despite the fact
that Verilog has a while loop, the testing of the condition required by a software
"while" loop occurs in the middle of the loop (after the @), rather than at the algo-

Advanced ASM Techniques

$time= 70 ps=00 stop=0 speed=l1 count=000
$time= 170 ps=01 stop=1 speed=01 count=000
$time= 270 ps=10 stop=1 speed=00 count=001
$time= 370 ps=00 stop=0 speed=11 count=011
$time= 470 ps=01 stop=1 speed=01 count=011
$time= 570 ps=01 stop=1 speed=01 count=100
$time= 670 ps=01 stop=1 speed=01 count=101
$time= 770 ps=01 stop=1 speed=01 count=110
$time= 870 ps=01 stop=1 speed=01 count=111
$time= 970 ps=01 stop=1 speed=01 count=000
$time= 1070 ps=10 stop=1 speed=00 count=001
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rithmic top of the loop (as required by Verilog's while construct). The reason for this
@0 time control is to give the algorithm $ time to make the decision before any compu-
tations occur that could effect the outcome of the decision.

Again, it is possible to overcome this kind of problem using a present-state == test.
For example, consider translating the Moore ASM chart of section 2.2.2 into behav-
ioral Verilog:

module slowdivsystem(pb,ready,x,y,r2,sysclk);

input pb,x,y,sysclk;

output ready, 2;
wire pb;

wire [11:0] x,y;
reg ready;

reg [11:0] rl,r2;
reg ['NUMSTATE-BITS-1:0] present state;

where the state

always

begin
@(posedge sysclk) enter_new state('IDLE);

rl <= @(posedge sysclk) x;
ready = 1;
if (pb)

begin

@(posedge sysclk) enternew state('INIT);
r2 <= @(posedge sysclk) 0;
while ((rl >= y)|presentstate !=='TEST)
begin

@(posedge sysclk)enter new state('TEST);
if (rl >= y)

begin
@(posedge sysclk enter new state('COMPUTEl);

rl <= @(posedge sysclk) rl - y;
@(posedge sysclk) enternew state('COMPUTE2);

r2 <= @(posedge sysclk) r2 + 1;
end

end

end

end
task enter newstate;
input ['NUM_STATE_BITS-1:0] this-state;
begin

present-state = thisstate;
#1 ready=0;

end

endtask

The troublesoi
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Continued

always @(1
sa$isplay

timE

lendmodule
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i present-state ! == test.
ection 2.2.2 into behav-

Continued

always (posedge sysclk) #20
$display("'%d ps=%b rl=%d r2=%d pb=%b ready=%b",

$time, present_state,r1,r2, pb, ready);
endmodule

where the states are represented as:

'define NUMSTATEBITS 3
'define IDLE 3'bOOO
'define INIT 3'bOOl
'define TEST 3'bOlO
'define COMPUTEl 3'bOll
'define COMPUTE2 3'blOO

'INIT);

=='TEST)

'TEST);

_state('COMPUTEl);

rl - y;

_state('COMPUTE2);

r2 + 1;

The troublesome state here is state TEST. There is a Verilog while loop whose body
includes state TEST and an if statement that includes the other states of the ASM
loop. Three situations can occur with the Verilog while loop: It is possible that the
while loop is being entered for the first time from state INIT, it is possible that the
while loop is to be reexecuted from state COMPUTE2, and it is possible that the
while loop is to exit from state TEST. In each of these three situations, the condition
inside the Verilog while loop is evaluated. The only one of these three situations in
which the Verilog loop body does not proceed to execute is when the ASM loop exits
from state TEST. The other two situations (from state INIT and state COMPUTE2) are
guaranteed to stay inside the Verilog while loop. Therefore, the present state
!== 'TEST condition makes sure that the next thing to execute in both of those two
situations will be the algorithmic top of the Verilog while loop (state TEST).

In order to allow the Verilog whi le loop to exit at the identical $ time that the ASM
loop exits, there is a nested if inside the Verilog while loop, after state TEST. This
if uses the same ASM condition (rl >= y) that was also mentioned in the Verilog
while loop. In the situation when this condition is false, no $ time has elapsed be-
fore theVerilogwhile condition ( (rl >= y) presentstate ! == 'TEST) is
re-evaluated. Since the present state is state TEST and ASM condition (rl >= y) re-
mains false since no $ time has elasped, the Verilog whi e loop exits properly. Here
is a simulation for x=14 and y=7:
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The Mealy A
below (using

9370 ps=000 rl= 13 r2= 1 pb=0 ready=l
9470 ps=000 rl= 14 r2= 1 pb=1 ready=l
9570 ps=001 rl= 14 r2= 1 pb=0 ready=0
9670 ps=010 rl= 14 r2= 0 pb=0 ready=0
9770 ps=011 rl= 14 r2= 0 pb=0 ready=0
9870 ps=100 rl= 7 r2= 0 pb=0 ready=0
9970 ps=010 rl= 7 r2= 1 pb=0 ready=0

10070 ps=011 rl= 7 r2= 1 pb=0 ready=0
10170 ps=100 rl= 0 r2= 1 pb=0 ready=0
10270 ps=010 rl= 0 r2= 2 pb=0 ready=o
10370 ps=000 rl= 0 r2= 2 pb=0 ready=l

5.4.3 Arbitrary gotos
It is poor style to use arbitrary gotos. Therefore such an example is not presented
here. Nevertheless, regardless of how messy the ASM, some combination of if s and
whiles that use === and tests with the present_state can implement the
ASM in Verilog.

5.5 Translating conditional command signals into
Verilog

To translate a Mealy ASM, such as the one in section 5.1. 1, that has conditional com-
mand signals (rather than conditional RTN), enternewstate must include all
the Mealy command signal outputs. In the example ASM of section 5.1. 1, the task has
four commands to initialize, each of which has a default of zero:

always
begin

@ (po;
sp,
wh.

lea
@ (poE

stc

col-

end

The diamond,
by the stay 
time control bi
if (and the pa
zero, which m
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On the other h;
not execute,
enternew_
count !=0.S
has elasped. Ti
the final call to
fore the last cy
one, but stay

Since this is a
exits from the 
from state GRE
'YELLOW.) Th

Initializing such conditional command signals is important because in many situations
the Mealy command is explicitly mentioned only on certain paths through the ASM.
By describing the default values for all outputs (whether they are Mealy or Moore) in
enternew_state, the behavioral Verilog will be a one-to-one mapping of the cor-
responding ASM chart. In the above Ve
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task enter-new-state;

input ['NUM_STATE_BITS-l:0] this_state;
begin

presentstate = this_state;
#1 stop =0;

speed = 0;
stay = 0;
leave = 0;

end

endtask
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The Mealy ASM chart of section 5.1.1 then can be translated into Verilog as shown
below (using the ! == technique described in section 5.4.1):

ample is not presented
ombination of i f s and
ste can implement the

inals into

at has conditional corn-
tate must include all
ction 5.1. 1, the task has

The diamond and oval inside the loop simply translate into an if statement followed
by the stay = 1 statement, with no intervening time control. Therefore, there is no
time control between the return from enternew-state and the execution of the
if (and the possible consequent execution of stay= 1.) Suppose that count is non-
zero, which means stay becomes one at the same $time that speed and count
become one. Since leave is not mentioned inside the loop, it retains its default value
of zero.

On the other hand, suppose count is zero inside the loop. This means stay=1 does
not execute, and so stay retains its default value (of zero) given to it by
enternewstate. No $time passes at the point where thewhile retests whether
count !=0. Since count is zero, thewhile isguaranteedtoexit, butstill no $time
has elasped. This means that the leave=1 statement executes at the same $time as
the final call to enternewstate ( ' YELLOW) returns back to the loop body. There-
fore the last cycle in which the machine is in state YELLOW will output leave as
one, but stay as zero.

Since this is a correct translation of a bottom testing loop, the only way the machine
exits from the while loop is from state YELLOW. (It is not possible to get directly
from state GREEN to the exit of the while because of the presentstate I ==
'YELLOW.) Therefore, this Verilog is a one to one mapping of the ASM.

In the above Verilog, the states are represented as:

ause in many situations
aths through the ASM.
are Mealy or Moore) in
one mapping of the cor-
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) ready=l
ready=l

) ready=0
) ready=0
) ready=0
) ready=0
) ready=0
) ready=0
) ready=0
) ready=O
) ready=l

always
begin

@(posedge sysclk) enternew-state('GREEN);
speed = 3;
while(countl=0 I present-state !== 'YELLOW)

begin
@(posedge sysclk) enternew state('YELLOW);

stop = 1;
speed = 1;
count <= (posedge sysclk) count + 1;
if (countl=O)

stay = 1;
end

leave = 1;
@(posedge sysclk) enternew state('RED);

stop = 1;
count <= (posedge sysclk) count + 2;

end

o Hardware



'define NUMSTATEBITS 2
'define GREEN 2'bOO
'define YELLOW 2'bOl
'define RED 2'blO

and the following declarations occur at the beginning of the module:

reg stop;
reg [1:0] speed;
reg [2:0] count;

reg ['NUMSTATE BITS-1:0] presentstate;
reg stay,leave;

Such an ASM
modeled in Ve

5.6 Single-state Mealy ASMs
As discussed in section 2.4.1, an ASM with four rectangles requires two bits to repre-
sent those states. An ASM with two rectangles requires only one bit to represent those
states. What about an ASM with only one state? As explained in section 2.5, an ASM
with only one rectangle represents pure combinational logic and therefore needs zero
bits to represent the state. (The machine is always in that one state, and so it is not
necessary to record which state the machine is in.)

The oval notation allows such an ASM to have an arbitrarily complex decision happen-
ing in that one state. For example, a decoder, whose input is a two-bit bus, inbus, and
whose outputs are o, o, o2 and o3 can be described as:

1 4

inbus == 2 1o

nbus == 1o

0

Figure 5-7. ASM for combinational logic (decoder).
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Such an ASM bears a close resemblance to the way in which a combinational device is
modeled in Verilog:

The only difference between the ASM and the Verilog is that the Verilog needs the
proper time control for combinational logic, which is @ followed by a sensitivity list,
rather than any mention of the system clock.

quires two bits to repre-
ne bit to represent those
in section 2.5, an ASM
nd therefore needs zero
te state, and so it is not 5.7 Conclusion

mplex decision happen-
wo-bit bus, inbus, and

Moore machines have commands that occur when the machine is in a particular state.
Mealy machines allow commands in a particular state to occur based on status. This
chapter shows how Mealy ASMs allow a designer to express faster and better algo-
rithms. Like Moore ASMs, Mealy ASMs have unconditional commands in rectangles.
Unlike Moore ASMs, Mealy ASMs have conditional commands in ovals that follow
diamonds. The conditional commands in the ovals happen at the same time as the
unconditional commands in the rectangle and the decisions in the diamonds.

Translating a Mealy ASM into behavioral Verilog is usually simple, typically involving
an i f statement with no intervening time control. When the ASM involves command
signals (rather than RTN), as would be the case at the mixed stage, the
enternewstate task must initialize the conditional commands. SomeASMs (both
Moore and Mealy) cannot be expressed in the goto-less style with simple whiles
and i f s. Such ASMs need to be translated into Verilog using !== tests of
presentstate. Acommon example of anASM that must be translated into Verilog
with a present state ! == test is a bottom testing loop. These techniques work
only for simulation. See chapter 11 for synthesis techniques.

Single-state Mealy ASMs are a general notation to describe combinational logic in a
behavioral fashion. As such, they are closely related to the behavioral Verilog descrip-
tion of combinational logic.
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,odule:

-state;

wire [1:0] inbus;
reg oO,ol,o2,o3;

always @(inbus)
begin

oO = 0; o = 0; o2 = 0; o3 = 0; //defaults
case (inbus)

0: 00 = 1;
1: 01 = 1;
2: o2 = 1;

3: o3 = 1;

endcase

end
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6. DESIGNING FOR
SPEED AND COST

Chapter 2 uses ASM charts as a description of how to carry out each step of an algo-
rithm in an arbitrarily chosen unit of physical time, known as the clock cycle. Chapter
3 introduces Verilog's $ t ime variable, whose incrementation by the Verilog scheduler
simulates the passage of physical time in the fabricated hardware. The example Verilog
clock (section 3.7.1.3) used in chapters 3 through 5 has an arbitrarily chosen clock
period of 100 units of $time. The exact amount of physical time that this 100 units of
Verilog $ time relates to is not specified nor is it of any concern in chapters 3 through
5. Up to this point, the emphasis has been on designing correct algorithms and imple-
menting them properly in hardware. The only attempt to increase speed in chapters 2
through 5 is by doing more steps in parallel, thereby requiring fewer clock cycles. The
number of clock cycles required by an ASM chart is a mathematical property of the
algorithm and is separate from its physical implementation.

The total physical time required by a machine to compute an answer is the number of
clock cycles required by the algorithm multiplied by the physical time of the clock
period used in the hardware implementation. Physical clocks are often measured in
frequency, rather than time. There is a reciprocal relationship between clock period and
clock frequency. For example, what is the total time required to divide 14 by 7 using the
machine described in section 2.2.7 when that machine is clocked at 200 MHz? Ac-
cording to the analysis there, the number of clock cycles required by the algorithm
(including the time for two clock cycles in state IDLE) is 3 +quot i ent= 5 clock cycles.
The clock period in this example is 5 ns, and so the total time is 25 ns.

In the first stages of design, algorithmic correctness and speed only in terms of clock
cycles are the primary focus of the designer. The harsh physical reality of time should
enter into the designer's thinking only after the design has been synthesized. This chap-
ter shows how the $ time features of a Verilog simulator allow a designer to experi-
mentally determine the speed of a synthesized design without having to fabricate it.
This chapter also illustrates three alternative design techniques that allow a trade-off
between speed and cost should a synthesized design fail to meet its speed require-
ments.
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The factors that determine the maximum clock frequency include the delay of signals
on each wire, the propagation delay of each gate, the way such gates and wires are
interconnected to form building blocks (such as adders) and the way such building
blocks are interconnected to form the problem-specific architecture and the controller.
The designer does not have much influence on the first three factors. The implementa-
tion technology (not the designer or the synthesis tool) determines the delays of wires,
gates and devices. (Of course, the designer can choose to use a more expensive technol-
ogy to achieve higher speed. For example, by fabricating custom silicon with smaller
chip dimensions, the propagation delays of each gate are correspondingly reduced.) At
best, the designer can only give hints to the synthesis tool to favor either lower-cost
building blocks or higher-speed building blocks. If speed is essential, the designer can
manually create a netlist for a shallow (high-speed) building block, but this circum-
vents the advantages of the synthesis tool.

When using a synthesis tool, the only major factor to increase speed over which a
designer has much control is the way building blocks are interconnected to form the
architecture and the controller. The end of this chapter discusses various methods that
the designer has at the architectural level to increase speed at minimum cost. But first,
the next sections look at netlist level propagation delay, which is the underlying cause
of this difficulty.

6.3 Example of netlist propagation delay
Putting propagation delays at the netlist level is easy. You simply instantiate the built-in
gate with a parameter, which is the delay in units of $ t ime. (This works only for built-
in gates, since parameters in user-defined modules take on whatever meaning the user
desires.)

Section 2.5 explains how a two-bit adder black box can be decomposed down to the
gate level using hierarchical design. Sections 3.10.6 and 3.10.7 give the equivalent
structural (hierarchical) Verilog modules for this adder assuming no propagation delay.
As an example of modeling propagation delay, assume and and or gates have a delay
of one unit of $ time, and the more complicated xor gates have a delay of two units of
$time. A slight change to the modules from sections 3.10.6 and 3.10.7 will provide a
much more realistic model of what the actual hardware does:
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Assuming this module is instantiated as before:

adder adderl(sum,a,b);

the following diagram illustrates the interconnection of gates described by the above
Verilog:
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module halfadder(c,s,a,b);

input a,b;
wire a,b;
output Cs;

wire c,s;
xor #2 xl(s,a,b);

and #1 al(c,a,b);
endmodule

module full-adder(cout,s,a,b,cin);
input a,b,cin;
wire a,b,cin;

output couts;
wire cout,s;

wire coutl,cout2,stemp;
halfadder ha2(coutl,stemp,a,b);
halfadder ha3(cout2,s,cin,stemp);

or #1 ol(cout,coutl,cout2);
endmodule

module adder(sum,a,b);

input a,b;
output sum;
wire [1:0] a,b;
wire [2:0] sum;
wire c;

halfadder hal(c,sum[O],a[O],b[0]);
fulladder fal(sum[2],sum[l],a[l],b[l],c);

endmodule

Is

U
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Figure 6-1. Adder with names used in structural Verilog.

6.3.1 A priori worst case timing analysis
Without using simulation, we could determine how long it takes in the worst case for
the above modules to stabilize. There are many possible paths through the gates that
have to be considered to determine the longest path. For example, there is a depen-
dency of sum [2] on a [ 0 ] . A change in a [ ] could cause an incorrect result for
sum [2] until the effects of the change in a [0] can propagate through the path to
sum[2]. The following shows where this change has to propagate, and how much
$time is required:
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There is also a dependency of sum [ 1 ] on a [0]. The following shows where the
change in a [0] has to propagate, and how much $ time is required:

e worst case for
gh the gates that
iere is a depen-
rrect result for
ugh the path to
and how much

There are other similar delay paths, but none of them are longer than five units of
$ time. Therefore, whatever code instantiates adder must wait more than five units
of $ time after changing a and b before using sum.
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Verilog name total delay thus far

a[O] 0
adderl.a[0J 0
adderl.hal.a 0
adderl.hal.al 1
adderl.hal.c 1
adderl.c 1
adderl.fal.a 1
adderl.fal.ha2.a 1
adderl.fal.ha2.al 2
adderl.fal.ha2.c 2
adderl.fal.coutl 2
adderl.fal.ol 3
adderl.fal.c 3
adderl.sum[2] 3
sum[2] 3

-0-+ sum
3

Verilog name total delay thus far

a[0] 0
adderl.a[O] 0
adderl.hal.a 0
adderl.hal.al 1
adderl.hal.c 1
adderl.c 1
adderl.fal.a 1
adderl.fal.ha2.a 1
adderl.fal.ha2.xl 3
adderl.fal.ha2.s 3
adderl.fal.stemp 3
adderl.fal.ha3.a 3
adderl.fal.ha3.xl 5
adderl.fal.ha3.s 5
adderl.sum[l] 5
sum[l] 5

P-

5l;
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The test module in section 3.10.5 did not do this, so it would print out incorrect values
for sum. If you simulate adderl with the test code from section 3.10.5, most of the
results printed out will be wrong. This is because the #1 in the test code is an inad-
equate amount of $time for adder 1 to stabilize on the correct answer.

6.3.2 Simulation timing analysis
In circuits more complex than this trivial example, it is difficult to do a priori timing
analysis, especially on a synthesized netlist. Also, since a priori analysis finds the worst
case propagation delay, such analysis may be overly pessimistic. Therefore, designers
often use post-synthesis simulation to obtain timing information about the design.

In this example, according to the a priori timing analysis, the test code for the adder
module described in section 6.3.1 needs to wait longer than #5. If we use simulation to
do the timing analysis, we would take a guess and check if the guess is an adequate
amount of delay. Here we try #7:

module top;

integer ia,ib;
reg [1:0] a,b;
wire [2:0] sum;
reg [2:0] oldsum;

adder adderl(sum,a,b);

always #1
begin
#0 if (a+b==sum)

$display("a=%d b=%d sum=%d CORRECT
a,bsum,$time);

else
if (sum==oldsum)
$display("a=%d b=%d sum=%d WRONG LAG

a,b,sum,$time);

end
initial

else
$display("a=%d b=%d sum=%d

a,b,sum,$time);
oldsum = sum;

$time=%d",

$time=%d",

WRONG GLITCH $time=%d",

6.3.3 Haz
In addition to
an always b]
(#0) of each 
adder (sum) is
it prints out a 
for a "WRONG
what sum use
behind the cW
the change in
combinational
glitch). Hazar(

Here is a parti
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Continued

begin
for (ic
begin
a = 

for
begi

#7

end
end
$fini.

end
endmodule
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Continued

begin

for (ia=O; ia<=3; ia = ia+1)
begin

a = ia;

for (ib=O; ib<=3; ib = ib + 1)
begin

b = ib;
#7 if (a + b === sum)

$display("

else

$display("
end

end

$finish;

end

endmodule

tested CORRECT');

tested WRONG");

6.3.3 Hazards
In addition to the initial block in the test code of section 6.3.2, it is helpful to have
an always block that monitors the change in sum at every unit of $time. At the end
(#0) of each unit of $time, the always block checks if the current output of the
adder (sum) is equal to a+b. If it is, it prints out the "CORRECT " message. If it is not,
it prints out a message explaining the reason why. There are two possible explanations
for a "WRONG" value of sum. The first is that the current value of sum is the same as
what sum used to be at the previous unit of $time. In other words, sum is lagging
behind the change in a or b. The other possible error is that sum has changed (due to
the change in a or b) to an incorrect value. Such a momentary incorrect value from
combinational logic with propagation delay is known as a hazard (also known as a
glitch). Hazards occur when combinational logic internally has different path delays.

Here is a partial output of this simulation:
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WRONG GLITCH

WRONG GLITCH

WRONG GLITCH

CORRECT

CORRECT

CORRECT

WRONG LAG

WRONG LAG

CORRECT

CORRECT

CORRECT

CORRECT

CORRECT

WRONG LAG

WRONG LAG

WRONG GLITCH
WRONG LAG

CORRECT

CORRECT

CORRECT

$time= 1
$time= 2
$time= 3
$time= 4
$time= 5
$time= 6

tested CORRECT
$time= 7
$time= 8
$time= 9
$time= 10
$time= 11

$time= 12
$time= 13

tested CORRECT

$time= 70
$time= 71
$time= 72
$time= 73
$time= 74
$time= 75
$time= 76

tested CORRECT

(since the input
to an incorrect
stabilizes on th

Although the a
would always t
partial output c

a=O I
a=O I
a=O I

a=O I

a=O I

a=O I

a=O I

a=2 ]
a=2 I

a=2 I

a=2 I

In the above, for cases such as a= 0 b= 1, the output of sum simply retains its old value
until sum makes a single change to the correct value. In essence, in these cases, it is
like describing the adder with the following behavioral block:

Although four
failed to stabili
correct behavic
our machine tt
tional logic sta
ation is unlike]
Verilog simula
analysis would

6.3.4 Adv
Verilog provid
ing delays, mir
allows us to m
gate to change
output to zero.
units of $tim
output change!

where DELAY is an integer propagation delay. Although the above is an attractive way
of viewing propagation delay, it does not describe the more complex behavior that
occurs in other cases. For example, in the simulation of the adder given in section 6.3,
for cases such as a=2 b= 3, at first (like the other cases) the output makes no change
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a=O

a=O

a=O

a=O

a=O

a=O

a=O

a=O

a=O

a=O

a=O

a=O

a=O

a=2

a=2

a=2

a=2
a=2

a=2

a=2

b=O

b=O

b=O

b=O

b=O

b=O

b=1

b=1

b=l

b=l

b=l

b=l

b=l

b=2

b=2

b=2

b=2

b=2

b=2

b=2

sum=X

sum=X

sum=X

sum=O

sum=O

sum=O

sum= 0

sum= 0

sum=l

sum=l

sum=l

sum=l

sum=l

sum=3

sum=3

sum=6

sum=6

sum=4
sum=4

sum=4

module adder(sum,a,b);
parameter DELAY=1;

output sum;

input a,b;

reg [2:0] sum;

wire [1:0] a,b;

always (a or b)

# DELAY sum=a+b;

endmodule
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(since the input change has not yet propagated to the output). Later, the output changes
to an incorrect result that is different from the earlier value of sum. Finally, the output
stabilizes on the correct result.

Although the a priori analysis using the circuit diagram indicates that more than #5
would always be safe, we could use simulation to see if #4 would be enough. Here is a
partial output of this simulation:

Although four units of $ time was enough for the adder to stabilize in many cases, it
failed to stabilize for all of them. Therefore, a longer period is required for completely
correct behavior for any possible input. On the other hand, if we knew before we build
our machine that the inputs would always be among those cases where the combina-
tional logic stabilizes early, we could run the machine faster. For an adder, such a situ-
ation is unlikely, but for other kinds of combinational logic, we might be able to use
Verilog simulation to determine that our machine can run faster than a priori worst case
analysis would predict.

6.3.4 Advanced gate-level modeling
Verilog provides three additional features for modeling gate-level delays: rising/fall-
ing delays, minimum/typical/maximum delays and speci fy blocks. The first of these
allows us to model the fact that, for many electronic gate technologies, the time for a
gate to change its output to one is not the same as the time for the gate to change its
output to zero. For example, suppose the xor in the half-adder of section 6.3 takes two
units of $ time when its output changes to a one, but three units of $ time when its
output changes to a zero:
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a=0 b=0 sum=X WRONG GLITCH $time= 1

a=0 b=0 sum=X WRONG GLITCH $time= 2

a=0 b=0 sum=X WRONG GLITCH $time= 3

tested WRONG
a=0 b=1 sum=0 WRONG GLITCH $time= 4

a=0 b=1 sum=0 WRONG LAG $time= 5

a=0 b=1 sum=1 CORRECT $time= 6

a=0 b=1 sum=l CORRECT $time= 7

tested CORRECT

a=2 b=2 sum=3 WRONG LAG $time= 40
a=2 b=2 sum=3 WRONG LAG $time= 41
a=2 b=2 sum=6 WRONG GLITCH $time= 42
a=2 b=2 sum=6 WRONG LAG $time= 43

tested WRONG
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xor #(2,3) xl(s,a,b);

Note that the xor in section 6.3 could have been described as:

I - xor #(2,2) xl(s,a,b);

The second of these advanced gate delay features allows us to model that there are
certain variations in the fabrication process that affect the speed of supposedly identi-
cal gates at the time of physical manufacturing. Even though the gates are supposed to
be identical, these minor variations mean some of the gates will be slower than others.
The maximum speed possible would be obtained if there were no variation during
fabrication. Using statistical quality control methods, manufacturers determine the typical
speed expected given random variations and determine a minimum acceptable speed
by discarding parts that do not obtain this speed. Many Verilog simulators allows
resimulation at each of these three speeds without recompilation by specifying these
three delays separated by colons. For example, the following:

xor #(1:2:3) xl(s,a,b);

indicates a minimum delay of 1, a typical delay of 2 and a maximum delay of 3. The
way in which this is used depends on a particular simulator, and not all simulators
implement this feature.

The third of these advanced gate delay features, known as the speci f y block, allows
us to model delays within modules without having to indicate delays on individual
gates. For example, the following module is equivalent to the one given in section 6.3:
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Continued

xor xl(I
and al((

endmodule

Not all simul
mentation for
chapter.
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6.4.1 Inai
The simplest 
gation delay i:
by the first pa

module ai
paramete:
output s
input a,:
reg [SIZ:

wire [SI.
always

# DE:

endmodul

module halfadder(c,s,a,b);

input a,b;

wire a,b;

output Cs;
wire c,s;

specify

(a >= c) = 1;

(a >= s) = 2;

(b >= c) = 1;

(b >= s) = 2;
endspecify

PWI-
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Continued

xor xl(s,a,b);
and al(c,a,b);

endmodule

1 that there are
posedly identi-
are supposed to
Ver than others.
ariation during
Mine the typical
tceptable speed

ulators allows

pecifying these

elay of 3. The
all simulators

V block, allows
Ion individual
in section 6.3:

Not all simulators support specify blocks. For more information, check the docu-
mentation for your simulator, or see the book by Palnitkar mentioned at the end of this
chapter.

6.4 Abstracting propagation delay
As the previous sections illustrate, once a design has been synthesized down to the gate
level, Verilog can provide a fairly accurate model of propagation delay. A problem
arises if one wishes to estimate propagation delay before synthesis. For a given tech-
nology, manufacturers usually publish a priori estimates of worst case propagation de-
lays for bus-width building blocks (such as adders). We would like to be able to use
such worst case estimates to simulate the propagation delay of an architecture when it
is still at the mixed stage (block diagram). The problem is that the propagation delay of
a physical bus-width device exhibits itself only as specific hazards (like those illus-
trated in section 6.3.3) that require a synthesized netlist to be simulated.

This section illustrates how Verilog can be used to model abstractly the propagation
delay of a bus-width device. The correct Verilog code for doing this uses some rela-
tively advanced features of Verilog. To motivate the need for these features, we will
first consider some incorrect attempts at modeling propagation delay.

6.4.1 Inadequate models for propagation delay
The simplest Verilog code for a bus-width device that includes some notation of propa-
gation delay is similar to the code given in 6.3.3, except that the port sizes are defined
by the first parameter, and the propagation delay is defined by the second parameter:

Designingfor Speed and Cost

module adder(s,a,b);

parameter SIZE = 1, DELAY = 0;
output s;
input a,b;

reg [SIZE-1:0] s;

wire [SIZE-1:0] a,b;

always @(a or b)

# DELAY s=a+b;
endmodule
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As explained in section 6.3.3, this code is deficient because it does not model cases
where there is a hazard but instead always models the error as a lag.

How should a hazard be represented abstractly? The specific value that presents itself
when a hazard occurs can only be predicted from the synthesized netlist. Instead, at the
abstract level, we will use bx to represent the hazard.

Although this is an improvement, the above still has a flaw. To see why it is deficient,
consider the following design which instantiates the above adder twice:

a / o a.a
12 + a.s 124 a2.a

1/2 > lb c 1 a2. b 1 2 s

8ns -- 1- Ons
lo 18ns worst cas e~

Figure 6-2. Two instantiations of adder-.

module tE
reg [11

wire [:
adder 

adder 

initial

begir

#3C

#4C

end

always

$disr

always

$disr

endmodulE

This is illustra

The following test code gives an example how the last definition of adder gives a
misleading result from simulation:

The test code ii
8, and the seco
b and c to ch;
$time units (
shows the corr

This flaw exis
change in t (,
additional 10 
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module adder(s,a,b);

parameter SIZE = 1, DELAY = 0;
output s;
input a,b;

reg [SIZE-l:0] s;
wire [SIZE-l:0] a,b;

always (a or b)
begin

s = 'bx;
# DELAY sa+b;

end

endmodule

- P-
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model cases

resents itself
nstead, at the

t is deficient,

module test;
reg [11:0] a,b,c;

wire [11:0] t,s;
adder #(12,8) al(t,a,b);
adder #(12,10) a2(s,t,c);

initial

begin

a 0;

b 0;

C = 0;

#30 a = 100;

b = 20;

c = 3;

#40 $finish;

end

always @(s)
$display("$time=%d s=%d",$time,s);

always (t)
$display("$time=%d t=%d ,$time,t);

endmodule

$time= 0 t=x

$time= 0 s=x

$time= 8 t= 0
$time= 10 s= 0

$time= 30 t=x

$time= 30 s=x
$time= 38 t= 120

$time= 40 s= 123

Older gives a

I'

1%
a

This is illustrated by the simulation produced from the above test code:

0

The test code instantiates two adders. The first instance, a , has a propagation delay of
8, and the second instance, a2, has a delay of IO. At$time 30, the test code causes a,
b and c to change. A worst case analysis indicates that it should take 18 additional
$ t ime units ($ t ime=48) to produce the sum of 100+20+3; however the simulation
shows the correct sum in only 10 $ t ime units ($ t ime=40).

This flaw exists because the always block for a2 is still delaying (#10) when the
change in t (also known as a2 a) occurs at $ t ime=38. Rather than delaying an
additional 10 units of $time from $time=38, Verilog simply returns to the � time
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control at $ time 40. Since a2 . a is stable at $ time 40, the algorithmically correct
answer 123 is available too soon. This Verilog model allows us to conclude that the
machine could run faster than is physically possible.

6.4.2 Event variables in Verilog
Verilog provides special variables, known as event variables, that are helpful in over-
coming the problems shown in the last section. Variables declared as events are used
only in two places: First, in a triggering statement:

and, second, in time control:

Note: There are no parentheses around the variable in the @ time control. The ->
triggers the corresponding @ to be scheduled. For example, the following prints "10"
and "30":

Unfortunately
result 123 is ai

6.4.3 The
This statement
it causes them
optional label
statement ovei

Here is an example of how an event could be used to model the adder:

module adc

parametE

output 

input a,

reg [SI2

wire [S]

event ct

always 

sta
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event e;

always @ e

modul e ad

paramet
output
input a
reg [SI:
wire [S:
event c]

always
start

always 
# DELI

task stU
begin

S =

end
endtask

endmodule

event e;

initial

begin

#10;

-> e;

#20

-> e;

end

always e
$display($time);
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nically correct
iclude that the

helpful in over-
vents are used

Introl. The ->
Ing prints "10'

Unfortunately, the above produces the same incorrect model of the adder (the correct
result 123 is available too soon) for the same reasons discussed in the previous section.

6.4.3 The disable statement
This statement causes Verilog to cease execution of a labeled block. For always blocks,
it causes them to restart at the top. (It has another use, explained in section 7.5.) An
optional label is given after a colon on a begin statement. Here is how the disable
statement overcomes the problem shown in the previous section:
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module adder(s,a,b);

parameter SIZE = 1, DELAY 0;
output s;

input a,b;

reg [SIZE-l:O] s;
wire [SIZE-l:0] a,b;
event change;

always @(a or b)
start-change;

always change
# DELAY s=a+b;

task startchange;

begin

s = 'bx;

-> change;

end
endtask

endmodule

module adder(s,a,b);
parameter SIZE = 1, DELAY = 0;
output s;
input a,b;

reg [SIZE-l:0 s;
wire [SIZE-l:0] a,b;

event change;

always (a or b)
startchange;

nically coffee
include that th(

helpful in over
vents are use(

Introl. The --,
Ing prints -io'
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6.4.4 A c1(
The reason we
chines that are
with PERIOD

The task startchange can be called many times from the first always block
without $ time advancing. This way, every change in the inputs will be noticed by the
Verilog scheduler. The only # control in startchange is #0. This is required so the
disable statement can take effect. After change block has been disabled, the
change event is retriggered. This, in turn, causes the full # DELAY before the output
changes from bx.

The #DELAY is in the block (change_ block) which can be disabled. There is no
way that changes that occur in the middle of a #DELAY will be missed. Therefore,
instantiating a series of these adders will produce a correct model of the propagation
delay. For example, here is the simulation using the same test code as section 6.4. 1:

module cl(

param

outpu

reg c

initi

clk
alway

beg

end
alway

if
endmodule

Note that if PE
the situation in

6.4.5 Prop
Suppose the pr
parator and 10
4.4.5, simply in

module sloi

input ali

output r:

wire [5:(

wire mux

wire [11
wire [11

Note that s is bx from
timing analysis.

$time 30 until $time 48, as is predicted by worst case
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Continued

always @change

begin : change-block
# DELAY s=a+b;

end

task start-change;

begin

s = 'bx;

disable change-block;
#0;
-> change;

end

endtask
endmodule

$time= 0 t=x
$time= 0 s=x
$time= 8 t= 0
$time= 18 s= 0
$time= 30 t=x

$time= 30 s=x
$time= 38 t= 120
$time= 48 s= 123

enabled

mux2

alul81

comparatc

not

F-
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6.4.4 A clock with a PERIOD parameter
The reason we wish to simulate propagation delays is ultimately to design faster ma-
chines that are clocked at higher frequencies. Therefore, it is desirable to have a clock
with PERIOD as a parameter:

always block
e noticed by the
; required so the
en disabled, the
efore the output

led. There is no
ised. Therefore,
the propagation
section 6.4. 1:

Note that if PERIOD is omitted in the instantiation, it will default to 100, as has been
the situation in all earlier simulations.

6.4.5 Propagation delay in the division machine
Suppose the propagation delays are 70 for the ALU, 25 for the mux, 20 for the com-
parator and 10 for the inverter. To backannotate this in the original code of section
4.4.5, simply include the propagation delay parameter with the instantiation:

module slow divarch(aluctrl,muxctrl,ldrl,clrr2,

incr2,ldr3,rlgey,x,y,r3bus,sysclk);
input aluctrl,muxctrl,ldrl,clrr2,incr2,ldr3,x,y,sysclk;

output rgey,r3bus;

wire [5:0] aluctrl;
wire muxctrl,ldrl,clrr2,incr2,ldr3,rlgey,sysclk;

wire [11:0] x,y,r3bus;
wire [11:0] muxbus,alubus,rlbus,r2bus;

enabled-register

mux2

alul8l

comparator

not

#12 r(alubus,rlbus,ldrl,sysclk);

#(12,25) mx(x,y,muxctrl,muxbus);
#(12,70) alu(rlbus,muxbus,aluctrl[5:2],

aluctrl[l],aluctrl[0],,alubus,);

#(12,20) cmp(rllty, , ,rlbus,y);
#10 inv(rlgey,rllty);

are
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module cl(clk);

parameter TIME_LIMIT = 110000,
PERIOD = 100;

output clk;

reg clk;

initial

clk = 0;
always

begin

#(PERIOD/2) clk = clk;
#(PERIOD-PERIOD/2) clk = -clk;

end

always (posedge clk)
if ($time > TIMELIMIT) #(PERIOD-1) $stop;

endmodule

a by worst caseI
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counterregister #12 r2(,r2bus,,1'bO,incr2,clrr2,sysclk);
enabled-register #12 r3(r2bus, r3bus,ldr3,sysclk);

endmodule

When this is simulated with a clock period of 100, it works:

cl #(20000,100) clock(sysclk);
slowdivsystem slowdiv machine(pb,ready,xy,

quotient,reset,sysclk);

as is illustrated by the following timing diagram:

rlbus[11:0] 1 3 14 7 0
r2bus[11:0] 0 1 2
r3bus[11:0] 1

pb

ready
.Idrl

Incr2

clrr2

Idr3

muxbus[11:0 Ix 14 x 7
alubus[11:0 I x I x | 141 x 117 x 0

muxctrl k141

aluctrl[5:0] 101010 011001

r gey U L I LI Ix
sysclk

present-state[0:0] 0 1

Figure 6-3. Timing diagram for division machine with abstract propagation delay.

A designer might want to experiment to see if the clock can be speeded up to have a
period of, say, 90:
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The test code will detect an error:

6365 rl=x r2= 2 r3= 1 pb=O ready=l
1 10 0 muxbus=x alubus=x x= 14 rlgey=x

muxctrl=O aluctrl=101010
error x= 14 y= 7 x/y= 2 quotient= 1

because the ALU will not have had a chance to stabilize by the time of the rising edge
of the clock.

6.5 Single cycle, multi-cycle and pipeline
The solution to many problems involves performing the same kind of computation on
large amounts of independent data values. The term independent means that the result
of doing computation on one data value does not affect nor is affected by doing the
computation on any of the other data values. For example, three-dimensional computer
graphics (such as occur in virtual reality systems) usually require evaluating the same
formulae at millions of points. The order in which such points are processed does not
matter. You will get the same answer if you start processing on the lower-left-hand side
of the screen as you will get if you start processing on the upper-right-hand of the
screen, or if you process in any other order that you might choose. In problems like this
that have complete data independence, many possible hardware solutions exist. All
such hardware solutions are correct in that they all eventually arrive at the desired
result. These hardware solutions differ in terms of their speed and cost.

If cost were not a constraint, problems with totally independent data values could be
solved by building one combinational logic machine for each data value to be pro-
cessed. Each such machine could compute its answer in parallel to all the other ma-
chines. Although this kind of massively parallel approach is sometimes used, it is not
practical in many situations due to cost constraints.

Because practical problems with perfectly independent data are commonplace where
cost is as or more important than speed, three standard techniques have been developed
that allow the designer to choose the trade-off between speed and cost. These three
techniques are known as the single-cycle, pipelined, and multi-cycle approaches. What
these three techniques share in common is that no more than one complete result is
produced per clock cycle.
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ci #(20000,90) clock(sysclk);
slowdivsystem slow divmachine(pb,ready,

x,y,quotient,resetsysclk);
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At one extreme is the single-cycle approach. With the single-cycle approach, the result
for one of the independent values is completely computed (start to finish) in a single
clock cycle. The single-cycle approach is perhaps the most natural approach to think
about, but it is usually not the most efficient.

At the opposite extreme is the multi-cycle approach. With the multi-cycle approach, the
result for one of the independent values requires several clock cycles to be computed.
Thinking about the multi-cycle approach is quite analogous to thinking about the soft-
ware paradigm (section 2.2.2). The multi-cycle approach is usually the slowest, but it
often requires minimum hardware because it can be implemented with a central ALU
(section 2.3.4).

In between the single-cycle approach and the multi-cycle approach is the pipelined
approach. The pipelined approach usually requires more hardware than the other ap-
proaches but often is the fastest and most efficient. In order to understand the pipelined
approach, it is necessary to investigate the two other approaches first.

As discussed earlier in this chapter, the total time required by a machine is the number
of clock cycles multiplied by the clock period. The three approaches discussed in this
section differ both in terms of the number of clock cycles required and the clock period.
We can understand the algorithmic distinctions among these three approaches at the
behavioral stage and even predict the number of clock cycles required at the behavioral
stage; however, we cannot predict which approach will be fastest at the behavioral
stage. This is because the clock period is determined by the propagation delay in the
architecture, which we cannot predict until the mixed stage, or when the hardware has
been synthesized.

6.5.1 Quadratic polynomial evaluator example
The quadratic polynomial a*x*x + b*x + c is a simple example of a formula that
a machine might evaluate many times with different values of x, but the same values of
a, b and c (which remain unchanged for a suitable period before, during and after the
quadratic evaluations). For each unique x value, the computation of the quadratic for-
mula is independent of the computation for other values of x. Although the formulae
used for practical problems, such as computer graphics, are more complex than this
familiar old quadratic, the nature of the formulae in such practical problems is very
similar to this quadratic.

Although a practical machine would probably store the x values in a synchronous
memory, for the sake of simplicity in this example, assume the values of x are con-
tained in a ROM. The goal of the machine is to evaluate the quadratic polynomial for
each of these x values and store the corresponding y values into a synchronous memory
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(see section 8.2.2.3.1 for how a synchronous memory can be implemented). The ad-
dress where each y value is stored should be the same as the address in the ROM from
which the corresponding x value was fetched.

Suppose a is 1, b is 2 and c is 3. If the contents of x are as shown on the left in decimal,
when the machine is done, the contents of the y memory will be as shown on the right:

e approach, the
D be computed.
about the soft-
slowest, but it
a central ALU

x[O]

x[1 ]

x[2]
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In the other ap-
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Y[O]

Y[1]

y[2]

Figure 6-4. Example contents of x and yfor quadratic machine.
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Forexample,y[2] = a*x[2]*x[2] + b*x[2] + c = 25+10+3 = 38.

The machine will use a push button interface, similar to the one described in section
2.2. 1. The machine will wait in state IDLE until pb is pressed. While the machine is in
state IDLE, it leaves the contents of y alone. Some time after the machine leaves state
IDLE it will begin to fill y with the correct results.

The following sections will look at behavioral ASMs to illustrate how this machine can
be implemented with the single-cycle, multi-cycle and pipelined approaches. Several
incorrect versions of pipelining will be presented before the final correct pipelined
solution is shown in section 6.5.7.
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6.5.2 Behavioral single cycle
The ASM chart for the single-cycle approach is quite simple and obvious. The machine
only needs to have a memory address (ma) register. The ma register in the single- cycle
approach provides the address used by both the x and y during each clock cycle. In
each clock cycle, the content of the ROM is fetched from the address indicated by ma,
the quadratic is evaluated using the value of x fetched from the ROM and the result is
stored into y at the same address indicated by ma.

a synchronous
s of x are con-
polynomial for
ronous memory

Suppose the maximum memory address is the constant MAXMA. The first of the fol-
lowing two ASM charts (figure 6-5) describes the single-cycle approach in the simplest
possible fashion. The computation of the quadratic actually involves several multipli-
cations and additions. The second (equivalent) ASM chart (figure 6-6) makes this clearer:
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Figure 6-5. Behavioral single cycle ASM with only -.

Figure 6-6. Equivalent single cycle ASM with = for combinational logic.

Note the use of = rather than *- for the intermediate results (xl, x2, bx, ax2 and
bxc). As discussed in chapter 2, the = means that combinational logic computes all of
these values in one clock cycle. Note that x2 and bx are dependent on xl; ax2 is
dependent on x2; and bxc is dependent on bx. This means that the minimum clock
period for the single-cycle approach must allow enough time for the computations of
all of these intermediate results to stabilize. The amount of time it takes for the combi-
national logic to finish computing these intermediate values is not something we can
predict at the behavioral stage. Up until this chapter, we have neglected such propaga-
tion delays, but later in this chapter, we will estimate what these delays will be.
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Since we do not know how fast the machine can be clocked, let us assume that the clock
period is 100 units of Verilog $ time for the purpose of the following and later simula-
tions. Also, for reasons to be explained later, we will assume that each word in y is
initialized to bz prior to execution of this ASM. In the following partial simulation
output, the $time and registers are printed on one line with the contents of y on the
following line:

349 ps=000 ma= 0 xl=x x2=x bx=x ax2=x bxc=x
z z z z z z z z

449 ps=001 ma= 0 xl= 7 x2=49 bx=14 ax2=49 bxc=17
z z z z z z z z

549 ps=001 ma= 1 xl= 6 x2=36 bx=12 ax2=36 bxc=15
66 z z z z z z z

1149 ps=001 ma= 7 xl= 0 x2= 0 bx= 0 ax2= 0 bxc= 3
66 51 38 27 18 11 6 z

1249 ps=000 ma= 8 xl=x x2=x bx=x ax2=x bxc=x
66 51 38 27 18 11 6 3

In state COMPUTEl at $ time 449, the machine obtains the value (7) of x1 from the
ROM. After getting this from the ROM, but during the same clock cycle, the machine
computes the square (49), and the product (49) of a and the square. Also in this clock
cycle, the machine computes the product (bx= 14) of b and x1. After computing bx,
but before the end of the clock cycle, the machine computes the sum (bxc = 17) and the
sum (ax2 +bxc). This final result (66) is scheduled to be stored in the memory. This
value appears at the correct place (y [ 0 ] ) by $ time 549.

The number of clock periods required for this single cycle ASM to complete is
MAXMA+1, because one result is produced each clock cycle.

Here is the behavioral Verilog code used to produce the above simulation:
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'define NUMSTATEBITS 3
'define IDLE 3'bOOO
'define COMPUTEl 3'bOO1
module poly-system(pb,a,b,c,ready,sysclk);
input pb,a,b,c,sysclk;

output ready;
wire pb,sysclk;

wire [11:0] a,b,c;
reg [11:0] x['MAXMA:0],y['MAXMA:0];
re rd9N7

reg [11:0] ma;
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Continued

reg [11:0] xl,x2,bx,ax2,bxc;
reg ['NUMSTATEBITS-1:0] present_state;
integer i;
initial

begin
for (i=0;i<='MAXMA;i=i+l)

begin

x[i]='MAXMA-i;

y[il='bz;

end

end

always

begin

@(posedge sysclk) enternew-state('IDLE);
ma <= @(posedge sysclk) 0;
ready = 1;
if (pb)

begin

while (ma != 'MAXMA)
begin

@(posedge sysclk) enternew state('COMPUTEl);
ma <= (posedge sysclk) ma + 1;
xl = x[ma];
x2 = xl*xl;
bx = b*xl;
ax2 = a*x2;
bxc = bx + c;
y[ma] <= @(negedge sysclk) ax2 + bxc;

end
end

end
endmodule
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Note that the order of the intermediate computations (=) matters in Verilog.

The non-blocking assignment to the memory location, y [ma], uses @ (negedge
sysclk) rather than the @ (posedge sysclk) typical for non-blocking assign-
ment to ordinary registers (see section 3.8.2). The problem here arises because new
values are stored into distinct elements of y during every clock cycle. Some simulators
will do the proper thing in a situation like this even if you were to use:

1There are no depe
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ma <= (posedge sysclk) ma + 1;

y[mal <= (posedge sysclk) ax2 + bxc; // not portable

However, @ (negedge sysclk) is necessary to produce the correct result on other
Verilog simulators. To understand why, remember that there are two separate concepts
in Verilog: sequence and $time. A non-blocking assignment by itself will cause the
new value to be stored as the last event at the specified $ time. All Verilog simulators
save the right-hand expressions (ax2 + bxc and ma + 1 in this example) until the
specified clock edge. For left-hand values that are not arrays, this is sufficient to model
the behavior of synchronous registers. But when you are dealing with a synchronous
memory (y [ma]), aVerilog simulator must also save the address (ma) for the left-hand
memory until the next clock edge. The sequence in which a simulator will update ma
and y [ma] is not defined. The Verilog standard is ambiguous on this issue, and some
vendors, for reasons of efficiency, have chosen not to save the address.

To overcome this problem at the pure behavioral stage, we need to remember that the
statements in a particular state will execute one unit of $time after the rising edge.
The falling edge of the system clock will occur prior to the next rising edge, but after all
non-blocking assignments of this state have been scheduled. Therefore, ma will still
have the correct value, but changing y [ma] at the falling edge will not disturb some
dependent computations' within this state.

This is another illustration of choosing an appropriate level of abstraction (see section
C. 1). In the pure behavioral stage, we are only interested in the values of registers and
memories at the moment of the rising edge. The negedge memory approach simu-
lates the values at the rising edge properly on all Verilog simulators. How a particular
simulator arranges to simulate between the rising edges is irrelevant as the designer
explores different algorithmic possibilities. Of course, in the actual architecture, a syn-
chronous memory will change its values only at the rising edge, synchronously to the
ordinary registers in the design. At the mixed or later stages of design, such details are
significant to determine the proper clock frequency, but since the mixed stage removes
all <=, there is no problem. Before the mixed stage, the designer should not worry
about clock frequency; thus the negedge memory approach is perfectly acceptable.

l There are no dependent computations in this example.
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6.5.3 Behavioral multi-cycle
The single-cycle approach discussed in the previous section does all of the intermedi-
ate computations in one clock cycle. The multi-cycle approach, ol. the other hand, does
each intermediate computation in a separate clock cycle. This of course means it takes
several clock cycles to produce one result. In the multi-cycle approach, each intermedi-
ate result is stored in a register, thus the ASM uses the - notation. The multi-cycle
approach is like the software paradigm (section 2.2.2), where each intermediate com-
putation occurs in a separate rectangle by itself. Here is an ASM chart for the multi-
cycle version of the quadratic evaluator:

Figure 6-7. Behavioral multi-cycle ASM.

This machine has six registers (ma, x1, x2, bx, ax2 and bxc), and has six
states inside the loop. Here is a partial simulation, again assuming a clock period of 100
(which may be much longer than is actually required):
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ps=000 ma= 8 xl= 0 x2= 0 bx= 0 ax2= 0 bxc= 3
66 51 38 27 18 11 6 3

In state COMPUTE1 around $time 449, x is scheduled to be loaded with
x[ma]=x[0]=7. This change in x1 shows up by $time 549. In state COMPUTE2
around $ time 549, the square (49) of this value is scheduled to be loaded into x2,
which shows up by $ time 649. In state COMPUTE3 around $ time 649, the product
(14) of x1 and b is scheduled to be loaded into bx, which shows up by $time 749. In
state COMPUTE4 around $ time 749, the product (49) of a and x2 is scheduled to be
loaded into ax2, which shows up by $ time 849. In state COMPUTE5 around $ time
849, the sum of bx and c (17) is scheduled to be loaded into bxc, which also shows up
by $ time 949. Finally, in state COMPUTE6 around $ time 949, the sum of ax2 and
bxc is scheduled to be loaded into y, and this shows up by $ time 1049.

The number of clock periods required for this multi-cycle ASM to complete is
6*(MAXMA+1). Although at first glance, this appears much slower than the single-
cycle approach of section 6.5.2, it need not be that much slower. Later we will be able
to predict the propagation delay of the architecture for the multi-cycle approach (which
determines the maximum clock frequency). Since there is less computation being done
in each clock cycle, it should be possible to clock the multi-cycle machine faster than
the single-cycle machine. The relative performance of these two machines is some-
thing we can only predict given a structural architecture.

Here is the behavioral Verilog code used to produce the above simulation:
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NUM_STATEBITS 3

IDLE 3'bOOO

COMPUTEl 3'bOOl

COMPUTE2 3'bOlO

COMPUTE3 3'bOll

COMPUTE4 3'blOO

COMPUTE5 3'blOl

COMPUTE6 3'bllO

always

begin

@(posedge sysclk) enternew-state('IDLE);
ma <= (posedge sysclk) 0;

ready = 1;

if (pb)

begin

while (ma != 'MAXMA)

begin

P(posedge sysclk) enternewstate('COMPUTEl);

xl <= P(posedge sysclk) x[ma];
@(posedge sysclk)

x2 <= (posedge

P(posedge sysclk)

bx <= (posedge

@(posedge sysclk)

ax2 <= (posedge

@(posedge sysclk)

bxc <= P(posedge

@(posedge sysclk)

enternewstate('COMPUTE2);

sysclk) xl*xl;

enternewstate('COMPUTE3);

sysclk) b*xl;

enternewstate('COMPUTE4);

sysclk) a*x2;

enternewstate('COMPUTE5);

sysclk) bx + c;

enternewstate('COMPUTE6);

ma <= (posedge sysclk) ma + 1;

y[ma] <= (negedge sysclk) ax2 + bxc;

end

end

end
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6.5.4 First attempt at pipelining
The single-cycle approach puts all the computation steps into one clock cycle but uses
= (corresponding only to combinational logic) for the intermediate results. The multi-
cycle approach spreads the computation steps across separate clock cycles, but uses -

(corresponding to registers) for the intermediate results. The pipelined approach is half-
way between these two approaches.
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The pipelined approach puts all the computation steps into one clock cycle and uses <-
(corresponding to registers) for the intermediate results. This means, unlike the other
two approaches, each intermediate computation in the pipelined approach occurs in
parallel to the other intermediate computations. The only reason that the intermediate
computations can occur in parallel is that a machine like this is processing a large
amount of independent data in an identical fashion.

A pipelined machine is very much like a factory assembly line. Factories are efficient
because they mass produce many copies of an identical item. At each point in time,
each worker in the factory does one thing to a partially assembled item on the produc-
tion line. For example:

worker #1 worker #2 worker #3

Figure 6-8. Analogy to factory.

Worker #1 might tighten a bolt, worker #2 might weld a seam and worker #3 might
paint the item. Each worker acts in parallel to the other workers. In the above picture,
worker #1 is tightening the bolt on item #3 at the same time that worker #2 is welding
item #2 (which already has its bolt tightened) and that worker #3 is painting item #1
(which has it bolt tightened and which has been welded). Each item has experienced
the correct sequence in order (tightening, welding and painting), but the tightening,
welding and painting that happens at any given instance occurs to independent items.

With this analogy in mind, we can understand that each of the intermediate computa-
tions ( - ) in the pipelined quadratic evaluator produces an intermediate result derived
from a different x value. Here is a first (somewhat flawed) attempt to describe the
factory-like operation of this pipelined system:

k cycle but uses
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Figure 6-9. Incorrect pipelined ASM.

Here is a simulation showing how this ASM malfunctions:
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There are several problems with this, but before discussing what is wrong, let us con-
sider what is almost right. In state COMPUTE1 around $ time 449, xi is scheduled to
be loaded with x [ma] =x [ 0] = 7. This change in x1 shows up by $ time 549. Around
$time 549, the square (49) of this value is scheduled to be loaded into x2, which
shows up by $ time 649. In parallel, the product (14) of x1 and b is scheduled to be
loaded into bx, which also shows up by $ time 649. Around $ time 649, the product
(49) of a and x2 is scheduled to be loaded into ax2, which shows up by $time 749.
In parallel, the sum of bx and c (17) is scheduled to be loaded into bxc, which also
shows up by $time 749. Finally, around $time 749, the sum of ax2 and bxc is
scheduled to be loaded into y, and this shows up by $ time 849.

The problem at $ time 849 is that although 66 is the correct value, it shows up at the
wrong address for y. This is because ma has necessarily been incremented in each of
the clock cycles. This machine has forgotten that the 66 is supposed to stored at y[0.
Instead it stores it at y[3]. Aside from the fact that the addresses to y are offset by three,
the machine continues to compute a correct result each clock cycle. By $ time 949, 51
is stored into y. By $ time 1049, 38 is stored into y, and so forth.

In addition to storing the correct results at the wrong addresses, this machine also has
another flaw. It does not finish the complete job (storing 11, 6 and 3). The intermediate
results needed to produce 11, 6 and 3 are left frozen in the pipeline when the machine
returns to state IDLE.

Another, less obvious, flaw is that garbage values ( ' bx, 'bx and 2) are stored into the
memory during the first clock cycles (449, 549 and 649). Initializing yto bz rather
than bx to highlights this flaw.

6.5.5 Pipelining the ma
The major problem with the ASM chart of section 6.5.4 is that the memory address
used to store into y does not correspond to the value being stored. To overcome this
problem, we can introduce three additional registers, mal, ma2 and ma3, that will
save the memory addresses from the previous three clock cycles. In a given clock cycle,
mal is the value of ma one clock cycle ago, ma2 is the value of ma two clock cycles
ago, and ma3 is the value of ma three clock cycles ago.
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Figure 6-10. Pipelined ASM with multiple addresses but withoutflush.

Here is a simulation that shows how addresses flow through the ma pipeline:

349 ps=000 ma=

mal=

z z z
449 ps=001 ma=

mal=

z z z
549 ps=001 ma=

mal=
x z z

649 ps=001 ma=
mal=

x z z
749 ps=001 ma=

mal=

2 z z

849 ps=001 ma=
mal=

66 Z Z

949 ps=001 ma=
mal=

66 51 z

0 xl=x x2=x bx=x

0 ax2=x bxc=x ma2= 0 ma3= 0

z z z z z
0 xl=x x2=x bx=x
0 ax2=x bxc=x ma2= 0 ma3= 0

z z z z z
1 xl= 7 x2=X bx=4094

0 ax2=4095 bxc=x ma2= 0 ma3= 0
z z z z z

2 xl=

1 ax2=

z z
3 xl=

2 ax2=

z z
4 xl=

3 ax2=

z z
5 xl=

4 ax2=

z z

6 x2= 49 bx= 14

1 bxc= 1 ma2=

z z z
5 x2= 36 bx= 12

49 bxc= 17 ma2=

z z z
4 x2= 25 bx= 10

36 bxc= 15 ma2=

z z z
3 x2= 16 bx= 8

25 bxc= 13 ma2=

z z z

0 ma3= 0

lma3= 0

2 ma3= 1

3 ma3= 2
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Continued.

1049 ps=001 ma= 6 xl= 2 x2= 9 bx= 6
mal= 5 ax2= 16 bxc= 11 ma2= 4 ma3= 3

66 51 38 z z z z z
1149 ps=001 ma= 7 xl= 1 x2= 4 bx= 4

mal= 6 ax2= 9 bxc= 9 ma2= 5 ma3= 4
66 51 38 27 z z z z

1249 ps=000 ma= 8 xl= 0 x2= 1 bx= 2
mal= 7 ax2= 4 bxc= 7 ma2= 6 ma3= 5

66 51 38 27 18 z z z

Although the addition of mal, ma2 and ma3 solves the addressing problem, the re-
vised ASM still does not finish the complete job (storing 11, 6, and 3). As was the case
in the ASM of section 6.5.4, the intermediate results needed to produce 11, 6 and 3 are
left frozen in the pipeline when the machine returns to state IDLE. Also, garbage values
( bx, bx and 2) are still stored into the memory during the first clock cycles, al-
though now they are stored in y [ 0 ] each time.

6.5.6 Flushing the pipeline
In order to prevent the final values from being frozen in the pipeline, there need to be
some additional clock cycles spent "flushing" those values out of the pipeline. Return-
ing to the factory analogy, when the factory is about to cease production of a particular
model item, worker #1 can stop work earliest, but the other workers must finish their
tasks on the last item worker #1 tightened. Similarly, worker #2 can stop before worker
#3. So it is with flushing the pipeline.

The ASM needs three states, FLUSH1, FLUSH2 and FLUSH3, that perform the re-
quired computations on the valid data in the pipeline. For those registers that have valid
data, the computations are identical to those in state COMPUTE . At each successive
flushing state, there are fewer registers in the pipeline that contain valid data; thus each
successive state has fewer computations to perform.

6.5.7 Filling the pipeline
The reason that garbage values have been stored by all the previous pipeline attempts is
because of the assignment to y [ma3] in state COMPUTEI. During the first clock
cycles when state COMPUTE1 executes, ma3, ax2 and bxc do not have legitimate
values. Therefore, to store ax2 +bxc at address ma3 is illegitimate. The situation is the
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opposite problem from flushing the pipeline. In this case, the pipeline must be filled
prior to storing the first result in y. The following is a completely correct pipelined
ASM that accomplishes this operation by introducing states FILL 1, FILL2 and FILL3:

maF=MASH 1 
FLUSH1 ~~COMPUTE1FL- - I ma-ma +1 

FLUSH3

4.

|y[ma3]--ax2 + bxc 

Figure 6-11. Correct pipelined ASM thatfills and flushes.

Here is a simulation that shows the proper values filling the pipeline:

66
. . .

The rest of the
Verilog code u

'define N

'define I
'define C
'define F
'define E

'define F
'define E

'define E

'define I

always
begin
@ (pose(
ma <=
ready
if (pI
begii

(c
ma
ma:

xl

8 (p(
ma
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349 ps=OOO

z
449 ps=O10

z
549 ps=Oll

z
649 ps=100

z
749 ps=OOl

z
849 ps=OOl

ma2- mal
ma3- ma2
x2- xl*x1
bx- b*xl
ax2- a*x2
bxc- bx + c
y[ma3]-- ax2 + bxc

mal-ma
ma2-mal
ma3- ma2
x1" -x[ma]
x2 x1*x1
bx - b*xl
ax2- a*x2
bxc- bx + c
y[ma] - ax2 + bxcma3- ma2

ax2- a*x2
bxc- bx + c
y[ma3]-ax2 + bxc

RE
FILL1

0 1 ma ma+1
p mal-ma

xl-x[ma]

FILL2 ma-ma + 1
mal-ma
ma2- mal
x1 - x[ma]
x2-xl*xl
bx- b*xl

FILL3 -ma- ma + 1
mal - ma
Ma2- mal
ma3- ma2
x1- x[ma]
x2-xl*xl
bx-b*xl
ax2-a*x2
bxc-bx + c

I-
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line must be filled
correct pipelined

FILL2 and FILL3:

349 ps=000 ma=

mal=

z z z
449 ps=O10 ma=

mal=

z z z
549 ps=Oll ma=

mal=
z z z

649 ps=100 ma=

mal=

z z z
749 ps=00l ma=

mal=

z z z
849 ps=00l ma=

mal=

66 z z

O xl=x x2=x bx=x
O ax2=x bxc=x ma2= 0 ma3= 0
z z z z z

O xl=x x2=x bx=x
O ax2=x bxc=x ma2= 0 ma3= 0
z z z z z

1 xl= 7 x2=x bx=x
O ax2=x bxc=x ma2= 0 ma3= 0
z z z z z

2 xl= 6 x2=49 bx=14
1 ax2=x bxc=x ma2= 0 ma3= 0
z z z z z

3 xl= 5 x2= 36 bx= 12
2 ax2=49 bxc=17 ma2= 1 ma3= 0
z z z z z

4 xl= 4 x2= 25 bx= 10
3 ax2=36 bxc=15 ma2= 2 ma3= 1
z z z z z

The rest of the simulation is similar to the previous example. Here is the behavioral
Verilog code used to produce the simulation of the correct pipelined machine:
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UTE1

iwai

'define NUMSTATEBITS 3

'define IDLE 3'bOOO
'define COMPUTE1 3'bOOl
'define FLUSH1 3'blOl
'define FLUSH2 3'bllO
'define FLUSH3 3'blll
'define FILL1 3'bOlO
'define FILL2 3'bOll
'define FILL3 3'blOO

always

begin

@(posedge sysclk) enter newstate('IDLE);
ma <= @(posedge sysclk) 0;
ready = 1;

if (pb)

begin
@(posedge sysclk) enternew state('FILLl);
ma <= @(posedge sysclk) ma + 1;

mal <= @(posedge sysclk) ma;
xl <= @(posedge sysclk) x[ma];
@(posedge sysclk) enternew state('FILL2);
ma <= @(posedge sysclk) ma + 1;

I
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Continued.

mal <= @(posedge sysclk) ma;
ma2 <= @(posedge sysclk) mal;
xl <= @(posedge sysclk) x[ma];

x2 <= @(posedge sysclk) xl*xl;
bx <= (posedge sysclk) b*xl;
@(posedge sysclk) enter_new state('FILL3);
ma <= @(posedge sysclk) ma + 1;
mal <= @(posedge sysclk) ma;
ma2 <= @(posedge sysclk) mal;
ma3 <= @(posedge sysclk) ma2;
xl <= @(posedge sysclk) x[ma];
x2 <= @(posedge sysclk) xl*xl;
bx <= @(posedge sysclk) b*xl;
ax2 <= @(posedge sysclk) a*x2;
bxc <= @(posedge sysclk) bx + c;
while (ma != 'MAXMA)

begin

@(posedge sysclk) enternewstate('COMPUTEl);
ma <= @(posedge sysclk) ma + 1;
mal <= @(posedge sysclk) ma;
ma2 <= @(posedge sysclk) mal;
ma3 <= @(posedge sysclk) ma2;
xl <= @(posedge sysclk) x[ma];
x2 <= @(posedge sysclk) xl*xl;
bx <= @(posedge sysclk) b*xl;
ax2 <= @(posedge sysclk) a*x2;
bxc <= @(posedge sysclk) bx + c;
y[ma3l <= @(negedge sysclk) ax2 + bxc;

end
@(posedge sysclk) enter_new state('FLUSHl);
ma2 <= @(posedge sysclk) mal;
ma3 <= @(posedge sysclk) ma2;
x2 <= @(posedge sysclk) xl*xl;
bx <= @(posedge sysclk) b*xl;
ax2 <= @(posedge sysclk) a*x2;
bxc <= @(posedge sysclk) bx + c;
y[ma3] <= @(negedge sysclk) ax2 + bxc;
@(posedge sysclk) enternew-state('FLUSH2);
ma3 <= @(posedge sysclk) ma2;
ax2 <= @(posedge sysclk) a*x2;
bxc <= @(posedge sysclk) bx + c;
y[ma3l <= @(negedge sysclk) ax2 + bxc;
@(posedge sysclk) enter new state('FLUSH3);
y[ma3] <= @(negedge sysclk) ax2 + bxc;

end
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As described in section 6.5.2, the use of negedge memory modeling is necessary
with many Verilog simulators.

6.5.8 Architectures for the quadratic evaluator
Only by proceeding to the mixed stage of the top-down design process can the maxi-
mum speed of the quadratic evaluator be estimated for the single-cycle, multi-cycle
and pipelined versions. The mixed stage for each version requires choosing an archi-
tecture appropriate for each algorithm. Since the computations (to be performed by
combinational logic) in each version are identical, the combinational logic devices
(adders and multipliers) in these three versions will be identical. The three versions
differ only with respect to whether and when intermediate computations are saved in
registers. The following sections describe the architectures for these three versions.

6.5.8.1 Single-cycle architecture
The behavioral single-cycle ASM charts in section 6.5.2 describe all of the computa-
tions that must occur in one clock cycle before a result can be loaded into y. The fol-
lowing architecture implements these computations:

MAXMA maeqmax

incma
cI

ma 12

>~ ~ * * + y

ROM 1 a 12
1 2

bC 1 2 Idy

Figure 6-12. Single-cycle architecture.

The ma register provides the same address to x and y. The mabus is also compared
against MAXMA to produce the status signal maeqmax.

There are three multipliers in the architecture. The ma register selects a particular word
from the ROM. This value is fed to the first two multipliers. One of these multipliers
produces the square, and the other multiplies this value by b. There is a third multiplier
that multiplies the square by a.
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There are also two adders in the architecture. The first adder produces the sum of bx
and c. The other adder produces the final result. The final result is loaded into y [ma ]
when the dy signal is asserted.

The following Verilog code shows the definition of this single-cycle architecture, along
with the corresponding mixed controller:

module poly ctrl(pb,maeqmax,ldy,incma,clrma,ready,sysclk);
input pb,maeqmax,sysclk;
output ldy,incma,clrma,ready;
wire pb,maeqmax,sysclk;
reg ldy,incma,cirma,ready;
reg ['NUMSTATE_BITS-l:0] present_state;
always
begin
@(posedge sysclk) enternew state('IDLE);
//ma <= (posedge sysclk) 0;
ready = 1;

clrma = 1;
if (pb)
begin
while (-maeqmax)
begin
@(posedge sysclk) enternewstate('COMPUTEl);
//ma <= @(posedge sysclk) ma + 1;
//x2 = x[ma]*x[ma];
//bx = b*x[ma];
//ax2 = a*x2;

//bxc = bx + c;
//y[ma] <= (negedge sysclk) ax2 + bxc;
incma = 1;
ldy = 1;

end
end

end

. . .
endmodule

module polyarch(maeqmax,ldy,incma,clrma,a,b,c,sysclk);
output maeqmax;
input ldy,incma,clrma,a,b,c,sysclk;
wire maeqmax,ldy,incma,clrma,sysclk;
wire [11:0] a,b,c;
wire [11:0] x2,bx,ax2,bxc,xbus,ydibus,mabus;
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counter-register #12 ma(,mabus,,l'bO,incma,clrma,sysclk);
comparator #12 cmp(,maeqmax,,mabus,'MAXMA);
rom #(12,23) x(mabus,xbus);

multiplier #(12,24) ml(x2,xbus,xbus);
multiplier #(12,24) m2(bx,b,xbus);
multiplier #(12,24) m3(ax2,a,x2);
adder #(12,25) al(bxc,bx,c);
adder #(12,25) a2(ydibus,ax2,bxc);

ram #12 y(ldy,mabus,ydibus,,sysclk);
endmodule

In the above, it is assumed that the propagation delays of the ROM, multipliers and
adders are 23, 24 and 25 units of $time, respectively. 'CLOCKPERIOD is 100,
which is just barely long enough for all the combinational logic to stabilize before a
result is clocked into y, as illustrated by the following timing diagram produced by a
Verilog simulator:

646 662 678 694 710 728 742
,,,i 111 ,,,,,, 1 ,,,,,,,,,1I ,,,, I ,,,,l1111,,,,,,I11111,,,,,,l,,,,,,,,,l11

present state[2:01M

mabus[1 1:0]

xbus[1 1:0]

x2[11:0]

bx[11:0]

ax2[11:0]

bxc[11:0]

s[11:0]

sysclk

21 3 l

51 x 1 4 l

251 x | 16 l

10| x | 8 |

251 x | 16 l

131 x I 11

W 38 x 27 

I

Figure 6-13. Timing diagram for single-cycle ASM.
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6.5.8.2 Multi-cycle architecture
The behavioral multi-cycle ASM chart in section 6.5.3 can be implemented by many
different possible architectures. Some of these possible architectures could be consid-
erably cheaper than the architecture presented in this section; however, the architecture
in this section was chosen for its consistency with the architecture in the previous sec-
tion:

Figure 6-14. Multi-cycle architecture.

The only difference between this architecture and the previous architecture is the inser-
tion of registers for xl, x2, bx, ax2 and bxc. As indicated by the ASM chart, it
takes six clock cycles for each computation to travel through this architecture. In the
first cycle, only ldxl is asserted. In the second cycle, only ldx2 is asserted. In the
third cycle, only ldbx is asserted. In the fourth cycle, only dax2 is asserted. In the
fifth cycle, only ldbxc is asserted. In the sixth cycle, finally dy and incma are
asserted.

As mentioned above, this is not a particularly efficient architecture for the multi-cycle
approach because in any given clock cycle, five-sixths of the architecture is not per-
forming any useful computation. Nevertheless, the insertion of the registers allows this
architecture to be clocked considerably faster than the architecture in section 6.5.8.1.

The following Verilog code shows the definition of this multi-cycle architecture, along
with the corresponding mixed controller:

always

begin

@(posedg

//ma <=
clrma =

ready =
if (pb)

begin

while

begi

(P

l-
id

(P

/-
id

(P
//
id

@(P

//
id

id

in

end

end
end

counter-i

comparatc

rom

enabledz
multipliE
enabledz
multipliE

enabledz
multipliE
enabledz

adder
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always

begin
@(posedge sysclk) enternew-state('IDLE);

//ma <= @(posedge sysclk) 0;
clrma = 1;

ready = 1;

if (pb)

begin
while (maeqmax)

begin
@(posedge sysclk) enternewstate('COMPUTEl);

//xl <= @(posedge sysclk) x[ma];
ldxl = 1;

@(posedge sysclk) enter_newstate('COMPUTE2);

//x2 <= @(posedge sysclk) xl*xl;
ldx2 = 1;

@(posedge sysclk) enternewstate('COMPUTE3);
//bx <= @(posedge sysclk) b*xl;
ldbx = 1;

@(posedge sysclk) enternewstate('COMPUTE4);
//ax2 <= @(posedge sysclk) a*x2;
ldax2 = 1;

@(posedge sysclk) enternewstate('COMPUTE5);
//bxc <= @(posedge sysclk) bx + c;
ldbxc = 1;

@(posedge sysclk) enter_newstate('COMPUTE6);

//ma <= @(posedge sysclk) ma + 1;
//y[ma] <= @(negedge sysclk) ax2 + bxc;
incma = 1;

ldy = 1;

end

end

end

counterregister

comparator

rom

enabledregister
multiplier

enabled_register
multiplier

enabledregister
multiplier

enabledregister

adder

#12 ma(,mabus,,lbO,incma,clrma,sysclk);

#12 cmp(,maeqmax,,mabus, 'MAXMA);

#(12,23) x(mabus,xbus);

#12 x1(xbus,xlbus,ldxl,sysclk);
#(12,24) ml(x2dibus,xlbus,xlbus);
#12 x2(x2dibus,x2dobus,ldx2,sysclk);
#(12,24) m2(bxdibus,b,xlbus);
#12 bx(bxdibus,bxdobus,ldbx,sysclk);
#(12,24) m3(ax2dibus,a,x2dobus);
#12 ax2(ax2dibus,ax2dobus

ldax2,sysclk);
#(12,25) al(bxcdibus,bxdobus,c);
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Continued

enabledregister #12 bxc(bxcdibus,bxcdobus
ldbxc,sysclk);

adder #(12,25) a2(ydibus,ax2dobus,bxcdobus);
ram #12 y(ldy,mabus,ydibus,,sysclk);

In the above, it is assumed that the propagation delays are the same as in the single-
cycle approach of section 6.5.8.1. With the multi-cycle approach, 'CLOCKPERIOD
can now be 26 in this example, which is nearly four times faster than the single-cycle
approach. The faster clock is possible because there is less logic that has to stabilize
before each intermediate result is clocked into one of the registers. The following tim-
ing diagram illustrates this:

870 895 920 945 970 995 1020
1 1 1 1 1 1 1 1 1 1 1 1 III III II III III IIli l l ll l I I I I I I 1 1 IIIIIIII

present state[2:0] I 001 010 011l 100 I 101 110 001
xbus[11:0] xl I x

x1 bus[11:0] 4 3

x2dibus[11:0] 16 x

x2dobus[11:0] 16 9

ax2dibus[1 1:0] 16

ax2dobus[11:0] 16 9

bxdibus[1 1:0] 8 x

bxdobus[11:0] 8 6
bxcdibus[11:0] 11 X

bxcdobus[11:0] 11 9
ydibus[1 1:0] 27 x x
mabus[11 :0] 4

sysclk

Figure 6-15. Timing diagram for multi-cycle.
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6.5.8.3 Pipelined architecture
The correct behavioral ASM for the pipelined method given in section 6.5.7 requires
three additional registers: mal, ma2 and ma3. In a pipelined design, all of the regis-
ters inserted in the single cycle architecture to make it a pipelined architecture are
referred to as pipeline registers. In this architecture, every register, except ma, is a
pipeline register.

Figure 6-16. Pipelined architecture.

Notice that the pipeline registers are drawn in columns. The mal and xi registers are
drawn in the leftmost pipeline register column. The ma2, x2 and bx registers are in
the next pipeline register column. The ma3, ax2 and bxc registers are in the third
pipeline register column. In between each pipeline register column are buses and com-
binational logic only. Such a column of combinational logic to the left of a pipeline
register is known as a pipeline stage. For example, the first pipeline stage is the ROM.
The second pipeline stage involves two multipliers and a bus (that passes mal). The
third stage involves an adder and a multiplier. The fourth stage involves just an adder.
(This architecture assumes that a value can be clocked into the appropriate word of y as
though it just a clocked register. See section 8.2.2.3.1 for details.)

The following Verilog code shows the definition of this pipelined architecture, along
with the corresponding mixed controller:
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w14MEOp

always
begin
@(posedge sysclk) enternewstate('IDLE);

//ma <= @(posedge sysclk) 0;
ready = 1;

clrma = 1;

if (pb)
begin
@(posedge sysclk) enter new state('FILLl);

//ma <= @(posedge sysclk) ma + 1;
//mal <= @(posedge sysclk) ma;
//xl <= @(posedge sysclk) x[ma];
ldxl = 1;

incma = 1;

ldmal = 1;
@(posedge sysclk) enter-new state('FILL2);
//ma <= (posedge sysclk) ma + 1;
//mal <= @(posedge sysclk) ma;
//ma2 <= @(posedge sysclk) mal;
//xl <= @(posedge sysclk) x[ma];
//x2 <= @(posedge sysclk) xl*xl;
//bx <= @(posedge sysclk) b*xl;
ldxl = 1;

ldx2 = 1;

ldbx = 1;

incma = 1;

ldmal = 1;

ldma2 = 1;

@(posedge sysclk) enternew state('FILL3);
//ma <= (posedge sysclk) ma + 1;
//mal <= @(posedge sysclk) ma;
//ma2 <= @(posedge sysclk) mal;
//ma3 <= @(posedge sysclk) ma2;
//xl <= @(posedge sysclk) x[ma];
//x2 <= @(posedge sysclk) xl*xl;
//bx <= @(posedge sysclk) b*xl;
//ax2 <= @(posedge sysclk) a*x2;
//bxc <= @(posedge sysclk) bx + c;
ldxl = 1;

ldx2 = 1;

ldbx = 1;

ldax2 = 1;

ldbxc = 1;

incma = 1;

ldmal = 1;
ldma2 = 1;
ldma3 = 1;
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while (-maeqmax)
begin
@(posedge sysclk) enternewstate('COMPUTEl);

//ma <= @(posedge sysclk) ma + 1;
//mal <= @(posedge sysclk) ma;
//ma2 <= @(posedge sysclk) mal;
//ma3 <= @(posedge sysclk) ma2;
//xl <= @(posedge sysclk) x[ma];
//x2 <= @(posedge sysclk) xl*xl;
//bx <= @(posedge sysclk) b*xl;
//ax2 <= @(posedge sysclk) a*x2;
//bxc <= @(posedge sysclk) bx + c;
//y[ma3] <= (negedge sysclk) ax2 + bxc;
ldxl = 1;

ldx2 = 1;

ldbx = 1;

ldax2 = 1;

ldbxc = 1;

incma = 1;

ldmal = 1;
ldma2 = 1;

ldma3 = 1;

ldy = 1;

end
@(posedge sysclk) enternewstate('FLUSHl);
//ma2 <= @(posedge sysclk) mal;
//ma3 <= @(posedge sysclk) ma2;
//x2 <= @(posedge sysclk) xl*xl;
//bx <= @(posedge sysclk) b*xl;
//ax2 <= @(posedge sysclk) a*x2;
//bxc <= @(posedge sysclk) bx + c;
//y[ma3] <= (negedge sysclk) ax2 + bxc;
ldx2 = 1;
ldbx = 1;

ldax2 = 1;

ldbxc = 1;

ldma2 = 1;
ldma3 = 1;
ldy = 1;

@(posedge sysclk) enternewstate('FLUSH2);
//ma3 <= @(posedge sysclk) ma2;
//ax2 <= @(posedge sysclk) a*x2;
//bxc <= @(posedge sysclk) bx + c;
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//y[ma3] <= (negedge sysclk) ax2 + bxc;
ldax2 = 1;

ldbxc = 1;

ldma3 = 1;
ldy = 1;

@(posedge sysclk) enternewstate('FLUSH3);
//y[ma3] <= (negedge sysclk) ax2 + bxc;
ldy = 1;

end

end
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enabled-register
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In the above, it is assumed that the propagation delays are the same as in the single- and
multi-cycle approaches. With the pipelined approach, 'CLOCKPERIOD can usually
be about as fast as in the multi-cycle approach (26 in this example), but the number of
such clock cycles is nearly the same as in the single-cycle approach. Unlike the multi-
cycle approach, where five sixths of the combinational logic is unproductive during
each clock cycle, when the pipeline is full, all of the combinational logic is doing
productive work. The following timing diagram illustrates how the pipelined approach
gets the complete job done faster than the single-cycle or multi-cycle approach:
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Figure 6-17. Timing diagram for pipelined ASM.

6.6 Conclusion
The first duty of a designer is to produce a correct design. The top-down design process
explained in earlier chapters helps organize a designer's thinking to achieve this goal.
Often, in addition to being algorithmically correct, a practical design must meet the
criteria of speed and cost. This chapter explains how Verilog can help a designer deter-
mine if a design meets its speed goals. This chapter also explains different design alter-
natives that allow a designer to trade off speed and cost.

The speed of an algorithm implemented in hardware depends on two factors: the clock
period and the number of clock cycles. The algorithm itself determines how many
clock cycles are required, but the limiting factor on how fast the clock period can be is
gate-level propagation delay. Synthesizable Verilog cannot have propagation delay, but
once a design is synthesized, it is easy to annotate the built-in gates of the netlist with
propagation delays. (Some synthesis tools automatically backannotate the netlist for
post-synthesis simulation.) Gates with delays create the possibility of spurious wrong
outputs, known as hazards.

n the single- and
[OD can usually
it the number of
Unlike the multi-
oductive during
1 logic is doing
elined approach
approach:

Designing for Speed and Cost

sysclk);

:1k);

:1k);

:1k);

slk);

! , sysclk) ;

i,sysclk);

lobus );
I 

_ _ .............................................................................................

_- P_

245,are



There are many ways that a building block, such as an adder, can be synthesized into a
gate level netlist. Each such unique netlist may give rise to unique patterns of hazards
that can only be simulated in detail after synthesis. Despite the fact that we cannot
know the details of a hazard prior to synthesis, it is possible to abstractly model a
hazardous period of a signal using Verilog events, the disable statement and bx.
Such models are not synthesizable but instead provide more accurate timing simulation
prior to synthesis. Instantiations of combinational building blocks defined this way
provide an accurate worst case model of the propagation delay for bus-width devices.
From the $ t ime the inputs to any of the instantiated devices change until such changes
propagate through all of the instantiated devices, the final output of the collection is
'bx.

Many problems require that the same computation be performed on large amounts of
independent data. There are three common algorithmic alternatives to solve such prob-
lems, known as single-cycle, multi-cycle, and pipelined. In the single-cycle approach,
the computation on each independent piece of data is begun and finished in one clock
cycle. In the multi-cycle approach, the computation on each independent piece of data
requires several clock cycles to complete before another piece of data can be processed.
The pipelined approach, like an assembly line in a factory, does different aspects of the
computation with different pieces of independent data at the same time. Although it
still takes several clock cycles to complete the computation for a particular piece of
data, once the pipeline is filled, it produces one result per clock cycle.

What the multi-cycle and pipelined approaches have in common is that they both can
be clocked by "faster" clocks, determined by the worst case delay of a single building
block. The single-cycle approach demands a "slower" clock, determined by the delay
path through several devices. The single-cycle approach produces exactly one result
per clock cycle, and the pipelined approach usually produces almost one result per
clock cycle (because the time to fill the pipeline is usually negligible compared to how
much independent data is to be processed). The multi-cycle approach needs several
clock cycles to produce each result. Therefore, the pipelined approach is usually fastest
and most efficient because it can be clocked fast and it produces nearly one result per
clock cycle.

Although in recent years pipelining has become important in the design (and market-
ing) of personal computers, pipelining is not a new concept. It has been used since the
1960s to design general-purpose computers (chapter 9), but its use with special-pur-
pose computers has a much longer history. Pipelining is one of those algorithmic con-
cepts that endure. It was first applied to computer design by Babbage in the 1820s. On
Babbage's machine, the clock cycle was generated when one turned a crank. To avoid
muscle strain, Babbage designed for speed and cost and chose a pipelined design. De-
spite almost unimaginable technological change in two centuries, many designers since
then have followed in Babbage's algorithmic footsteps and have chosen pipelined de-
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signs. One does not have to be a genius like Babbage to understand pipelining today,
because modem tools like Verilog simulators make these intricate $ time related con-
cepts much easier to understand.

6.7 Further reading
GAJSKI, DANIEL D., Principles of Digital Design, Prentice Hall, Upper Saddle River,
NJ, 1997. Chapter 8 discusses how pipelining can be applied to both the controller and
the architecture (datapath).

PALNITKAR, S., Verilog HDL: A Guide to Digital Design and Synthesis, Prentice Hall,
PTR,Upper Saddle River, NJ, 1996. Chapters 5 and 10 explain about sophisticated
gate-level delay modeling in Verilog.

PATrERSON, DAVID A. and JOHN L. HENNESSY, Computer Organization and Design: The
Hardware/Software Interface, Morgan Kaufmann, San Mateo, CA, 1994. Chapters 5
and 6 discuss the trade-offs of the single-cycle, multi-cycle and pipelined approaches.

6.8 Exercises
6-1. A complex number, X, can be represented inside a machine as two integers: the
real part, xr, and the imaginary part, xi. Mathematicians say that X = xr+i*xi,
where i is the square root of minus one. (Some electrical engineers use the symbol j
instead of i.) To add two complex numbers, X and Y, simply requires adding the real
and imaginary parts separately. To multiply two complex numbers, X and Y requires
computing xr*yr-xi*yi and xr*yi+xi*yr. Suppose that a machine has four
ROMs: xr [ma], xi [ma], yr [ma] and yi [ma]. Design a multi-cycle behavioral
ASM suitable for a central ALU architecture that computes the sum of the products of
the complex values in X and Y ROMs. This computation has many practical applica-
tions in the field of digital signal processing, such as filtering out unwanted noise in a
telephone conversation. Note that there is no need for a memory in this problem be-
cause the desired answer is a single complex sum composed of sumr and sumi. You
may assume the ALU can do either an integer addition, subtraction or multiplication in
a single cycle.

6-2. Implement a pure behavioral Verilog simulation and test code that verifies your
design in problem 6-1.
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6-3. Draw a block diagram for the architecture of problem 6-1. Assume the propagation
delays (in nanoseconds) of building blocks are the same as in section 6.5.8.1. How
many seconds will it take for your machine to compute the sum assuming there are ten
million words in each ROM?

6-4. Implement a mixed Verilog simulation that verifies your architecture for problem
6-3. Assume the propagation delays of building blocks are the same as in section 6.5.8.1.

6-5. Design a single-cycle behavioral ASM for problem 6-1. The architecture that will
eventually implement the register transfers of this single-cycle machine may have as
many integer adders, subtractors and multipliers as necessary.

6-6. Implement a pure behavioral Verilog simulation and test code that verifies your
design in problem 6-5.

6-7. Draw a block diagram for the architecture of problem 6-5. Assume the propagation
delays (in nanoseconds) of building blocks are the same as in section 6.5.8.1. How
many seconds will it take for your machine to compute the sum assuming there are ten
million words in each ROM?

6-8. Implement a mixed Verilog simulation that verifies your architecture for problem
6-7. Assume the propagation delays of building blocks are the same as in section 6.5.8.1.

6-9. Design a pipelined behavioral ASM for problem 6-1. The architecture that will
eventually implement the register transfers of this pipelined machine may have as many
pipeline stages and as many integer adders, subtractors and multipliers as necessary.

6-10. Implement a pure behavioral Verilog simulation and test code that verifies your
design in problem 6-9.

6-11. Draw a block diagram for the architecture of problem 6-9. Assume the propaga-
tion delays (in nanoseconds) of building blocks are the same as in section 6.5.8.1. How
many seconds will it take for your machine to compute the sum assuming there are ten
million words in each ROM?

6-12. Implement a mixed Verilog simulation that verifies your architecture for problem
6-11. Assume the propagation delays of building blocks are the same as in section
6.5.8.1.
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7. ONE HOT DESIGNS
The manual process of translating an ASM (or the equivalent Verilog) into hardware is
quite involved. The final step of creating a structural controller is tedious because we
have to determine what the next state is in every situation. There is an alternative way
to create a structural controller directly from the behavioral Verilog or from the mixed
ASM without the need to consider the next state logic and the present state register. The
final hardware structure that is created by this alternative method is slightly more ex-
pensive than what is created by the process described in chapter 4, but it is much easier
to understand.hat verifies your
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This approach is known as a one hot method. The one hot controller uses as many flip
flops as there are states in the ASM. As described in appendix D, a D-type flip flop is a
one-bit register, whose output Q is simply its input D, delayed by one clock cycle.

The reason the one hot method is preferred is that the translation from behavior to
structure is much more straightforward than the process described in chapter 4. Given
a behavioral ASM or the equivalent behavioral Verilog, there is a one-to-one mapping
to the circuit diagram for the one hot controller. (There is a tool described in appendix
F that automates this process.)

7.1 Moore ASM to one hot
As explained in chapter 2, a Moore ASM is composed of three symbols: rectangles
describing states, diamonds describing decisions and arrows describing control flow.
With the one hot technique, each of these behavioral symbols (or the corresponding
Verilog) translates directly into a physical piece of hardware.
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7.1.1 Rectangle/flip flop
A rectangle in an ASM [or the equivalent @ (posedge syscik) in Verilog] trans-
lates into a flip flop. This technique is known as one hot because it is assumed that only
one of the flip flops is hot (i.e., contains a one) in any clock cycle. The rest of the flip
flops will be cold (contain 0). The rules of the one hot technique ensure that if this
assumption is true shortly after $ time 0, the one hot interconnections will guarantee
this one hot property will remain in effect from then on.
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7.1.2 Arrow/wire
An arrow in an ASM (or the implicit flow of control in Verilog) corresponds to a physi-
cal wire in a one hot controller. When that wire is hot it means that the corresponding
statement in Verilog is active during the current clock cycle. Several statements (that
execute in parallel) might be hot in a particular clock cycle, but only one flip flop
(corresponding to a state) is hot in that clock cycle.

7.1.3 Joining together/OR gate
It is common for two or more arrows to join together in an ASM. This joining together
occurs because in different clock cycles there are different paths to arrive at the same
next state. Because they could fight (and produce a 1 ' bx in Verilog simulation), it is
illegal to tie together two wires that are each connected to an output. Therefore, when
arrows in an ASM join together, the corresponding physical wires in the one hot design
must be ORed together.

7.1.4 Decision/demux
A decision (diamond in an ASM or an equivalent if or while in Verilog) translates
into a one bit wide demux. Recall from appendix C that the combinational logic for a
demux is very different from that of a mux. The following truth table describes the
outputs (outO and out1) of the demux, given its two inputs (in and cond):

in cond outl outO

o 0 0 0
o 1 0 0
1 0 0 1

1 1 1 0

Notice when in is cold (i.e., 0), both outputs are cold. When in is hot (i.e., 1), only
one of its two outputs is hot; hence it preserves the one hot property.

7.1.5 Summary of the one hot method Figure 7-1.
The following diagram illustrates the above four rules for translating a Moore ASM controllers.
into a one hot design:
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Figure 7-1. Moore ASMs and corresponding components of one hot
controllers.

The one hot method uses more flip flops than the method shown in chapter 4. The
number of flip flops of the present state register in chapter 4 is approximately the base
two logarithm of the number of states. The following table shows how many flip flops
are required in each method:
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The need for the extra flip flop for "power on" will be explained in the next section.

7.1.6 First example
Consider the first ASM given in section 2.2.2 (and the mixed ASM in section 2.3.3),
which has five states. The diagram below shows how to translate the ASM from section
2.2.2 into one hot hardware. There are five states in this ASM; therefore there are five
flip flops in the corresponding one hot controller. For clarity, the wires connected to the
Q outputs of these five flip flops are labeled with states that correspond to them. Later
we will use a numeric labeling scheme, but for now using the state names as wire
names will emphasize how the one hot method works.

Coming out of state IDLE, there is a decision based on pb. If pb is false, there is a path
that eventually leads back to state IDLE. If pb is true, there is a path that leads to state
INIT. In the one hot controller, this decision corresponds to a demux whose input is the
Q output of the flip flop for IDLE. The out output of the demux goes to OR gates
that in turn provide the D input for the flip flop for IDLE. The out1 output of the
demux connects to the D input for the flip flop for INIT. In other words, the ASM chart
and the circuit diagram have an identical structure.

In the ASM, there are two paths that lead to state TEST. One comes from state INIT and
the other comes from state COMPUTE2. In the one hot controller, this corresponds to
another OR gate. In state TEST there is a decision based on rigey (which tells if rl
>= y). If this condition is true, the ASM proceeds to state COMPUTE1; otherwise the
ASM proceeds to state IDLE. This decision corresponds to a demux whose input is the
Q output of the flip flop for state TEST. The cond input for this demux is rigey. The
out 1 output of this demux connects to the D input of the flip flop for state COM-
PUTEL. The outO output of this demux connects to the OR gate that leads back to the
flip flop for state IDLE.
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By itself, just reseting the flip flops that correspond to the states in a particular ASM
would have the effect of making all those flip flops cold at $ time 0. Exactly one of
these flip flops (the one for state IDLE in this example) needs to become hot at the first
rising edge of the clock. To accomplish this, we need to OR an additional wire on the
path to the flip flop for state IDLE.

This extra wire will be the output of a power-on device that will be hot only between
$ time 0 until the first rising edge of the clock. After the first rising edge of the clock,
this power on device will will be cold thereafter.

One Hot Designs
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Figure 72. One hot controllerforASMs of sections 22.2 and 23.3.

In order to guarantee that the one hot property holds at $ t ime 0, all of the flip flops are
connected to an asynchronous rese t signal. In physical hardware, shortly after $ t ime
0 is when this reset signal ceases to be active. It is never used again.
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This power-on device is constructed as a D flip flop with its D input tied to a one. The
Q output of this flip flop is complemented to form the signal that "ignites" the first flip
flop of the actual controller.
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Figure 7-3. Power-on device for one hot controllers.

The next diagram shows the translation of the ASM from sections 2.2.7 and 2.3.1 (or
the corresponding Verilog from section 4.1.5) into a one hot controller. Like any other
controller, this also needs to generate the command outputs required for the architec-
ture. This is very similar to the netlist given in section 4.4.2, except instead of
present_state [ 0 ] and -present_state [ 0 ], we have IDLE and COMPUTE
as wires.

Figure 7-4. One hotcontrollerforASMs of sections 2.2.7and 2.3.1.
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7.2 Verilog to one hot
It usually takes a little more hardware to implement a machine with the one hot method,
so why is this method worthwhile? The one hot method has a tremendous advantage:
not only is there a one-to-one mapping of ASMs into one hot designs-there is also a
similar correspondence between an implicit style behavioral Verilog block and the one
hot circuit. Because of this direct translation process, it is relatively simple to write
software that translates such Verilog into a one hot design without the need for the
designer to go through the lengthy process described in chapter 4.

VITO is an automated preprocessor tool that performs the translation from implicit
style behavioral Verilog into a one hot design. How to use VITO is described in appen-
dix F. In order to understand the approach used in VITO, it is necessary to appreciate
the one-to-one mapping between Verilog and the one hot circuit. Such an appreciation
is best developed by working through a few examples. The following examples de-
scribe manual translation of implicit style Verilog directly into a one hot circuit. Rather
than instantiating built-in gates, the following examples will use what is called con-
tinuous assignment.

7.2.1 Continuous assignment
Continuous assignment is a shorthand way of describing combinational logic. It is
equivalent to defining a module without having to declare the ports and so forth that
would otherwise be required. Let's consider an example of a continuous assignment:

There also is an additional shorthand for continuous assignment that allows the wire
declaration to occur on the same line. For example, the above is equivalent to:

I wire s_3 = ff-1 I ff-2; l

Note that continuous assign is not a behavioral statement. The left-hand side is a wire,
not a reg. Clearly, using continuous assign shortens the code considerably compared
to the "hidden-module" shown below:

are One Hot Designs

module test;
reg ffl,ff_2;
... /code that deals with ff_1 and f_2

wire s_3;
assign s3 = ff_l ff_2;

endmodule
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Continued

This "hiddenmodule" defines combinational logic in the usual way with a reg
for the output port and a sensitivity list for the input wires:

wirE

hidd

endmodu

module

input

outpu

wire

reg [

alway

sum
endmodu

An advantage o
of sum, a and 
with the idder
inside the decla

Also, continuot
ample, the folla

The computation, f f_1 I f _2, is the same as given in the continuous assign. The
power of the continuous assign is that it allows arbitrarily complicated expressions (of
arbitrary width) to be evaluated. For example, the following:

is equivalent to instantiating a hiddenadder:
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module
reg [
reg s
. . .

wire

assig
endmodu

is equivalent to
section 4.2.1.5.

module test;

reg ffl,ff_2;

... /code that deals with ff_1 and ff_2

wire s_3;

hiddenmodule hl(s_3, ff_1, ff_2);

endmodule

module hiddenmodule(s_3, ff1, ff_2);

output s_3;
input ff_1, ff_2;

reg s_3;
wire ff_1, ff_2;

always (ffl or ff_2)

s_3 = ff_1 ff_2;

endmodule

module test;

reg [11:0] a,b;

... /code that deals with a and b

wire [11:0] sum;

assign sum = a + b;
endmodule

module test;
reg [11:0] a,b;
... /code that deals with a and b
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Continued

wire [11:0] sum;

hidden-adder h2(sum, a, b);
endmodule
module hiddenadder(sum, a, b);

input a,b;
output sum;
wire [11:0] a,b;
reg [11:0] sum;
always @(a or b)

sum = a + b;
endmodule

An advantage of the continuous assignment is that you do not have to specify the widths
of sum, a and b multiple times-their previous declarations are sufficient. In contrast,
with the hidden adder approach you have to duplicate the declaration of their widths
inside the declaration of hiddenadder.

Also, continuous assignment allows the use of the conditional operator (? :). For ex-
ample, the following:

module test;
reg [11:0] a,b;
reg sel;
... /code that deals with a,b,sel

wire [11:0] muxout;

assign muxout = sel ? : a;
endmodul e

is equivalent to instantiating a hidden instance of a mux2, whose portlist is given in
section 4.2.1.5.

One Hot Designs

y with a reg
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mux2 #(12) h3(a, b, sel, muxout);
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7.2.2 One hot using continuous assignment
The wires that implement the combinational logic of a one hot circuit can be described
with continuous assignment. This is done as a notational convenience because continu-
ous assignments are equivalent to structural instances but are much more concise. For
example, the adder and mux in the last section could have been of any width, but the
syntax of the actual continuous assignment would have been the same. Synthesis tools
available from many different vendors are able to translate continuous assignments
into the structural instances (netlist) required to fabricate hardware. Each flip flop re-
quired by the one hot circuit will be described by a separate one-bit reg. Such regs
are also synthesizable. The names of these wires and regs will relate to the statement
numbers of the lines in the Verilog always block from which they derive.

7.2.2.1 One hot with if else
The following example Verilog (taken from section 3.8.2.3.3) illustrates implicit style
behavioral Verilog with an if else statement. Inthis example @ (posedge sysclk)
#1 occurs on lines 3, 5, 9, 14 and 17, so the names of the five flip flops for the one hot
controller will be f f_3, f f _5, ff_9, f f 14 and f f_17:

It is easier to give each flip flop a name that relates to what statement number the
@ (posedge sysclk) #1 occurs on than to use the name from the original ASM.
The reason that we do not use the names FIRST, SECOND, THIRD, FOURTH and
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1: always

2: begin

3: @(posedge sysclk) #1; //FIRST is ff_3
4: a <= @(posedge sysclk) 1;

5: @(posedge sysclk) #1; //SECOND is f_5
6: b <= @(posedge sysclk) a;

7: if (a == 1)

8: begin

9: @(posedge sysclk) #1;//THIRD is f_9
10: a <= (posedge sysclk) b;
11: end

12: else

13: begin

14: @(posedge sysclk) #1;//FOURTH is ff_14
15: b <= (posedge sysclk) 4;
16: end

17: @(posedge sysclk) #1; //FIFTH is ff_17

18: a <= (posedge sysclk) 5;
19: end
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FIFTH for the flip flops is that those names were inside comments, which are ignored
by Verilog. [The reason we do not use the enternew_state task (sections 3.9.1.2
and chapter 4] to give each state a name is that the VITO preprocessor does not support
tasks.) The example in section 7.1 of translating from an ASM to a one hot circuit used
the state names given in the ASMs as the names of the flip flops only for the purpose of
illustrating the nature of the one hot method. Since this translation will now be auto-
mated, the names do not matter. In the automated process, the designer will seldom
notice what name is given to each wire.

Every statement also has a wire associated with it that is active when the correspond-
ing statement executes. (In the earlier example, these names were also the original
ASM state names. In general this need not be the case, and so separate names are
appropriate for an automated tool.) In this example, there are nineteen wires (s_1
through s_1 9) that correspond to statements in the original implicit style Verilog code.
Of these wires, five act as command signals to the architecture:

wire action in architecture when wire is active
s_4 a <= @(posedge sysclk) 1;
s_6 b <= @(posedge sysclk) a;
s_10 a <= @(posedge sysclk) b;
s_15 b <= @(posedge sysclk) 4;
s_18 a <= @(posedge sysclk) 5;

The otherwires (s_1, s2, s_3, s_5, s7, s_8, s_9, s_11, s_12, s_13, s_14,
s_16, s_17 and s_19) are used to define the rest of the one hot controller. Some of
those wires are synonymous with each other. For example s_11 (an end statement)
is synonymous with the s_10 wire that precedes it.

Although there are nineteen wire names in the one-hot controller, only the above five
are sent to the architecture. Using the methodical approach (such as in sections 2.3.1
and 8.4.1) for designing the architecture, we sort the above list according to the left-
hand side of the <=, and separate them according to these destinations:

One Hot Designs

s_4 a <= @(posedge sysclk) 1;
s_10 a <= @(posedge sysclk) b;
s_18 a <= @(posedge sysclk) 5;

s_6 b <= @(posedge sysclk) a;
s_15 b <= @(posedge sysclk) 4;ent number th(

, original ASM
, FOURTH an(
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Of course, there are many architectures that could implement the above register trans-
fers. In earlier chapters we have focused on using standard building blocks, such as
enabled registers. In the approach of this chapter, we instead choose an architecture
that is easier to describe using continuous assignment. For this reason, we will use
simple (non-enabled) D-type registers that have no command inputs whatsoever. In
other words, such registers can be described simply as:

The combinati(
assignments:

All of the actions normally encapsulated inside a register building block (of the kind
described in appendix D) now have to be given with the combinational logic that com-
putes newa and newb. From the sorted list above, one approach would be to use
three muxes for computing newa and two muxes for computing new-b:

Because of the n.
<= 1 and s_6
same destinatioi
any clock cycle.
also suffice, suc]

Notice that the 
Verilog. The bloc
the Verilog conti
by just rearrangii

Having defined t
ing circuit diagra
hardware:

Figure 7-5. Architecture generatedfrom implicit Verilog of sections 7.2.2.1 and
3.8.2.3.3.
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reg [11:0] a,b;

wire [11:0] new a,new-b;
always (posedge sysclk)

a = new a;
always (posedge sysclk)

b = new-b;
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The combinational logic in the above diagram can be expressed as two continuous
assignments:

Because of the nature of correct one hot designs, it is guaranteed that s_18 + s_10 + s_4
<= 1 and s_6+s_15 <= 1. In other words, within each group (dealing with the
same destination register), no more than one of the command signals will be active in
any clock cycle. This means there are several permutations of the muxes that would
also suffice, such as:

assign newa =

(s_4) ? 1

(s_10) ? b

(s_18) ? 5

a;

assign new_b =

(s_6) ? a

(s_15) ? 4

b;

Notice that the architecture was created by a textual transformation of the original
Verilog. The block diagram given above was shown only as an aid to understand how
the Verilog continuous assignment works. The preprocessor produces similar Verilog
by just rearranging the original text of the Verilog.

Having defined the architecture, all that remains is to define the controller. The follow-
ing circuit diagram shows how each implicit style behavioral statement translates into
hardware:

One Hot Designs
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(s_18) ? 5 :
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a;
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b;
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Figure 7-6. Controller generatedfrom implicit Verilog of sections 7.2.2.1 and
3.8.2.3.3.
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Again, VITO does not draw such a circuit diagram. The above diagram is provided
only to help explain the textual transformations that the preprocessor performs. Start-
ing from the original Verilog, the preprocessor generates the many continuous assign-
ments required to describe the above circuit.

7.2.2.2 One hot with if
The following example is taken from the implicit style example in section 3.8.2.3.4. It
illustrates a slightly different one hot controller than the last example because the origi-
nal Verilog uses an if without an else:

The if statement translates to a demux whose input, qual 7, comes from the com-
parator for statement 7 that implements the condition a == 1. The 1 output, sT_7,
corresponds to when this condition is true at the $ time the i f executes. The 0 output,
s_7 corresponds to when this condition is false at the $ time the if executes.

The preprocessor generates the following one hot controller. In the following, only
some of the wire names are shown:

Iand
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7.2.2.1 and

are One Hot Designs 263

1: always
2: begin

3: @(posedge sysclk) #1; //FIRST is ff_3
4: a <= (posedge sysclk) 1;
5: @(posedge sysclk) #1; //SECOND is ff_5
6: b <= @(posedge sysclk) a;
7: if (a == 1)
8: begin
9: @(posedge sysclk) #1;//THIRD is ff_9

10: a <= (posedge sysclk) b;
11: @(posedge sysclk) #1;//FOURTH is ff_11
12: b <= (posedge sysclk) 4;
13: end
14: @(posedge sysclk) #1; //FIFTH is ff_14
15: a <= @(posedge sysclk) 5;
16: end

S_11

7.2.2.
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10
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4

101
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Figure 7-7. Controller generatedfrom implicit Verilog of sections 7.2.2.2 and
3.8.2.3.4.

7.2.2.3 One hot with whil e
The following example is taken from the implicit style example in section 3.8.2.3.5. It
is similar to the last example, except it uses a while loop (and a corresponding OR
gate in the one hot controller to indicate the two paths that lead to the top of the while):
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Continued

10:
11:
12:
13:
14:
15:
16:

The preproces

S_

Figure 7-8.
3.8.2.3.5.

1: always

2: begin

3: @(posedge sysclk) #1; //FIRST is ff_3
4: a <= (posedge sysclk) 1;

5: @(posedge sysclk) #1; //SECOND is ff_5
6: b <= (posedge sysclk) a;
7: while (a == 1)

8: begin

9: @(posedge sysclk) #1;//THIRD is ff_9
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Continued

10: a <= (posedge sysclk) b;
11: @(posedge sysclk) #1;//FOURTH
12: b <= @(posedge sysclk) 4;
13: end
14: @(posedge sysclk) #1; //FIFTH -
15: a <= @(posedge sysclk) 5;
16: end

The preprocessor generates the following one hot controller:

resetH DEVICON

HS_999

resets - DQ

ts4

s-6

.2.2 and
qua17 < A

s_7 - sT_7

3.8.2.3.5. It r
ponding OR s10
thewhile): h : D

Figure 7-8. Controller generatedfrom implicit Verilog of sections 7.2.2.3 and
3.8.2.3.5.
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7.3 Mealy commands in a one hot machine
Chapter 5 describes Mealy machines, where a command can be conditional. Condi-
tional commands, shown as ovals in ASM charts, are not guaranteed to execute simply
because the machine is in a particular state. In order for a Mealy command to execute,
some specified condition must also be true. In a one hot controller, this condition cor-
responds to an output wire from the proper demux. In a Mealy one hot controller,
some of the wires associated with the statements that compose a state may not neces-
sarily be active when the machine is in that state. This is why the preprocessor creates
a wire for every statement: any statement in a Mealy machine might be conditional.

7.4 Moore command signals with Mealy <=
The VITO preprocessor only permits <= . At first glance, this might appear to prevent
implementation of mixed ASMs or of ASMs that have external command outputs, such
as ready in the ASM of section 2.2.7. In fact, as long as such command signals are
unconditional (Moore), they can be described using Mealy <=. By doing so, the cost of
the architecture will increase by some extra flip flop(s); however this is usually a small
fraction of the total cost.

In addition, using the technique described below ensures that the command signal is
hazard-free,' which is necessary in certain situations, such as interfacing to asynchro-
nous memories (section 8.2.2.3.2).

7.4.1 Example to illustrate the technique
As an example to explain this technique, consider the following machine that asserts an
external command signal, comm, when the machine is in state BOT:

Figure 7-9. Example with Moore command signal.

l The physical cause for hazards is explained in section 6.3.3.

Verilog Digital Computer Design: Algorithms into Hardware

This can be d

always
begi

end

As explained
enternew

always
begii

end

task eni
input
begin

prep
#1 

end
endtask

Since the VIT
using = whose

One of the ess
blocking assig
next rising ed
mand is synoi
sections 2.4 an
that is part of 

F__--q

M�

266



This can be described with the following implicit style behavioral Verilog:
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Since the VITO preprocessor only allows <=, we need to describe a machine without
using = whose behavior will be identical to the above after the first clock cycle.

One of the essential ideas used throughout this entire book is the meaning of the non-
blocking assignment. It computes a value now but assigns that value to a register at the
next rising edge of the clock. Since the above Verilog is a Moore machine, the com-
mand is synonymous with the machine being in a particular state. As described in
sections 2.4 and 4.4.5, such Moore commands can be generated by combinational logic
that is part of the next state logic:
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always
begin

@(posedge sysclk) enternewstate('TOP);
if (pb)
begin

@(posedge sysclk) enternewstate('BOT);
comm = 1;

end
end

task enternewstate;
input ['NUM _STATE_BITS-l:0] this_state;
begin
presentstate = thisstate;
#1 comm =0;

end
endtask

rhis can be described with the following implicit style behavioral Verilog:

always
begin

�(posedge sysclk) #1; //TOP
Comm = ;
if (pb)

begin
�(posedge sysclk) #1;//BOT

Comm
end

end

As explained in section 39.1.2, the cornm = statement can been hidden inside the
enter-new-state task so that is the default value for comm:

Since the VITO preprocessor only allows <=, we need to describe a machine without
using = whose behavior will be identical to the above after the first clock cycle.

One of the essential ideas used throughout this entire book is the meaning of the non-
blocking assignment. It computes a value now but assigns that value to a register at the
next rising edge of the clock. Since the above Verilog is a Moore machine, the com-
mand is synonymous with the machine being in a particular state. As described in
sections 24 and 44.5, such Moore commands can be generated by combinational logic
that is part of the next state logic:
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Figure 7-10. Current command approach suitable for Moore or Mealy
controller

Although Mealy machines must be defined using the above, we can look at a Moore
machine such as this example in a different way. We know what the next state is going
to be, and we know that there is a command synonymous with being in that next state.
Instead of using combinational logic for the current command as we have done in
previous chapters, we can instead use a register that will contain the next command:

next
Moore PS ate Ps present
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combinational next
logic comm

pb l COMMcurrent
> -- ] C -- command

Figure 7-11. Next command approach suitable only for Moore controller
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Figure 7-12. Behavioral ASM with - for next command approach.
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In the implicit style behavioral Verilog corresponding to figure 7-12, we use <= to
assign values to the next command (comm) register:

always
begin

@(posedge sysclk) #1; //TOP
if (pb)

begin
aly comm <= (posedge sysclk) 1;

@(posedge sysclk) #;//BOT

end

lk at a Moore end comm <= (posedge sysclk) 0;
ok at a Moore end
t state is going
that next state.
have done in Except for the time prior to the second full clock cycle (during which time comm is

xt command: 1 bx), the above machine has the same behavior as the original Verilog code that used
=. Note that the non-blocking assignments are pure behavioral Mealy commands, and
so the assignment is conditional. The machine only schedules the assignment of 1 to
comm when the machine is already on the path where the next state will be state BOT.
In other words, we only know that the next command will be 1 when we already know
that the next state will be state BOT. The only way to get to state BOT is conditionally
in state TOP when pb == 1.

d Likewise, the machine only schedules the assignment of 0 to comm when the machine
is already on the path where the next state will be state TOP. The next command will be
O only when we know that the next state will be state TOP. There are of course two

roller. ways that we could know that the next state is state TOP: conditionally in state TOP
when pb == 0, and unconditionally in state BOT. The non-blocking assignment,
comm <= 0, only has to be described once because it was given after the if state-
ment.

By rearranging the comm <= @ (posedge sysclk) 0 to the top of the always
loop, the following is identical to the original Moore ASM, including the firstfll clock
cycle:

always

begin

comm <= (posedge sysclk) 0;
@(posedge sysclk) #1; //TOP

if (pb)

begin

comm <= (posedge sysclk) 1;
@(posedge sysclk) #1;//BOT

end

end
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This works on the assumption2 that the power on circuit can reliably provide s_999
as the command signal that clears comnm prior to that first full clock cycle. 3 When this
assumption holds, the above example illustrates a simple rule for converting a Moore
machine with external commands into a Mealy machine using <=: put the <= for the
next commands just prior to the @ (posedge sysclk) that marks the beginning of
the corresponding next state. All commands must be described, including those to take
on default values.

7.4.2 Pure behavioral two-state division example
Section 4.1.5 shows how to translate the two-state ASM chart for the childish division
algorithm (section 2.2.7) into implicit style behavioral Verilog in a way that is suitable
for simulation only (using the enternew-state task). With the technique illus-
trated in the last section, it is very easy to modify this source code so that you can
synthesize physical hardware directly from the implicit style (pure behavioral) Verilog
without having to go through the tedious "mixed" and "pure structural" stages (sec-
tions 4.2 and 4.3). The boldface in the following shows the changes to the code from
section 4.1.5:

2 Some synthesis tools might not produce a reliable circuit under these circumstances, and so the former
method (assigning 0 to comm at the bottom of the always) might be preferred. The latter Verilog code is
logically correct, but its physical implementation may be unreliable, depending on the clock frequency and
the physical properties of the technology.

3Actually, the signal that clears the register is s_3, which is the OR of s999 and the wire from the
bottom of the always loop.
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module slow

input pb,r
output rea

//reg ['NU
wire pb;
reg ready;
reg [5:0]
reg muxctr
wire rlgey
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odule slowdiv-system(pb,ready,x,y,r3,sysclk);
input pb,x,y,sysclk;
output ready,r3;
wire pb;
wire [11:0] x,y;
reg ready;
reg [11:0] rl,r2,r3;
//reg ['NUNSTATE_BITS-l:0] presentstate;
wire sysclk;
always
begin

ready <= (posedge sysclk) 1;
@(posedge sysclk) #1; //IDLE
rl <= (posedge sysclk) x;
r2 <= (posedge sysclk) 0;
//ready = 1;
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7.4.3 Mixed two-state division example
Although the code in section 7.4.2 alone is enough to create physical hardware using
appropriate synthesis tools (perhaps with the help of the VITO preprocessor described
in appendix F), sometimes (for reasons of availability, speed or cost), the designer may
want to create the architecture manually, as described in sections 2.3.1 and 4.2.3. The
reader of chapter 4 may be left with the impression that in such a case, the designer
must also create the controller manually. In fact, as long as the controller is a Moore
machine, and the designer is willing to expend a few extra flip flops for the controller,
it is possible to go straight from the mixed stage to physical hardware, without going
through the tedious details of the "pure" structural stage.

Section 4.2.4 shows how to translate the mixed Moore ASM of the two-state division
machine, (which generates command signals for a specific architecture that the de-
signer has selected) into mixed Verilog. Using the techniques described in the preced-
ing sections, here is equivalent implicit style Verilog acceptable to the synthesis pre-
processor (bold indicates differences from section 4.2.4):

;, and so the former
atter Verilog code is
,lock frequency and

the wire from the

One Hot Designs

if (pb)

begin

while (rl >= y pb)

begin

ready <= (posedge sysclk) 0;

@(posedge sysclk) #1; //COMPUTE

rl <= (posedge sysclk) rl - y;

r2 <= (posedge sysclk) r2 + 1;
r3 <= (posedge sysclk) r2;

end

end

end

// task enternew state; ...
endmodule

module slowdivctrl(pb,ready,aluctrl,muxctrl,ldrl,

clrr2,incr2,ldr3,rlgey,sysclk);

input pb,rlgey,sysclk;

output ready,aluctrl,muxctrl,ldrl,clrr2,incr2,ldr3;

//reg ['NUMSTATE_BITS-l:0] present_state;

wire pb;

reg ready;

reg [5:0] aluctrl;

reg muxctrl,ldrl,clrr2,incr2,ldr3;

wire rlgey,sysclk;
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Continued

always

begin
ready <= (posedge sysclk) 1;
aluctrl <= (posedge sysclk) PASSB;
muxctrl <= (posedge sysclk) 0;
ldrl <= (posedge sysclk) 1;
clrr2 <= @(posedge sysclk) 1;
incr2 <= @(posedge sysclk) 0;
ldr3 <= @(posedge sysclk) 0;
@(posedge sysclk) #1; //IDLE
//rl <= @(posedge sysclk) x;
//r2 <= @(posedge sysclk) 0;
//ready = 1;

//aluctrl = PASSB;
//muxctrl = 0;
//ldrl = 1;
//clrr2 = 1;
if (pb)

begin
while (rlgey I pb)
begin

ready <= (posedge sysclk) 0;
aluctrl <=@(posedge sysclk) 'DIFFERENCE;
muxctrl <= (posedge sysclk) 1;
ldrl <= (posedge sysclk) 1;
clrr2 <= (posedge sysclk) 0;
incr2 <= @(posedge sysclk) 1;
ldr3 <= (posedge sysclk) 1;
@(posedge sysclk) #1; //COMPUTE
//ready = 0;
//rl <= @(posedge sysclk) rl - y;
//r2 <= @(posedge sysclk) r2 + 1;
//r3 <= @(posedge sysclk) r2;
//aluctrl = 'DIFFERENCE;
//muxctrl = 1;
//ldrl = 1;
//incr2 = 1;

//ldr3 = 1;
end

end
end

endmodule
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7.5 Bottom testing loops with disable inside forever
Although while loops are sufficient to implement any algorithm, and are preferable
for many mathematical problems, there are situations when a bottom testing loop is
more convenient than awhile loop. Chapter 5 describes how the enternew state
approach allows bottom testing loops to be simulated. The problem is that the tech-
nique used in chapter 5 is not acceptable to synthesis tools including the VITO prepro-
cessor. There is another approach for bottom testing loops, involving the disable
statement inside a forever loop that the preprocessor accepts.

The disable statement in Verilog has two main uses: stopping execution of a paral-
lel block in a simulator (explained in section 6.4.3) and implementing bottom testing
loops for synthesis (explained below).

As an example of a bottom testing loop, consider the following ASM. It is supposed to
go through the bottom testing loop (consisting of states TOP and BOT) five times
before returning to state OUTSIDE:

Figure 7-13. Example bottom testing loop.

Using the simulation technique of section 5.4.1, this could be translated to Verilog as
follows:
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The above simulates correctly. However, the above cannot be synthesized into a one
hot machine using the VITO preprocessor.

An alternative way to implement a bottom testing loop is to use a forever statement
with a disable statement inside. Using a disable statement requires an extrablock
that has a label to surround the forever. The forever by itself would never exit,
and so the disable statement causes a goto the end that matches the labeled be-
gin. For example, the above ASM could be translated into:
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The above works correctly with the VITO preprocessor. However, this will not simu-
late properly on most Verilog simulators because the disable statement will also
disable the non-blocking assignment. Putting # 1 in front of the disable may help on
some simulators, but on many simulators there seems to be no way to use disable in
this way properly. Therefore, the Verilog you choose for a bottom testing loop will be
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always

begin

@(posedge sysclk) enternew state('OUTSIDE);
count <= (posedge sysclk) 0;
while (count!=4 & present-state !== BOT);
begin

@(posedge sysclk) enter newstate('TOP);
@(posedge sysclk) enternew_state('BOT);
count <= (posedge sysclk) count + 1;

end
end

always

begin
@(posedge sysclk) #1; //OUTSIDE
count <= (posedge sysclk) 0;
begin : looplab
forever
begin
@(posedge sysclk) #1; //TOP
@(posedge sysclk) #1; //BOT
count <= @(posedge sysclk) count + 1;
if(count==4)
begin
disable looplab;
end

end
end

end

-
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quite different if you want to simulate than if you want to synthesize. This book has
avoided using bottom testing loops in most examples in order that simulation may
agree with synthesis, but there are situations where hardware designers prefer bottom
testing loops.

7.6 Conclusion
One hot encoding provides a more natural way of translating complex algorithms into
hardware than the binary encoded approach described in earlier chapters. Because of
this, a preprocessor tool is available that directly translates an algorithm written in
implicit style behavioral Verilog into a one hot circuit. There is a one to one mapping
between the Verilog (or the equivalent ASM) and the one hot controller.

There are graphical software tools that can automatically translate an ASM chart into
Verilog, but the use of such tools is often ill advised. The use of such tools locks the
designer into a proprietary file format. Although manually drawn ASM charts are use-
ful to a designer in the early stages of design, they lack the expressive power of Verilog
to hide the details of a design with good notation. Instead, this book uses graphical
ASM charts only as the master plan for the design. The details of the design occur in
textual form as implicit style behavioral Verilog. With one of several commercial
synthesis tools and perhaps the VITO synthesis preprocessor described in appendix F
(that uses the one-hot techniques given in this chapter), implicit style Verilog alone is
often enough to create operational hardware.

The central concept of this book is that algorithms can be described using pure behav-
ioral ASM charts (with RTN) or the equivalent pure behavioral Verilog (with implicit
style whiles and if s together with the non-blocking assignment). This approach is
different than traditional software because of the potential for parallel processing and
because of the idea of the system clock. This approach is different than traditional
hardware because of the emphasis on algorithms and behavior. Such implicit style
behavioral Verilog algorithms (or their equivalent ASM charts) describe in an abstract
fashion the operations carried out by some specific synchronous architecture. Chapters
4 and 5 show how you can manually design such architectures using Verilog, but the
Verilog to one hot preprocessor (explained in this chapter) eliminates the need for such
manual translation.

7.7 Further reading
ARNOLD, MARK G. and JAMES D. SHULER, "A Preprocessor that Converts Implicit Style
Verilog into One-hot Designs," 6th International Verilog HDL Conference, Santa Clara,
CA, March 31-April 3, 1997, pp. 38-45. Gives more information about the VITO pre-
processor.
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PROSSER, FRANKLIN P. and DAVID E. WINKEL, The Art of Digital Design: An Introduction
to Top Down Design, Prentice Hall PTR, Englewood Cliffs, NJ, 2nd ed., 1987. Chapter
5 gives examples of the one hot technique.

7.8 Exercises
7-1. Draw a circuit diagram for a one hot controller corresponding to the Moore ASM
given in section 2.2.4. Label the output of each flip flop with the name of the state.
Assume the command and status signals of the architecture are the same as in sections
2.3.1 and 4.2.3.

7-2. Draw a circuit diagram for a one hot controller corresponding to the Mealy ASM
given in section 5.2.4. Label the output of each flip flop with the name of the state.
Assume the command and status signals of the architecture are the same as in sections
2.3.1 and 4.2.3.

7-3. Draw a block diagram using muxes and combinational logic which is equivalent to
the following continuous assignment (assume that the 12-bit a and b are defined else-
where):

wire [11:0] new a;
assign new a =

(s_10) ? a+b
(s_20) ? 2*a-b : a;

7-4. Rewrite the pure behavioral Verilog of section 4.1.3 into the implicit style form
suitable for the VITO preprocessor. (Eliminate the enternew_state task and con-
vert ready to <= as described in section 7.4.2.) Use the preprocessor to produce the
continuous assignments that are equivalent to the one hot design. Draw a circuit dia-
gram for the one hot controller labeled with the names used in the output of the prepro-
cessor. Also draw a block diagram for the architecture constructed only with combina-
tional logic, muxes and simple (non-enabled) D-type registers corresponding to the ?
: in the output of the preprocessor.

7-5. Rewrite the pure behavioral Verilog of section 5.4.2 into the implicit style form
suitable for the VITO preprocessor. (Eliminate the enternew_state task and con-
vert ready to <= as described in section 7.4.2. Also, use the disable statement in a
different way than was described in this chapter.) Use the preprocessor to produce the
continuous assignments that are equivalent to the one hot design. Draw a circuit dia-
gram for the one hot controller labeled with the names used in the output of the prepro-
cessor. Also draw a block diagram for the architecture constructed only with combina-
tional logic, muxes and simple (non-enabled) D-type registers corresponding to the ?
: in the output of the preprocessor.
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8.1 Introduction and history
The machines described earlier in this book have each implemented a single algorithm
that solves a specific problem, such as the childish division algorithm given in chapter
2. We use the term special-purpose computer to describe such machines, which are
designed to solve only one problem. The designer of a special-purpose computer trans-
forms the algorithm which solves just that one problem into the hardware structure that
directly performs the computations required by that specific algorithm. The history of
automation is filled with examples of such machines. Prior to the electronic age, Blaise
Pascal's 1642 calculator, Jacquard's automated loom, Charles Babbage's 1823 differ-
ence engine, Herman Hollerith's' 1887 electromechanical punch card counter (which
tabulated the 1890 U.S. census), Leonardo Torres y Quevedo's 1911 electromechanical
chess playing machine as well as all of the calculators and business equipment of the
early twentieth century are illustrations of special-purpose computers.
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It is not surprising that the first "computers"2 implemented with electronic (vacuum
tube) technologies were also special-purpose machines. C. E. Wynn-Williams' 1932
binary counter (for nuclear particles), John V. Atanasoff and Clifford Berry's 1938
computer (later dubbed the ABC machine) at Iowa State University for solving simul-
taneous equations and the British Colossus machines of World War II (that cracked
German coded messages) are all illustrations of successful vacuum tube implementa-
tions of special-purpose machines that followed specific algorithms.

In contrast to such specialized machines, a general-purpose computer is designed to
solve any problem, limited only by the size of the machine. The idea of a general-
purpose computer is independent of any technology. Babbage and Augusta Ada (Lady
Lovelace) envisioned a machine that could create its own programs. Alan Turing pub-
lished a theoretical paper in 1936 which proved there are mathematical functions that
cannot be computed mechanically. To do this, he envisioned a (technologically ineffi-
cient but plausible) machine programmed via a "tape" that could be both read and
written. The theoretical machines envisioned by Babbage and Turing were "universal"
because they would have the capability of self-modification.

l Hollerith started a company that later became IBM.
2 The term "computer" did not develop its current meaning as a machine that processes information until the
1950s. Previously, a "computer" was a person hired by a scientist to carry out an algorithm manually.
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Governments on both sides during World War II focused more resources on the design
of computers than had ever occurred before. Although at first many such machines
were justified because they solved some important special-purpose problem, such as
ballistics, the huge expense required to build and maintain such machines motivated
several independent groups t design machines that could be reused to solve different
problems. These wartime machines were not fully general-purpose in the modern sense,
but were programmable via punched tape. The tape moved in one direction past a
reader, and the holes told the machine what to do. Although on most such machines
looping was not possible (because the tape moved in only one direction) and self-
modification was not possible (because once a tape was punched, it could not be
repunched), such machines made it easy to change the program by changing the tape.

Konrad Zuse filed a patent in Germany in 1936 on such a tape-controlled machine and
built several versions of this machine, the first of which became operational in 1941.
Colossus, in fact, was tape-controlled due to the flexibility required by British math-
ematicians (including Turing) who sought to break ever-changing German codes. George
R. Stibitz and others at Bell Labs built several tape-controlled relay computers, some
of which remained in use for over a decade after the war. In 1943 Howard Aiken and
others at Harvard, with the help of engineers from IBM, built the tape-controlled Harvard
Mark I, which was used by U.S. Navy personnel (including the later to become famous
Admiral Grace Hopper). Near the end of the war, IBM started to build the SSEC, which
was unique among the tape-controlled computers of the war because it had some lim-
ited ability for the type of self-modification alluded to by Babbage and Turing (and was
therefore almost a true general-purpose computer).

John P. Eckert, John W. Mauchly and others in the Moore School at the University of
Pennsylvania built ENIAC from 1943 to 1945 for ballistic computations required by
the U. S. Army. It was the largest computer built during the war, constructed with an
order of magnitude more vacuum tubes (nearly 20,000) than any of the other machines.
Unlike other machines of the era, it was not programmed via a tape, but instead it had
to be rewired (via a plugboard) to solve a different problem. (Designing a "program"
for the ENIAC was similar to designing the controller and architecture as illustrated in
chapter 2). This made ENIAC far more specialized and inconvenient than the tape-
controlled machines. Recognizing this inconvenience, people at the Moore School (no-
tably John von Neumann) proposed building EDVAC, which would represent pro-
grams in the same memory as data, rather than on tape or with a plugboard.

Although EDVAC was not the first general-purpose computer to become operational,
von Neumann's 1945 poposal was profoundly influential. To this day, his name is
synonymous with general-purpose computers that store their programs in the same
memory as their data and that use what we now call the fetch/execute algorithm. The
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hardware implementation of the actual EDVAC machine did not become operational
until 1951, in part because von Neumann left the Moore School to join Princeton's
Institute for Advanced Studies where he designed the IAS machine.

The first general-purpose computer to become operational was a prototype (known as
"Baby Mark I") built by Frederic C. Williams and Tom Kilbum at the University of
Manchester in England. Although small (less than one thousand vacuum tubes) and
limited (only 32 words of memory and no hardware support for division), it ran its first
software program (division using the childish algorithm described in chapter 2) on
June 21, 1948. A later version of this machine, the Manchester Mark I, became opera-
tional in 1949 with 128 words of memory. A commercial version of the Mark I was
produced in Britain a few years later by Ferranti. Also in Britain during 1949, Maurice
Wilkes and others at Cambridge completed the EDSAC, which had 512 words of
memory.

In the U.S., the first operational general-purpose computer was BINAC with 512 words
of memory, built in 1949 by Eckert and Mauchly after they left the Moore School to
start their own company. Their company later produced the UNIVAC, which was the
first general-purpose computer that was commercially successful in the U.S. (more
than 20 were sold).

Since the early 1950s, thousands of slightly different implementations of general-pur-
pose computers have proliferated worldwide. Although they differ quite significantly
in the details, all of them implement essentially the same algorithm in hardware: fetch/
execute, which is the subject of this chapter.
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8.2 Structure of the machine
Since the Manchester Mark I, almost all general-purpose machines have had the same
overall top-level structure, illustrated by the following diagram:
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Figure 8-1. Block diagram of typical general-purpose computer
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8.2.1 CPU, peripheral and memory
There are typically three components of a general-purpose machine:

1. The Central Processing Unit (CPU) is composed of a controller and an architec-
ture. As discussed in chapter 2, for special-purpose computers, the architecture is
where the ALU(s), register(s) and other computational elements reside.

2. The peripheral(s) are distinct special-purpose computer(s) that interface the CPU
to outside actors, such as a keyboard. Each interface typically has its own control-
ler and architecture, including synchronizers as required.

3. Memory is a special kind of device that stores the bits that can represent both
programs and data.

Sections 8.3 and 8.4 of this chapter will illustrate how the same techniques used for
special-purpose computers in chapter 2 can implement the CPU of a general-purpose
computer. The next section describes memory.

8.2.2 Memory: data and the stored program
The one component that has not been discussed in detail previously is memory.3 From
a behavioral standpoint, a memory is simply an array of words. The subscript to this
array is known as an address. We will refer to the number of bits required for the
address as a. The designer can choose how many bits (d) are in each word, and also
how many words (2 a) are in the memory. For example, Williams and Kilburn's first
machine had a word size of 32 bits, and there were 32 such words in the memory (five
address bits). Therefore, their memory had 32*25 = 1024 bits total. Later in this chapter
we will design a machine with 4096 words (12-bit address), and a wordsize of 12-bits.
This machine will require a memory with 12*212 = 49,152 bits. Most machines typi-
cally have memories that hold billions of bits, but that is a detail that is irrelevant to
learning the essential ideas of this chapter.

In this chapter and in appendices A and B, we will indicate both address and contents of
memory in octal. As an abbreviation, the address will be shown on the left, and the
contents will be shown on the right, with a slash separating the address from the con-
tents. For example,

I 0123/4567 1

3 The memory we are talking about can be used both to store and retreive bits. It is refered to as "RAM" by
some people.
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means the address is 01238 == 0000010100112 == 83 and the contents is 45678 ==
1001011101112 == 2423, or more succinctly in array notation, memory 83] ==
2423. We will sometimes abbreviate even further to say m [83] = = 2423.

There are five independent issues that can be used to categorize memory: unidirec-
tional versus bidirectional (section 8.2.2.1), deterministic versus non-deterministic ac-
cess time (section 8.2.2.2), synchronous versus asynchronous (section 8.2.2.3), static
versus dynamic (section 8.2.2.4) and volatile versus non-volatile (section 8.2.2.5).4

8.2.2.1 Unidirectional buses versus a bidirectional bus
There are two common variations on how a memory device connects to the rest of the
system. One approach uses simple unidirectional buses of the type seen in chapter 2,
and the other combines two data buses together into what is known as a bidirectional
bus.

The simplest form of memory has two input buses and one output bus. This simple type
of memory with only unidirectional buses is what we will use in this chapter. In this
type of memory, the d-bit-wide din bus is an input to the memory device, and the d-
bit-wide dout bus is the output of the memory device. Also, the a-bit wide addr bus
is another input to the memory device. There must be additional input(s) to the memory
device, which are described in later sections.

din memory dout
dd

addr
other a
input(s)

Figure 8-2. Symbol for memory with unidirectional data buses.

A bidirectional bus is one that is used to send information two ways. In the following
diagram, a bidirectional bus is indicated by an arrow that points both ways. In this case,
bidirectionality allows combining the din and dout buses, into a single data bus as
illustrated in the following:

4 A different issue related to memory (not discussed in this chapter) is how many ports the memory has.
Multi-ported memory is discussed in section 9.8, but in this chapter all memory is assumed to have only one
read port and one write port, as illustrated in the following sections.
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addr_ memory data

other
input(s) >

Figure 8-3. Symbolfor memory with bidirectional data bus.

The advantage of bidirectionality is that there are fewer wires connecting the memory
device to the rest of the system, however, interfacing to such a device is more compli-
cated. This requires the use of tri-state buffers. Except for such tri-state buffers, the
internal structure of this memory is identical to that of a memory with separate din
and dout buses. We will not consider memory devices with bidirectional buses in this
chapter.

8.2.2.2 Deterministic versus non-deterministic access time
Like all other physical devices, the actual memory hardware is not instantaneous. Al-
though at the early behavioral stages of the design we prefer to ignore the time it takes
to use the memory (known as the access time), ultimately, the speed of the memory will
have a major influence on the speed of a general-purpose computer (since both the
program and the data have to be obtained from the same memory). In the final stages of
design, the designer must consider memory timing.

When the access time is deterministic, the time to obtain an arbitrary bit from memory
does not vary significantly as a function of the address.

Almost all primary memories used today have deterministic access times. Almost all
secondary memories (e.g., disk drives) have non-deterministic access times.

8.2.2.3 Synchronous versus asynchronous memory
There are two different ways in which the memory timing can occur: synchronous and
asynchronous. The difference is whether or not the memory uses the system clock.

8.2.2.3.1 Synchronous memory
This kind of memory is the fastest, most expensive and simplest for the designer to
incorporate. This kind of memory is commonly used where speed is important, such as
in pipelined systems (section 6.5.8.3) or RISC computers (chapter 10). Because of its
cost, it has not generally been used for the primary memory of a stored program com-
puter, although recently, as clock speeds have increased, synchronous primary memo-
ries have become more commonplace.
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In addition to the address and data buses, there must be a command input, ldmem, that
tells the memory what to do. In order for the memory to be synchronous with the rest of
the machine, it also needs a clock input. The top-level structure of a synchronous memory
with separate din and dout is shown below:

dout

Idn

so

Figure 8-4. Symbolfor synchronous memory.

There are two things that the device does. Given enough time, the output of the device
reflects the contents of the memory at the word indicated by the address bus. In other
words, neglecting the propagation delay (i.e., neglecting the access time),

I dout = memory[addr]

The second thing that the memory can do is based on the ldmem command signal. On
the next rising edge after ldmem becomes true, the word in memory indicated by the
address bus changes to become the value of the data input bus,

I memory[addr] - din

Note that almost instantly after this change takes effect, dout will also change. At
most one word in memory can be changed in one clock cycle when a memory is single-
ported.5 If ldmnem is not true, memory remains unchanged.

A synchronous memory device can be thought of as a bank of registers. Although it is
not usually the most efficient way to build a memory, the following diagram shows a
structure that achieves this goal:

5Chapters 9 and 10 describe multi-ported memories that allow more than one memory operation per clock
cycle.
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This diagram uses 2a enabled registers, each containing d bits. It also has a 1 *2a demux
and a d*2a mux.

Let's ignore the left-hand side of this diagram (the demux that connects to the ldmem
signal) for the moment. For example, assume the proper data has already been placed
in each register, and the user wishes to obtain the contents of one of the memory loca-
tions. The user provides the address of the desired memory cell on the addr bus. The
mux selects the output of the corresponding register, and outputs that on the dout bus.

To understand how a user is able to write new data into memory, you need to recall
what the combinational logic of a demux does. When ldmem is 0, the demux will
produce Os on all of its 2a outputs, so none of the registers would change. When 1 dmem
is 1, the demux will output a 1 on exactly one of its outputs and Os on the others. The
output that is 1 will be determined by the value of the addr bus. Therefore if ldmem
is 1, only the contents of the register corresponding to the current addr bus will change
at the next rising edge of the clock.

Notice that the above implementation has a deterministic access time (essentially the
propagation delay of the mux). It is possible to build a synchronous clocked memory
based on shift registers, where the access time varies depending on how many clock
cycles are required to shift the desired bit out. However, there is seldom any advantage
to such a memory.
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8.2.2.3.2 Asynchronous memory
A significant portion of the cost of the memory shown in 8.2.2.3.1 is due to the clock
being provided to each register. All of the cheaper memory technologies invented have
been asynchronous, which means they do not use the system clock. If the designer can
cope with a memory that is asynchronous, the cost of memory can be reduced.

The block diagram for such an asynchronous memory (with separate din and dout
ports) is:

dout

Figure 8-6. Symbol for asynchronous memory.

Here the write signal combines the roles of the ldmem signal and the sysclk sig-
nal. Asynchronous memory may also have a bidirectional data bus instead of two uni-
directional buses.

a 1*2a demux

to the ldmem
dy been placed
b memory loca-
addr bus. The
the dout bus.

need to recall
he demux will
. When ldmem
the others. The
-fore if ldmem
)us will change

In general, asynchronous design is highly unsafe, and should only be attempted by
expert designers. Proper asynchronous design involves consideration of much lower
(electronic) details than is the case for synchronous design. With the introduction of
HDLs, the vast majority of design (such as CPUs) in industry is synchronous because
synchronous designs are much more likely to be synthesized correctly. Asynchronous
design is beyond the scope of this text, and so we will not consider the internal struc-
ture that implements this memory (although it is similar in concept to the diagram in
8.2.2.3.1).

Fortunately, since memory is such an important commodity, electronic experts have
hidden most of the asynchronous ugliness inside commonly available memory chips.
To cope safely with such devices, there are only three extra things that the designer has
to do:

1. Choose a conservative clock speed for the rest of the system relative to the access
time of the memory. In other words, the access time of the memory should be a
small fraction of the clock period. Some memories have a different time for read
and write, and so you should choose the larger of these.

(essentially the
ocked memory
w many clock
any advantage

2. Hold addr and din constant for at least one clock cycle before and during the
cycle write is active. This means both addr and din should come from
registers in the architecture that are not changed during this time.
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3. Make sure there are no hazards in write (see section 6.3.3). As long as the con-
troller is a Moore machine, this is easy to guarantee (section 7.4).

Sometime after the memory receives the write pulse but before the access time has
elapsed, the asynchronous memory will latch the new value into memory. In this way,
the asynchronous write pulse combines the role of the system clock and the dmem
signal.

8.2.2.4 Static versus dynamic memory
Static memory retains its contents regardless of whether it is used or not. The only
limitation on using static memory is that the clock speed can be no faster than the
access time. (More precisely, the maximum clock speed needs to consider all propaga-
tion delays, including access time. Examples of calculating the maximum possible clock
speed are given in chapter 6.)

Dynamic memory places an additional requirement on the designer. Not only is there a
maximum possible clock speed, but there is also a minimum clock speed. This is be-
cause every word in dynamic memory needs to be refreshed. Dynamic memory tech-
nology is usually based on very cheap electrical devices known as capacitors, which
store charge. Over time, the charge leaks away. Unless the capacitors are refreshed, the
information will disappear.

Dynamic memory is the cheapest kind of fast memory that is currently available. For
problems where the machine will continually use all memory addresses over and over,
there is no extra inconvenience to use dynamic memory. For most other problems,
where this cannot be guaranteed, it is best to use a dynamic memory controller between
the dynamic memory and the rest of the system.

8.2.2.5 Volatile versus non-volatile
A memory device is volatile if it loses its contents when the power is turned off. A
memory device is non-volatile if it can retain its contents without consuming any power.
A memory technology that is inherently non-volatile would be desirable because it
allows a program to remain in memory when the power is turned off; however with
most technologies, it is more cost-effective to provide a backup battery to preserve
memory contents when the power to the rest of the system is removed.

8.2.3 History of memory technology
One of the recurring themes of this book is that technology changes, but algorithms
endure. This means the time you spend honing your problem solving skills will benefit
you throughout your career because such skills do not become outdated. Learning about
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the fetch/execute algorithm in particular is important because it is the algorithm which
makes your career possible.6

From the historical account in section 8. 1, you might wonder why it took so long for
the general-purpose computer to be realized. The reason is a corollary to the italicized
phrase above: some algorithms have to wait to be implemented until technology changes
enough so the hardware is affordable and practical. To see how this postponed imple-
mentation of general-purpose computers until after World War II, consider the three
components of a general-purpose machine: CPU, peripherals and memory.

As the ABC, Colossus and ENIAC illustrate, vacuum tube technology was available by
the start of World War II to implement CPUs and peripherals. The technological prob-
lem from the late 1930s until the early 1950s was memory. Although the pioneers were
aware of techniques like section 8.2.2.1.1 and used small memories of this sort for data
access, the cost of storing programs in such memory was prohibitive. Currently, memo-
ries of this kind are commonly used, but not as the primary memory for stored program
computers. It takes about six switching devices (relays, vacuum tubes, transistors or
whatever technology is in vogue) to construct an enabled flip flop, so it would take
6 * d* 2 a switching devices to build the registers. It takes approximately a * 2 a switch-
ing devices to construct the demux, and d*a*2a switching devices for the mux. This
makes the total about ( (a+ 6) * d + a) * 2 a switching devices to construct a working
memory unit along the lines shown in section 8.2.2.3.1.

For Williams and Kilburn's 32 word memory (which, even in 1948, was considered too
small for practical programming), this would require ((5+6)*32 + 5)*32 = 11,424 vacuum
tubes, which is more than an order of magnitude more tubes than was required for their
entire CPU. (The ENIAC used about 20,000 vacuum tubes because it stored all its data
in vacuum tubes. Also, storing a program in vacuum tubes would have been unrealis-
tic.)

In order to build their machines, the pioneers had to invent technologies for memory
that were more efficient and reliable than simple vacuum tubes. Zuse invented a binary
mechanical memory. Atanasoff invented a rotating drum using capacitors (which is
conceptually similar to the dynamic memory chips in widespread use today). Although
creative, neither of these technologies would have been reasonable for a general-pur-
pose computer in the 1940s.

The breakthrough came when Williams and Kilburn invented a TV-like tube for storing
bits in the Mark I. Using the terminology defined above, the Williams tube was bidirec-
tional, asynchronous, dynamic and volatile. Most importantly, the Williams tube was
the first affordable technology that had the same kind of deterministic access time

6For example, modem Verilog simulators and synthesis tools are possible only because of large and fast
general-purpose computers.
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provided by the mux in section 8.2.2.3.1. The Williams tube also had the desirable side
effect that a programmer could actually see every bit in memory (since they were actu-
ally stored as glowing dots of electric charge on the phosphor screen).

The only other cost-effective memory technology available before 1953 was the delay
line, which had been used during the war for (analog) radar signals. These were also
bidirectional, asynchronous, dynamic and volatile. The problem with delay lines is that
they do not have deterministic access times. A delay line memory recirculates the same
data over and over again. One has to wait until the desired data comes out of the delay
line before it can be used. Therefore, there is a range of possible access times, the
longest of which is quite slow. Wilkes as well as Eckert and Mauchly used such delay
lines for the memory on their first general-purpose machines. Most computers of the
early 950s used delay lines, including IBM's first general-purpose machine, the model
701.

In 1953, Jay W. Forrester at MIT invented a new memory technology that stores each
bit on a small doughnut-shaped magnetic core. Wires were woven through the cores to
interface them to the system. By selecting which wire electric current flows through,
the system could selectively magnetize or demagnetize each core (corresponding to
storing a I or a 0). Core memory is fast compared to earlier technologies. It is also
nearly ideal from a designer's viewpoint. It is unidirectional, deterministic, asynchro-
nous, static and non-volatile. It is far less expensive to construct a core memory of a
given size than to construct a comparable memory (of the kind outlined in sections
8.2.2.3.1 and 8.2.2.3.2) using vacuum tubes or transistors. Core memory dominated the
computer industry until the late 970s so much so that the term "core" became synony-
mous with the primary memory of a general-purpose computer. The first practical ap-
plication of core memory was in Forrester's general-purpose Whirlwind computers,
used by the U. S. Air Force for strategic defense for decades. Although it is not as cheap
as the technology that replaced it, the military continues to use core memory because it
is non-volatile, and it can retain its contents better than any other technologies when in
close proximity to a nuclear explosion.

The final technological change for memory occurred at the end of the 1960s when
Robert Noyce, Gordon Moore and others at Intel developed semiconductor integrated
circuit memories that had all of the hardware for a memory similar to the one described
in 8.2.2.3.1 on a single chip of silicon.

Integrated circuit memories come in many varieties. Today there are many competing
manufacturers worldwide of interchangeable memory chips. A designer is able to choose
from many different chips in a trade-off between speed, cost and ease of design.

Some chips are unidirectional, but others are bidirectional. Since the number of pins on
an integrated circuit tends to be more of a constraint than the number of devices that
can fit on the chip, larger integrated circuit memories tend to be bidirectional.
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Almost all integrated circuit memories have deterministic access times. In the 1970s,
research occurred in magnetic "bubble" memories with non-deterministic access times,
however these memories did not succeed in the marketplace.

Some integrated circuit memories are synchronous, but many others are asynchronous.
Larger memories have tended to be asynchronous because that enables more bits to be
packed onto a chip of comparable area. The difference is between about six switching
devices per bit versus only two switching devices per bit.

Many integrated circuit memories are static, which allows designers to observe them
operate slowly enough for the details to be intelligible. Such memories are ideal for a
computer design lab. Also, static memories tend to be faster than comparable dynamic
memories. Despite these desirable properties, larger memories are dynamic. The dif-
ference is between two switching devices per bit versus one switching device and a
capacitor per bit. Synchronous dynamic memories offer high speed at low cost.

Almost all existing integrated circuit memories are volatile. Successful research into
ferrous semiconductors that would in essence put core memory on a chip occurred in
the early 1990s. Whether such memories will be successfully commercialized remains
to be seen at the time of this writing.

One principal limitation of integrated circuit memories is the number of pins that con-
nect the memory to the CPU. In the mid 1990s, attempts were made by Cray Computer
and others to overcome this restriction by fabricating multiple CPUs on the same chip
as memory. Whether such "smart memories" will be successfully commercialized re-
mains to be seen at the time of this writing.

For the first quarter of a century of the computer age, the physical appearance of memory
devices changed radically as technology improved. For the second quarter of a century,
memory looked basically the same: a silicon chip. As bit densities increased, packag-
ing changed to hold more bits, but the semiconductor electronics that store each bit
have remained essentially the same. By the mid 1990s, Single In-line Memory Mod-
ules (SIMMs) and Dual In-line Memory Modules (DIMMs) that can fit in the palm of
your hand and that can contain billions of bits became a common way to package
several dynamic memory chips.

What the preferred memory technology will look like by the end of the 21 st century is,
of course, unclear. Although visibility of bits was simply a side effect of the properties
of the phosphor in the Williams tube, the idea of using light to store information has not
gone away. In the late 1990s, prototype photochemical and holographic memories ac-
cessed using lasers were demonstrated that have the potential of storing orders of mag-
nitude more bits than semiconductor memories. Daydreaming farther into the future,
perhaps some nanomechanical computer designer in the 21st century might even pur-
sue Zuse's memory designs at the atomic scale!
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What is certain is that the cost, speed and capacity of integrated circuit memory has
improved radically in the last quarter century. It is likely these improvements will con-
tinue well into the 21 st century. That these technological factors have improved expo-
nentially is in large part responsible for the success of the general-purpose computer,
which needs to store both its programs and its data in memory.

8.3 Behavioral fetch/execute
The three components of a general-purpose computer described in section 8.2 (CPU,
peripherals and memory) act together as a unified system that implements the fetch/
execute algorithm. This section describes how to model the behavior of this unified
system with an ASM chart, without regard to the structural interconnection of the hard-
ware. This section explains what is referred to in chapter 2 as the "pure" behavioral
stage of the top-down design process. Later, in section 8.4, the "mixed" stage of the
top-down design process shows some of the structural interconnections for the CPU
and memory.

This section focuses on the algorithm that makes the general-purpose possible: fetch/
execute. Although the details of the fetch/execute algorithm vary widely among the
thousands of general-purpose machines designed and built since 1948, the fundamen-
tal operations of the fetch/execute algorithm have remained essentially the same:

1. Fetch the current instruction from memory
2. If needed, fetch data from memory
3. Prepare for fetching the next instruction
4. Decode and execute the current instruction

a) Interpret what the current instruction means
b) Carry out the operation asked for by the current instruction, possibly

modifying memory

Steps 2 and 4 have details that are machine specific. It may be possible to rearrange the
order in which steps 2, 3 and 4 occur, depending on these machine-specific details.

A general-purpose computer can modify its instructions without programmer interven-
tion because it uses the same memory to store instructions as it uses to store data. In
other words, it can treat instructions as though they were data. This characteristic of
universal machines, known as self-modification, is difficult for programmers to use
effectively. However, this capability is the key to the success of the general-purpose
computer. The ability for self-modification allows software (known as compilers and
assemblers) to translate programs automatically from an easy to understand high-level
language (C, Java, Pascal, Verilog, etc.) to the much more tedious machine language
that is specific to the hardware.
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For readers without intimate experience with low-level programming, appendix A gives
a short introduction to machine and assembly language (and how they relate to high-
level language) using an example of adding three numbers. This example will also be
used in later sections of this chapter.

8.3.1 Limited instruction set
Although the fetch/execute algorithm is similar on all general-purpose computers, the
machine-specific details depend on the instruction set being implemented. The instruc-
tion set is the set of machine language bit patterns that the hardware can interpret. All
software on a particular machine is eventually translated to such instructions. The hard-
ware is only capable of executing instructions that are in its unique instruction set.
Although conceptually similar, a different model computer probably has an entirely
different instruction set.

8.3.1.1 The PDP-8
We need a simple yet concrete example of an instruction set so that we can go through
the stages of the top-down process, starting at the abstract algorithm for fetch/execute
(which has remained essentially unchanged for half a century) and concluding with a
unique hardware structure that implements those instructions. The instruction set that
we will use as an example in this chapter is a subset of the PDP-8's instruction set. The
PDP-8 is a classic example of what is called a single-accumulator, one-address in-
struction set. (All early stored program machines, including the Manchester Mark I,
had this simple kind of instruction set.)

8.3.1.2 History of the PDP-8
The PDP-8, which was designed by C. Gordon Bell and Ed DeCastro at DEC in 1965,
is pivotal in the history of general-purpose computers. It was the first computer that
cost only a few thousand rather than hundreds of thousands of dollars. Bell was able to
achieve this with core memory and transistor technology by keeping the instruction set
simple and the memory small. The PDP-8 continued to be manufactured (with im-
proved technologies) into the 1990s due to the simplicity and elegance of its instruc-
tion set. These attributes also make it an ideal example of the fetch/execute algorithm.

8.3.1.3 Instruction subset
The complete PDP-8 instruction set, which is described in appendix B, has about thirty
instructions. Even though the PDP-8 has one of the simplest and smallest instruction
sets ever designed, attempting to concentrate on all thirty of these instructions at once
would distract from our primary goal: understanding the enduring fetch/execute algo-
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rithm. Therefore, for the example in this section, we will implement a machine that
executes only the following four PDP-8 instructions (that are also used in the example
of summing three numbers in appendix A):

This subset does not contain enough of the PDP-8's instruction set for practical pro-
gramming, but it provides a good introduction to fetch/execute. The capitalized letters
explain what the mnemonic stands for. The first two instructions (TAD and DCA) are
memory reference instructions, which require the machine to calculate an effective
address (the address of the data in memory that the instruction is going to reference).
Although, like most other instruction sets, the PDP-8 has several variations (known as
addressing modes) on how to calculate the effective address, we will only consider the
simplest one of these, known as direct page zero addressing. (Two bits in the instruc-
tion register determine which addressing mode the machine uses.) With direct page
zero addressing mode, the effective address is simply the low-order seven bits of the
instruction, denoted as xxx in the octal machine language above. The reason the PDP-
8 is known as a one-address machine is because each instruction uses at most a single
effective address.

The next instruction (CLA) manipulates the accumulator register without referencing
memory; therefore it does not need an effective address. The final instruction (HLT)
causes the machine to stop executing a program and instead proceed to a special state
where the machine waits until an external signal tells it to run another program.

8.3.1.4 Registers neededforfetch/execute
The pure behavioral ASM for a general-purpose computer uses register transfer nota-
tion, similar to that of a special-purpose computer, as explained in chapter 2. Therefore,
we need to determine what registers will be manipulated in the behavioral fetch/ex-
ecute ASM.
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language

TAD lxxx add memory to accumulator (Twos
complement ADd)

DCA 3xxx Deposit accumulator in memory and
Clear Accumulator

CLA 7200 CLear Accumulator
HLT 7402 HaLT
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Some of the registers are specified by the specific instruction set. The details of these
registers are machine dependent. In the case of the PDP-8, the 12-bit accumulator, ac,
is the primary register that the machine language programmer uses. (There are a few
other registers, such as the l ink, that are specific to the PDP-8. As was done in appen-
dix A, we will ignore these for the moment in order to keep this example simple.) Other
machines, such as the Pentium, have different registers that the programmer can ma-
nipulate. We refer to the registers that are visible to the programmer as the programmer's
model. Some people refer to these as the computer architecture; however we do not use
this term since the registers in the programmer's model are not everything contained in
the internal architecture of the CPU.

In addition to the registers required to implement a specific machine language, the
fetch/execute algorithm requires the hardware to have two registers: the program counter,
pc, and the instruction register, ir. Typically, the pc contains the address in memory
of the next instruction to execute, and the ir contains the current instruction which is
about to execute. If the machine did not have an HLT instruction, the machine would
simply loop forever doing the four phases of the algorithm:

1. fetch the instruction from m [pcI into ir
2. calculate the effective address
3. increment the pc (prepare for fetch of next instruction)
4. decode and execute the instruction in the i r

where m refers to memory array. Most machines, including the PDP-8, have some form
of HLT instruction. In order to keep track of whether the machine has halted or not,
there needs to be an additional one-bit register, halt. When the machine has not ex-
ecuted an HLT instruction, halt is 0. When the machine has just executed an HLT
instruction, halt becomes 1. The fetch/execute algorithm proceeds only when halt
is 0.

The machine needs a register to hold the effective address of data in memory to be
manipulated by an instruction. This register, which may be used for other purposes at
different times, is known as the memory address register, ma. It will be convenient to
have an additional register, known as the memory buffer register, mb, to contain the
data that was in memory at the effective address prior to the execution of the instruc-
tion.

In later stages of the top-down design process, it will be convenient to have ma as the
sole source providing the addr input to the memory device. At the "pure" behavioral
stage, we can ensure this is possible by restricting the use of the memory array. All
references to memory must be m [ma], rather than the somewhat more natural refer-
ences, m [pc . Also it will be convenient to have mb as the sole source providing the
din input to the memory device. In the restricted behavioral ASM, the only way to
store something into memory is by saying m[ma] - mb. This will require that the
behavioral ASM have states that initialize mb properly.
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8.3.1.5 ASMforfetch/execute
The following is an ASM that implements the fetch/execute algorithm for the tiny
instruction set described in section 8.3.1.3:
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Figure 8-7. ASM implementing four instructions of PDP-8.
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For ease of notation, the four-digit constants in the above ASM (0100, 7200 and 7402)
are in octal. Smaller constants are shown in decimal. Although the names are arbitrary,
the first letter in the names chosen for most of the states indicates the role of the state in
the fetch/execute algorithm. States whose names begin with the letter "F" primarily
have to do with the fetch aspect of the algorithm. States whose names begin with the
letter "E" have to do with execution of machine language instructions. States whose
names begin with other letters (e.g., "I") have to do with aspects of the machine besides
the fetch/execute algorithm, such as interfacing to the programmer.

When the machine is first powered on, it goes through the INIT state once, where
halt is initially set to 1, and pc is set to an arbitrary address (0100 octal in this
example) where we assume the program resides. (Later we will make the location of
the program more flexible, but for this limited example, assume the program always
starts at 0100.)

When halt is 1, the machine proceeds to the IDLE state. When the machine is in the
IDLE state, it waits for an external signal, known on the PDP-8 as cont ("continue"),
that tells it to run another program. When cont is true in state IDLE, the machine
proceeds to the beginning of the actual fetch/execute algorithm, which starts at state
Fl. Since state IDLE clears the halt register, the machine will not return to state
IDLE until the fetch/execute algorithm (Fl, F2, F3A, F3B, ...) has executed an HLT
instruction.

State F1 is necessary because of the restriction on the use of memory described at the
end of section 8.3.1.4. Since pc was set up to contain the address of the next instruction
that should be executed (either by state INIT for the first time through the fetch/execute
algorithm, or by some state inside the algorithm for later instructions), it would be
natural to say something like ir - m [pc]; however this violates the aforemen-
tioned restriction. At the time the machine enters state Fl, the ma contains no useful
information, and so it is possible to copy the program counter into ma. This will be
used by a later state (F3A) to actually fetch the current instruction into the instruction
register.

State F1 also needs to check the halt register to see if the previous instruction that just
finished executing was an HLT instruction or if the machine has just been powered up
(the machine just came from state INIT). If halt is true, the machine proceeds to state
IDLE as explained above.

If halt is not true, the machine proceeds to state F2. This state prepares the machine
for executing the next instruction after the current one by incrementing the program
counter. The placement of state F2 is somewhat arbitrary since a copy of the original
program counter has been preserved for the moment in the memory address register.
(For example, state F2 could be placed after state F3B, which would more closely
match the description given in appendix A.)
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The next state after state F2 is state F3A. State F3A fetches the instruction stored in
memory pointed to by the original program counter, which is now in the memory ad-
dress register. In the behavioral ASM, we use the same register transfer notation for
dealing with memory, i r<-m [ma] , as is used for dealing with other registers. In later
stages of the design, the timing of memory may be somewhat more difficult than that
of the internal CPU registers, but at this early stage, we will ignore these details.

The next state after state F3A is state F3B. State F3B calculates the effective address
using the information in the instruction register. This calculation is denoted by a func-
tion referred to as ea (ir) . For example, if the ir is 11078, ea (ir) is 01078. If the
ir is 31118, ea (ir) is 01118. In the later stages of the top-down design process, the
ea function will be realized using combinational logic. Appendix A assumes there is
an additional register for the effective address, but this is not necessary here since state
F3B uses the existing ma register to hold the effective address. (To implement the
complete instruction set of the PDP-8 described in appendix B, more complicated com-
binational logic is required for ea. This is because the ea function for some of the
addressing modes not implemented in this chapter needs an additional argument.)

State F3B has a decision to determine what state occurs next. If the instruction is a
Memory Reference Instruction (MRI), the next state after F3B will be F4A. If the
instruction is not an MRI, the next state after F3A will be one that implements the
operation requested by the instruction ("E"xecute it). Even though in this section the
only MRIs in our PDP-8 subset start with 1 and 3, we will describe how to test for any
MRI. In the complete PDP-8 instruction set (given in appendix B), an instruction is
MRI if the high order octal digit (three bits) of the instruction is between 0 through 5
inclusive. There are several ways one could write this test. It could be written as i r <
6 0 0 0, however, this does not emphasize that only the high-order three bits of the in-
struction register determine the outcome. The test could be written as i r / 10008 < 6
or i r>> 9 < 6 to emphasize that the outcome is based on the high-order three bits, but
neither one of these tests is the most succinct way to express this. We need a notation
that clearly says "just look at these bits." Although the material in this section does not
depend on any knowledge of Verilog, Verilog does indeed have such a bit selection
notation: i r [1 1: 9] says form a three-bit value using bits 11 through 9 of i r, which
is roughly equivalent to (ir >> 9) & 7, which in this case is equivalent to ir >>
9 since ir is 12-bits. For example, if ir is 11078, ir [11 :9] is 1. If ir is 31118,
ir [11: 9] is 3. We will use this aspect of Verilog notation in our ASM because it
clearly documents what the hardware will do, which of course is the goal of a behav-
ioral ASM.

If the instruction in the i r is MRI, the machine proceeds to state F4A. State F4B loads
mb with the data that the machine may need to use to execute the memory reference
instruction. For example, in the program of appendix A, when the memory reference
instruction 1107 is fetched by state F3A, the machine schedules 0107 to be loaded into
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ma at the next rising edge of the clock. Since ir [ 11: 9 ] is 1 (which is less than 6), at
that next clock edge the machine proceeds to state F4A. In state F4A, ma has just
become 0107, and so the contents of memory at that effective address, m [ma] , can be
loaded into mb. In this example, one clock cycle later (when the machine is in state
F4B), mb becomes 0152.

State F4B is not necessary. It is included here as a placeholder for operations needed in
the ASM to implement the complete instruction set of the PDP-8, including features
not described yet.

The bottom of the ASM has a series of decisions that determines which instruction is
currently in the instruction register.

This series of decisions is known as the decoding portion of the fetch/execute algo-
rithm. For MRI, the decoding decisions happen in state F4B. For non-MRI, the decod-
ing decisions happen in state F3B. Since we are implementing only four instructions in
this instruction subset, there are only four decisions required to decode these instruc-
tions. The more complex the instruction set, the more difficult it is to do decoding.
Most machines, including the complete PDP-8 have a long string of decisions to imple-
ment decoding. Notice, from a high-level view, decoding occurs as a series of i f ...
else if ... else if ... style decisions, since each instruction has a unique
machine language code.

The remaining states of the machine perform certain actions required during the execu-
tion of each specific instruction.

If ir [ 11: 9 ] is 1 in state F4B, the instruction is what the programmer calls a "Twos
complement ADd," and so the machine proceeds to state EOTAD. In this state, the
machine adds the data from memory at the effective address to the accumulator. In a
complete implementation of the PDP-8, other operations are involved with a TAD, but
we will ignore those details for the moment. After performing the addition in state
EOTAD, the machine has completely executed the TAD instruction and is ready to
fetch another instruction. Therefore, the next state after state EOTAD is state Fl.

If ir [ 11: 9 ] is 3 in state F4B, the instruction is what the programmer calls a "Deposit
and Clear Accumulator" (DCA) and so the machine proceeds to state EODCA. Al-
though TAD and DCA are both MRIs, the operations involved for the DCA are more
complex because the DCA instruction stores the accumulator in memory and then clears
the accumulator. It takes three clock cycles to accomplish all the operations required by
the DCA instruction. State EODCA occurs during the first of these three clock cycles.
The restrictions on the use of memory described at the end of section 8.3.1.4 require
anything that is to be stored in memory be placed in the memory buffer register. State
EODCA schedules that the memory buffer register be assigned a copy of the value in
the accumulator at the next rising edge of the clock. This is done in preparation for the
next state, which is state ElADCA.
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State El ADCA stores mb (which is now the same as the value of the accumulator) into
memory at the effective address. After state EIADCA, the next state is state ElBDCA.

State ElBDCA schedules that zero be assigned to the accumulator at the next rising
edge of the clock. After scheduling the accumulator to be cleared in state EIBDCA, the
machine has completely executed the DCA instruction and is ready to fetch another
instruction. Therefore, the next state after state EODCA is state Fl.

If ir is 7200 in state F3B, the instruction is what the programmer calls a "CLear
Accumulator"(CLA) and so the machine proceeds to state EOCLA. Note that since
7200 is not MRI, the decoding occurs earlier (in state F3B) than for the MRI examples
above. Also note that for non-MRI-like 7200, all twelve bits of the instruction register
must be tested, since there is no effective address. In state EOCLA, the machine sched-
ules that zero be assigned to the accumulator at the next rising edge of the clock. After
this, the machine is ready to fetch another instruction, and so the next state after state
EOCLA is state Fl.

If i r is 7402 in state F3B, the instruction is what the programmer calls a "HaLT," and
so the machine proceeds to state EOHLT. Again all twelve bits of the instruction regis-
ter must be tested in state F3B to decode this instruction. In state EOHLT, the machine
schedules that one be assigned to the halt register at the next rising edge of the clock.
The next state after state EOHLT is state Fl, not because the machine is going to fetch
another instruction, but instead because state F1 is where the test of the halt register
occurs. (As mentioned above, when halt is one in state Fl, the machine proceeds to
state IDLE.) The final sequence of states through which the machine goes near the end
of a program will be F1, F2, F3A, F3B, EOHLT, F1, IDLE, IDLE, IDLE ....

8.3.1.6 Example machine language program
Assume that the following machine language program:
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is present in memory starting at address 0100 when power is turned on. (For an expla-
nation of this program, see appendix A.) The following shows how the ASM proceeds
when the external input cont is not asserted:

INIT ma=???? mb=???? pc=???? ir=???? halt=? a=????
Fl ma=???? mb=???? pc=O100 ir=???? halt=l ac=????
IDLE ma=0100 mb=???? pc=0100 ir=???? halt=O a=????

The question marks indicate an unknown value in registers when power is first turned
on.7 State INIT initializes the halt flag so that the machine goes straight from Fl to
IDLE. State INIT is also initialized to the starting address of our sample program. The
machine stays in IDLE until the external input cont is asserted. When it is asserted,
the following happens:

In state Fl, the program counter (0100) is saved in the memory address register. In state
F2, the program counter is scheduled to be incremented to become 0101 (as can be
seen in state F3A) in preparation for fetching the next instruction four clock cycles
later. In state F3A, the instruction register is scheduled to be loaded from memory
address 0100. In state F3B, this instruction (7200) becomes available in the instruction
register, and since ir [ 11: 9 ] >= 6, the instruction decoding takes place. State
EOCLA schedules zero to be loaded into the accumulator. Having completed the fetch-
ing and execution of the CLA instruction, the machine performs similar operations to
fetch the second instruction. This time, the program counter is 0101 in state Fl. The
following shows how the fetching and execution of the second instruction proceeds:

7 In other chapters, a similar idea is denoted with the "x" value in Verilog.
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IDLE ma=O100 mb=???? pc=O100 ir=???? halt=O ac=????
Fl ma=O100 mb=???? pc=O100 ir=???? halt=O ac=????
F2 ma=O100 mb=???? pc=O100 ir=???? halt=O ac=????
F3A ma=O100 mb=???? pc=O101 ir=???? halt=O ac=????
F3B ma=O100 mb=???? pc=O101 ir=7200 halt=O ac=????
EOCLA ma=OOOO mb=???? pc=O101 ir=7200 halt=O ac=????
F1 ma=OOOO mb=???? pc=O101 ir=7200 halt=O ac=OOOO
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In state F2 the saved program counter (0101) is visible in the memory address register
at the same time the program counter is scheduled to be incremented to become 0102
(as can be seen in state F3A). In state F3A, the instruction register is scheduled to be
loaded from memory address 0101. In state F3B, this instruction (1106) becomes avail-
able in the instruction register, but unlike the above non-MRI, instruction decoding
does not take place in state F3B. Instead, state F3B schedules the memory address
register to be loaded with the effective address (0106), derived from the instruction
register. Since ir [ 11: 9 ] < 6 in state F3B, the machine proceeds to state F4A,
where the memory buffer register is scheduled to be loaded with the contents of memory
(0112) at that effective address, as can be seen in state F4B. In state F4B, instruction
decoding takes place. Since, ir [11: 9] == 1, the machine proceeds to state EOTAD,
where the 0112 in the memory buffer register is added to the zero in the accumulator.
The remaining two TAD instructions execute in a similar fashion:

The accumulator now contains the sum of the three numbers (0510). The following
shows the execution of the DCA instruction:

Verilog Digital Computer Design: Algorithms into Hardware

F2

F3A

F3B

F4A

F4B

EODCA

ElADCA

E1BDCA

F1

In state F2 the
at the same tim
(as can be seen
loaded from m(
able in the inst
loaded with th(
ir[11:9] <
buffer register
effective addre;
place. Since, i
memory buffer
(0510).8 In stat
the accumulato

F3A

F3B

EOHLT

F1

IDLE

IDLE

The value in th
becomes visible
less computatic
tation when it i
load these bits 

8 Having the ASM I
use the value loade,
less but slower thar

9 As the last footnot
or not. Here there,,

F2 ma=0101 mb=???? pc=0101 ir=7200 halt=O ac=0000
F3A ma=0101 mb=???? pc=0102 ir=7200 halt=O ac=0000
F3B ma=0101 mb=???? pc=0102 ir=1106 halt=O ac=0000
F4A ma=0106 mb=???? pc=0102 ir=1106 halt=O ac=0000
F4B ma=0106 mb=0112 pc=0 1 0 2 ir=1106 halt=O ac=0000
EOTAD ma=0106 mb=0112 pc=0102 ir=1106 halt=O ac=0000
F1 ma=0106 mb=0112 pc=0102 ir=1106 halt=O ac=0112

F2 ma=0102 mb=0112 pc=0102 ir=1106 halt=O ac=0112
F3A ma=0102 mb=0112 pc=0103 ir=1106 halt=O ac=0112
F3B ma=0102 mb=0112 pc=0103 ir=1107 halt=O ac=0112
F4A ma=0107 mb=0112 pc=0103 ir=1107 halt=O ac=0112
F4B ma=0107 mb=0152 pc=0103 ir=1107 halt=O ac=0112
EOTAD ma=0107 mb=0152 pc=0103 ir=1107 halt=O ac=0112
F1 ma=0107 mb=0152 pc=0103 ir=1107 halt=O ac=0264
F2 ma=0103 mb=0152 pc=0103 ir=1107 halt=O ac=0264
F3A ma=0103 mb=0152 pc=0104 ir=1107 halt=O ac=0264
F3B ma=0103 mb=0152 pc=0104 ir=1110 halt=O ac=0264
F4A ma=0110 mb=0152 pc=0104 ir=1110 halt=O ac=0264
F4B ma=OllO mb=0224 pc=0104 ir=1110 halt=O ac=0264
EOTAD ma=0110 mb=0224 pc=0104 ir=1110 halt=O ac=0264
F1 ma=0l10 mb=0224 pc=0104 ir=1ll0 halt=O ac=0510
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In state F2 the saved program counter (0104) is visible in the memory address register
at the same time the program counter is scheduled to be incremented to become 0105
(as can be seen in state F3A). In state F3A, the instruction register is scheduled to be
loaded from memory address 0105. In state F3B, this instruction (3111) becomes avail-
able in the instruction register. State F3B schedules the memory address register to be
loaded with the effective address (0111), derived from the instruction register. Since
i r [ 11: 9 ] < 6 in state F3B, the machine proceeds to state F4A, where the memory
buffer register is scheduled to be loaded with the contents of memory (0000) at that
effective address, as can be seen in state F4B. In state F4B, instruction decoding takes
place. Since, ir [ 11: 9 ] == 3, the machine proceeds to state EODCA, where the
memory buffer register is scheduled to be assigned the value from the accumulator
(0510).A In state EIADCA, this value is stored in memory. State EIBDCA schedules
the accumulator to be cleared. Finally, the HLT instruction executes:

The value in the memory address register calculated by state F3B (this value, 0002,
becomes visible in state EOHLT) is irrelevant. In hardware, unnecessarily doing a harm-
less computation sometimes is more efficient than having a decision avoid the compu-
tation when it is unwanted.9 It does not slow the machine, and it is simpler always to
load these bits from the instruction register into the memory address register, even, as

8 Having the ASM proceed through F4A and F4B was unnecessary in this case since state EODCA does not
use the value loaded into memory buffer register by state F4A in the same way EOTAD does. This is harm-
less but slower than required and was done to simplify the explanation of state F3B.

9 As the last footnote indicates, whether it is efficient depends on whether extra states, like F4A, are involved
or not. Here there are no extra states involved.

General-Purpose Computers

F2 ma=0104 mb=0224 pc=0104 ir=1110 halt=0 ac=0510
F3A ma=0104 mb=0224 pc=0105 ir=1110 halt=0 ac=0510
F3B ma=0104 mb=0224 pc=0105 ir=3111 halt=0 ac=0510
F4A ma=0111 mb=0224 pc=0105 ir=3111 halt=0 ac=0510
F4B ma=0111 mb=0000 pc=0105 ir=3111 halt=0 ac=0510
EODCA ma=0111 mb=0000 pc=0105 ir=3111 halt=0 ac=0510
ElADCA ma=0111 mb=0510 pc=0105 ir=3111 halt=0 ac=0510
E1BDCA ma=0111 mb=0510 pc=0105 ir=3111 halt=0 ac=0510
F1 ma=0111 mb=0510 pc=0105 ir=3111 halt=0 ac=OOCO

F2 ma=0105 mb=0510 pc=0105 ir=3111 halt=0 ac=0000
F3A ma=0105 mb=0510 pc=0106 ir=3111 halt=0 ac=0000
F3B ma=0105 mb=0510 pc=0106 ir=7402 halt=0 ac=0000
EOHLT ma=0002 mb=0510 pc=0106 ir=7402 halt=0 ac=0000
F1 ma=0002 mb=0510 pc=0106 ir=7402 halt=l ac=0000
IDLE ma=0106 mb=0510 pc=0106 ir=7402 halt=l ac=0000
IDLE ma=0106 mb=0510 pc=0106 ir=7402 halt=0 ac=0000
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in this case, when they are not needed. State EOHLT schedules the halt flag to be-
come zero, which causes the machine to go to F1 and then back to IDLE, where the
machine will stay (unless cont is pressed again).

8.3.2 Including more in the instruction set
The machine described by the ASM in section 8.3.1.5 is rather useless. It was presented
only to introduce the essential aspects of the fetch/execute algorithm. Rather than imple-
ment a useless subset of instructions in hardware, let's include more of the PDP-8's
instructions in our instruction set. For the extended example in this section, we will
implement a machine that executes the following PDP-8 instructions:
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AND Oxxx AND memory with accumulator
TAD lxxx add memory to accumulator (Two's Complement Add)
DCA 3xxx Deposit accumulator in memory and Clear

Accumulator
JMP 5xxx goto a new instruction (JuMP)

CLA 7200 CLear Accumulator
CLL 7100 CLear Link
CMA 7040 CoMplement Accumulator
CML 7020 CoMplement Link
IAC 7001 Increment ACcumulator
RAL 7004 Rotate Accumulator and link Left
RAR 7010 Rotate Accumulator and link Right
CLACLL 7300 CLear Accumulator and CLear Link

SZA 7440 Skip next instruction if Zero is in Accumulator
SNA 7450 Skip next instruction if Non-zero value is in

Accumulator
SMA 7500 Skip next instruction if Minus (negative) value

is in Accumulator
SPA 7510 Skip next instruction if Positive (non-negative)

value is in Accumulator
SZL 7430 Skip next instruction if Zero is in Link
SNL 7420 Skip next instruction if one (Non-zero) is in

Link

HLT 7402 HaLT
OSR 7404 Or Switch "Register" with accumulator
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These instructions are explained more fully in appendix B. The first four instructions
(AND, TAD, DCA and JMP) are memory reference instructions. As in section 8.3.1,
we will only consider direct page zero addressing.

The next eight mnemonics (CLA, CLL, CMA, CML, IAC, RAL, RAR, CLACLL)
describe instructions that manipulate the accumulator and the link registers without
referencing memory. (The link register was not considered in section 8.3.1.5 because it
requires some details that are discussed in section 8.3.2.2.) Although the full PDP-8
instruction set allows for 256 combinations of these operations, we will only consider
the eight listed here.

The skip instructions allow conditional execution of the following instruction. If the
condition is met, the following instruction does not execute. If the condition is met, the
skip acts like a NOP.

The HLT instruction causes the machine to stop executing a program and instead pro-
ceed to states that allow the machine to interface with its programmer. Unlike the ex-
ample in section 8.3.1.5, the ASM in this section will include interface states after the
HLT instruction that allow an arbitrary program to be loaded at an arbitrary address any
time the programmer wishes. The programmer communicates with the halted machine
using an external 12-bit input, sr. In the original PDP-8 documentation, the sr is
known as the switch "register"; however sr is not a register. sr is an external input
bus, very much like the buses x and y in the division machine of chapter 2. In the
physical realization of the PDP-8, the sr is simply a set of twelve switches (one for
each bit).

The OSR instruction is an unusual kind of input instruction unique to the PDP-8, which
is ideal for our purposes in this section. The OSR instruction ORs input coming from
the external sr bus with the contents of the accumulator. This allows a discussion here
of software input without the need for machine language instructions 6xxx.

Even though the PDP-8 is one of the simplest instruction sets ever designed, and we
have still chosen to implement only about half of it, you may have a feeling of panic
about whether you will ever be able to design such a machine. Have faith-top-down
design will come to the rescue.

8.3.2.1 ASM implementing additional instructions
Here is the ASM for the improved machine that implements the instructions listed
above:
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Section 8.3.2.2 describes the states required to execute these additional instructions.
Section 8.3.2.3 describes the additional states that allow the programmer a manual
interface when the machine is halted.

8.3.2.2 States for additional instructions
Many of the execute states (EOCLA, EOHLT, EODCA, EIADCA and EIBDCA) of the
improved ASM in section 8.3.2.1 are identical to the states with the same names of the
useless ASM in section 8.3.1.5. Therefore, these states will not be discussed here.

Also, the fetch states (Fl, F2, F3A, F3B, F4A and F4B) of the improved ASM in sec-
tion 8.3.2.1 are identical to the states with the same names in the useless ASM of
section 8.3.1.5, except the decision whether to go to state F4A is different. As the DCA
instruction (3111) used in the example machine language program of section 8.3.1.6
illustrates, it is not necessary for some memory reference instructions to have the memory
buffer register initialized. Although it is harmless to do so, it slows the machine down.
Therefore, in this section, we will only perform state F4A if it is required. For direct
addressing, only AND(Oxxx), TAD (lxxx), ISZ (2xxx) and JMS (4xxx) require state
F4A. Since JMS and ISZ are not part of the instruction subset implemented in this
section (JMS and ISZ are left as exercises), the condition can be restated as i r [ 11: 9 ]
< 3. If the full PDP-8 instruction set with all addressing modes were implemented, this
condition would be more complicated.

8.3.2.2.1 Instruction described with concatenation
One place where there is a noticeable difference between the useless ASM and the
improved ASM is in state EOTAD. This difference is due to the fact that the TAD
instruction treats the link and the ac together as a 13-bit entity. One way to describe
this is to say that value inside the CPU is 4 0 9 6 l ink + ac, but the CPU never
performs such a wasteful computation. Instead, inside the CPU the 12-bit bus coming
out of the ac and the one-bit bus coming out of the link are joined together to form
a 13-bit bus. We need a notation to describe this joining together, technically known as
concatenation. Although the material in this section does not depend on any knowledge
of Verilog, Verilog does indeed have such a concatenation notation: { link, ac } is a
13-bit value. The most significant bit (bit 12) of { link, ac } is link, the next to
most significant bit (bit 11) is ac [ 11 , ... and the least significant bit (bit 0) is ac [ 0 ] .
As a different illustration of concatenation, note that i r [ 11: 9 ] is the same as
{ir[11],ir[10],ir[9]1}.

State EOTAD of the improved ASM properly shows that the TAD instruction affects
and is affected by the link. It is perfectly legal for a concatenation to be on the left-hand
side of a register transfer. The operation { l ink, ac } - { l ink, ac + mb means
that the 12-bit mb is extended to have 13 bits (by implicitly concatenating a 0 on the
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left). This is added to the 13-bit { link, ac}. The respective portions of the 13-bit
sum are stored back into link and ac. The following table shows four examples of
before and after state EOTAD:

For instance, the last line shows 1,40408)+40048 == 11000001000002 +
01000000001002 == 100000001001002 == 200448, which is too big to fit in 13 bits,
and so the result is 0 in the link and 00448 in the accumulator.

There are four other instructions (IAC, CLACLL, RAL and RAR) that are most easily
described using concatenation. If the instruction register contains 7001 in state F3B,
the instruction is what the programmer calls "Increment ACcumulator," and so the
machine proceeds to state EOIAC, which is similar to EOTAD, except one rather than
mb is added to { 1 ink, ac). If the instruction register is 7300 in state F3B, the instruc-
tion is what the programmer calls a "CLear Accumulator, CLear Link," and so the
machine proceeds to state EOCLACLL, where a 13-bit zero is assigned to { l ink, ac}.

If the instruction register is 7010 in state F3B, the instruction is what the programmer
calls a "Rotate Accumulator and link Right," and so the machine proceeds to state
EORAR, where the 13-bit {link, ac) is rotated right. Similarly, if the instruction
register is 7004 in state F3B, the instruction is what the programmer calls a "Rotate
Accumulator and link Left," and so the machine proceeds to state EORAL, where the
13-bit { link, ac} is rotated left. Concatenation is the simplest way to describe rota-
tion. Recall that:

{link,ac}==
{link,ac[ll] ,ac[10] ,ac[9] ,ac[8] ,ac[7] ,ac[6] ,ac[5] ,ac[4] ,ac[3] ,ac[2] ,ac[l],
3c[O] I

and

I
The single 13-bit wide register transfer:

{link,ac} v- {ac,link}

306 Verilog Digital Computer Design: Algorithms into Hardware

before after
link ac mb link ac mb

0 0040 4001 0 4041 4001
0 4040 4002 1 0042 4002
1 0040 4003 1 4043 4003
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is a more succinct way to describe 13 separate register transfers, each one bit wide:

Observe that, except for the link, the bits are shifted over one place to the left. The old
value of the link "rotates" around to the least significant bit of the accumulator. The
following table illustrates examples what is in the link and the accumulator before and
after state EORAL:

Although the software uses of the previous instructions were fairly obvious, the RAL
instruction may seem a bit strange. In fact, RAL has two uses: arithmetic and logical.
The first three lines above illustrate the arithmetic use: if the programmer has previ-
ously cleared the link, RAL is like multiplication by two (with overflow in the link).
The remaining examples above illustrate the logical use: to rearrange bits without
losing any information.

RAR is the inverse of RAL, and the concatenation notation makes this clear:

{ac,link} <- {link,ac}

I'll
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link <- ac[11]

ac[11] *- ac[10]

ac[10] <-- ac[9]

ac[9] *- ac[8]

ac[2] *- ac[l]

ac[l] *- ac[0]

ac[0] *- link

before after
link ac link ac
0 1001 0 2002
0 2002 0 4004
0 4004 1 0010
1 1001 0 2003
1 2002 0 4005
1 4004 1 0011



In the following, the second, third and last three lines use data from the previous (RAL)
table to illustrate that RAR is the inverse of RAL (the rotates do not lose information,
they simply rearrange it):

The first three examples above illustrate the arithmetic use of RAR: if the programmer
clears the link, RAR is like unsigned division by two (with the remainder in the link).

8.3.2.2.2 Additional non-memory reference instructions
If the instruction register is 7100 in state F3B, the instruction is what the programmer
calls a "CLear Link," and so the machine proceeds to state EOCLL, where zero is
assigned only to the link (the accumulator is left alone). If the instruction register is
7040 in state F3B, the instruction is what the programmer calls a "CoMplement Accu-
mulator," and so the machine proceeds to state EOCMA, where -ac is assigned only to
the accumulator (the link is left alone). If the instruction register is 7020 in state F3B,
the instruction is what the programmer calls a "CoMplement Link," and so the ma-
chine proceeds to state EOCML, where -link is assigned only to the link (the accu-
mulator is left alone).

If the instruction register is 7404 in state F3B, the instruction is what the programmer
calls "Or Switch Register," and so the machine proceeds to state EOOSR, where the
external sr input is ORed with the current value of the accumulator. Here is a typical
use of this instruction:
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Assume the machine executed instructions, prior to 0002, which are irrelevant to this
discussion. When the program wants input from the user, it halts (by executing the HLT
instruction, 7402). The machine will proceed to state IDLE, but the program counter
remains at 0003. While the machine is halted, the user is free to enter in whatever value
is desired on the switches. When the user pushes the cont button, the fetch/execute
algorithm proceeds with the instruction at 0003, which is a CLA instruction (7200).
This is done to get rid of any extraneous value in the accumulator in preparation for the
next instruction. The next instruction in fact is the OSR (7404), which ORs zero in the
accumulator with the desired value from the external sr input. Because zero is the
identity for OR (i.e., 0 sr == sr), the input value from the switches is loaded into
the accumulator. Finally, a DCA instruction stores the input value into memory. The
OSR instruction, in conjunction with IDLE state and the cont input, provides a simple
user interface that will work nicely for the software in this chapter.\

8.3.2.2.3 Additional memory reference instructions
There are six memory reference instructions in the instruction set of the PDP-8. Two of
these (TAD and DCA) were described earlier. Two of these (JMS and ISZ) are left as
exercises. The other two (AND and JMP) are described in this section.

If i r [ 11: 9 ] is 0 in state F4B, the instruction is what the programmer refers to as
"AND," and so the machine proceeds to state EOAND. This state is similar to EOTAD,
except the AND instruction only changes the accumulator. (AND leaves the link regis-
ter alone.) Recall that & is the bitwise AND operator, and so the register transfer:

I ac - ac & mb

is equivalent to:

ac[11] *- ac[11] & mb[11]

ac[10] <- ac[10] & mb[10]

ac[9] <- ac[9] & mb[9]

ac[2] <- ac[2] & mb[2]

ac[1] *- ac[1] & mb[l]

ac[0] <- ac[0] & mnb[0]

If ir [11: 9] is 5 in state F4B, the instruction is what the programmer calls a "JuMP,"
and so the machine proceeds to state EOJMP. All general-purpose computers have some
kind of jump (sometimes known as branch) instruction. The purpose of ajump instruc-
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tion is to modify the program counter. The jump instruction allows high-level language
features (such as loops and decisions) to be translated into machine language.

Although the jump instruction of the PDP-8 is categorized as a memory reference in-
struction, it does not actually reference memory. It simply takes the effective address
(from the memory address register) and uses this as the new value of the program
counter.

8.3.2.2.4 Skip instructions
High-level language programs are composed of statements like if and while. The
JMP instruction by itself is not enough to translate such programs. For this reason, the
PDP-8 instruction set includes several "skip" instructions. These instructions test to
see whether the value in the accumulator (or link) meets certain conditions. If it does,
the next instruction will be skipped. If the condition is not met, the next instruction will
execute normally. The following table illustrates several skip instructions, and how
they are encoded in machine language.

where A is the
sion when ir
that indicates

As an illustrat
the other insti
rl (stored at
unsigned num
an i f or a wh
equivalent wa
complement a

The last of the
signed 13-bit r
below:

If ir [ 11: 8 ] is 15 in state F3B, the instruction is one of the above skip instructions. If
the condition is met, the machine proceeds to state EOASKIP, where the program counter
is scheduled to be incremented an extra time. If the condition is not met, the machine
proceeds to state EOBSKIP, where the machine leaves the program counter the way it
was.

The condition is determined by ir [6 3]. ir [3] is a bit that reverses the meaning of
the instruction; hence ir [ 3 ] is 0 for SMA, SZA and SNL, but ir [ 3 ] is 1 for SPA,
SNA and SZL. (If you think about it, you will realize SMA, SZA and SNL, respec-

0014/7200
0015/7100
0016/1101
0017/7040
0020/7020
0021/7001
0022/1032
0023/7430
0024/5xxx
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tively, are the
is 1 for SZA
decides whet]

mnemonic octal ir ir[6] ir[5] ir[4] i3U _

SMA 7500 1 0 0 0 Skip if Minus

(negative) Accumulator
SZA 7440 0 1 0 0 Skip if Zero

Accumulator
SNL 7420 0 0 1 0 Skip if Non-zero Link

SPA 7510 1 0 0 1 Skip if Positive

Accumulator
SNA 7450 0 1 0 1 Skip if Non-zero

Accumulator
SZL 7430 0 0 1 1 Skip if Zero Link
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tively, are the opposites of SPA, SNA and SZL.) i r [ 6 ] is 1 for SMA and SPA. i r [ 5 ]
is 1 for SZA and SNA. i r [ 4 ] is 1 for SNL and SZL. Therefore, the condition that
decides whether to proceed to state EOASKIP is:

ir[3] (ir[6]&ac[11]Iir[5]&(ac==O)Iir[4]&link)

where A is the exclusive OR, which reverses the meaning of the parenthesized expres-
sion when ir [ 3 ] is one. Note: ac [ 11 ] is the "sign" bit of the accumulator (the bit
that indicates 12-bit negative twos complement values).

As an illustration of how a programmer uses the skip instructions in conjunction with
the other instructions, consider the unsigned greater than or equal decision. Suppose
ri (stored at 0032) and y (stored at 0101) are software variables that contain 12-bit
unsigned numbers. Should the high-level language programmer wish to test (in either
an if or a while) to see whether rl is greater than or equal to y, there are several
equivalent ways to write this (given that the following is performed in 13-bit twos
complement arithmetic):

The last of these can be performed with the instructions described earlier. The final
signed 13-bit result in { 1 ink, ac } can be tested with the SZL instruction, as shown
below:
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rl >= y

rl >= {,y1

-{O,y} + rl >= 0
{-O,-yl+l + rl >= 0

0014/7200 CLA

0015/7100 CLL /{link,ac} = {0,0}
0016/1101 TAD y /{link,ac} = {O,y}
0017/7040 CMA /{link,ac} = {O,-y}
0020/7020 CML /{link,ac} = {-O,-y}
0021/7001 IAC /{link,ac} = {-O,-y}+l
0022/1032 TAD rl /{link,ac} = {-O,-y}+l + rl
0023/7430 SZL /test whether {O,-y}+l + rl >= 0
0024/5xxx JMP xxx /if {O,-y}+l + rl < 0, goto xxx

... /if {O,-y}+l + rl >=0, execute here
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8.3.2.3 Extra states for interface
TheASM shown in section 8.3.2.1 has three additional states (EOMA, EOPC and EODEP)
that allow the programmer to interface with the machine using the sr input when the
machine is not performing the fetch/execute algorithm. These states only occur when
the programmer pushes buttons (but MA, butPC and but_DEP, respectively)
during the time that the machine is in state IDLE.

State EOPC allows the programmer to load the the program counter with a value previ-
ously placed on the switches. This allows a program to reside anywhere in memory,
unlike the nearly useless ASM given in section 8.3.1. For this reason, state INIT no
longer initializes the program counter, and instead the programmer is responsible for
pushing but-PC appropriately prior to pushing cont.

The programmer uses butMA and butDEP together to load a program into memory
at an arbitrary address. First, the programmer enters the address on the switches to
indicate where in memory the programmer desires to place the program or data. Then
the programmer pushes but MA, which causes state EOMA to occur, where the sr
input is assigned to the memory address register. Next, the programmer enters the first
word to go into memory onto the switches, and pushes but_DEP, which causes state
EODEP to occur. State EODEP assigns the sr input to the memory buffer register, and
then the machine proceeds to state ElADEP. In state ElADEP the machine deposits
the memory buffer (containing the programmer's desired word) into memory at the
memory address. Finally, state ElBDEP increments the memory address (in case the
programmer has more words to deposit). The programmer may enter as many succes-
sive words as desired with this technique. Finally, the programmer uses butPC and
cont as described above.

8.3.2.4 Memory as a separate actor
At this point, we have described the behavior of the complete general-purpose com-
puter system. Now, we need to consider what the external inputs and outputs of this
system are:
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Figure 8-9. Block diagram for the PDP-8 system.
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The present state and the other outputs (such as the memory buffer register, memory
and EODEP) address register, program counter, instruction register and the halt register) are sent out
put when the from the machine primarily to allow the programmer to observe the internal operation
occur when of the machine.

respectively)

8.3.2.4.1 Top-level structure of the machine
value previ- In fact, the machine hidden inside the last diagram is composed of three components:
in memory, the CPU, the peripherals and the memory. Since in this chapter we are ignoring the

;tate INIT no peripherals, that leaves two separate components that must be interconnected to form
sponsible for the system: the CPU and the memory. Although one could consider the memory as just

another component of the CPU's architecture, this is normally not done. As described
into memory in section 8.2, there are many different technologies for memory, and often the technol-
e switches to ogy to implement memory is different than the technology used to implement the CPU.
or data. Then Therefore, we would like to physically separate the memory from the CPU and designhere the s r the CPU independently from the memory. This means that memory is an independent
nters the first actor, as illustrated in the following diagram:
h causes state
r register, and
hine deposits Cpu peripheral
memory at the I I
;s (in case the I controller architecture: addr
many succes- I I a
butPC and I- - - - - - J - - - - - - - < data out

d memorydata in Mmr

writer

purpose com- Figure 8-10. System composed of processor (controller and architecture) with
)utputs of this memory as a separate actor

Let's assume that we will implement this machine using an asynchronous, volatile,
static, deterministic access time memory with separate data input and data output. The
choice of this kind of memory device simplifies the design in several ways. First, since
this memory is static, there is no need to refresh it. Second, since the access time is

te known, proper functioning is easily guaranteed by choosing a sufficiently slow clock.
its... Third, since this memory has separate buses for data input and data output, there is no

need to introduce the complexity of tri-state buffers.

The one design complexity that must be dealt with is the fact that this memory is asyn-
chronous. The reason for choosing an asynchronous memory device is cost and avail-
ability. The problem with doing so is that extra care must be taken in providing the
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inputs to the memory device. In particular, the register transfer m [ma] - mb must
be implemented by asserting a hazard-free external (to the CPU) command output,
write, as described in section 8.2.2.1. The memory address and memory buffer out-
puts of the CPU provide the addr and din inputs to the memory device. The dout of
the memory device provides the membus input to the CPU.

8.3.2.4.2 Pure behavioral ASM with memory as a separate actor
The ASM of section 8.3.2.1 can be rewritten to reflect that memory is a separate actor.
Every place (states F3A and F4A) where m [ma] is used on the right-hand side of a
register transfer in section 8.3.2.1, the revised ASM will use membus instead. All other
places (states ElADEP and E1ADCA) that mention m [ma] are of the form m [ma]

- mb. These can be replaced with an assertion of the write signal, as illustrated in
figure 8-11.

8.3.2.5 Our old friend: division
This book uses the childish division algorithm (first described in section 2.2) in most
chapters to illustrate various ways that hardware can be designed. This algorithm is
ideal as a learning example because it is simple. Although the operations used to imple-
ment this algorithm are typical of the most sophisticated algorithms, it is so elementary
that any child can perform it. Unlike faster division algorithms, why it works is obvi-
ous.

There is another reason why division is the centerpiece of this book. Division has played
an interesting role in the history of general-purpose computers. As mentioned previ-
ously, the very first program ever run on a general-purpose computer was the childish
division algorithm. Much faster algorithms than the childish algorithm exist for divi-
sion, but they are very complex and hard to understand. Many general-purpose com-
puters throughout history (from the BINAC in 1949 up to the Pentium half a century
later) have provided "divide" instructions that implement much more sophisticated
division algorithms in hardware than our old friend, the childish algorithm. Despite
this, many computers, including many PDP-8s,11 have shunned division in hardware in
favor of division in software. The irony of this is that a flaw in the hardware divide
instruction of the Pentium general-purpose computer caused Intel great embarrassment
in the mid 1990s.

'(Some models of the PDP-8 had an optional hardware feature, known as EAE, that assisted in performing
division.
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A major theme of this book is that speed is not the primary concern of the designer-
correctness is. An algorithm implemented in software might be slower than the same
algorithm implemented in hardware, but you should not worry about speed. The most
important thing is to implement the algorithm properly, whether in hardware or soft-
ware. (Sometimes speed is part of the specification of a correct design, but even then,
as the Pentium incident indicates, the rest of the design must be correct before the
speed matters.) And so, with an appreciation of the important role division has played
in the history of computer design, let us consider how to implement our old friend, the
childish division algorithm, in software with PDP-8 machine language.

8.3.2.5.1 Complete childish division program in C
A complete software program written in a high-level language typically has some in-
put/output formatting statements, such as scanf and printf in C or READ and
WRITE in Pascal (or $readmemb and $display in Verilog). For instance, a com-
plete C program to implement the the childish division algorithm from section 2.2
might appear as follows:
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Since octal is a convenient notation that is used frequently in this chapter, the input and
output are shown formatted as four-digit octal numbers by scanf andprintf. Trans-
lating statements like scanf and printf into the PDP-8 instruction set requires
using 6xxx machine language instructions. We have avoided implementing the 6xxx
instructions of the PDP-8 because their implementation requires concepts not covered
in this chapter.
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main ()

{
unsigned x,y,rl,r2;

while (1)

{
scanf('%04o,&x);

scanf("%04o",&y);

rl = x;
r2 = 0;

while (rl >= y)

{
rl = rl - y;

r2 = r2 + 1;

printf("%04o\n",r2);

}



)f the designer- 8.3.2.5.2 User Interface for the software
er than the same The purely hardware implementations of the childish division algorithm in chapter 2
speed. The most avoided these input/output formatting problems with:
hardware or soft- a) two separate external data input buses (x and y), presumably connected to switches,
n, but even then, so that the "friendly" user can toggle in the binary values desired to be input into the
Drrect before the hardware.
iision has played
ur old friend, the b) an external status input (pb), presumably connected to a push button, so the
Ye. "friendly" user can indicate the proper time for the hardware to look at the external

input buses.

c) an external data output bus (r2 ), presumably connected to lights, so the "friendly"
ally has some in- user can observe the computation of the quotient in binary as it progresses. (If the clock
C or READ and is fast enough, the user will not notice anything except the result.)
instance, a corn- an external command output (READY), presumably connected to a light, so the
from section 2.2 "friendly" user can know when r2 has become the correct quotient.

8.3.2.5.2 Uaser Interface for the software
The purely hardware implementations of the childish division algorithm in chapter 2

i ~avoided these input/output formatting problems with:

, ~~a) two separate external data input buses (x and y), presumably connected to switches,
: ~~so that the "friendly" user can toggle in the binary values desired to be input into the

hardware.

b) an external status input (pb), presumably connected to a push button, so the
"friendly" user can indicate the proper time for the hardware to look at the external

input buses.

c) an external data output bus (r2 ), presumably connected to lights, so the "friendly"
user can observe the computation of the quotient in binary as it progresses. (If the clock
is fast enough, the user will not notice anything except the result.)

d) an external command output (READY), presumably connected to a light, so the
from section 2.2 ~~"friendly" user can know when r2 has become the correct quotient.

This approach requires that the person who uses the hardware described in chapter 2 be
"friendly," someone who is willing and able to adhere to several rules that describe
how to use the machine properly. Some of these rules relating toe te iming of the push
button were described in chapter 2. Although chapter 2 explained the operation of this
machine in decimal notation, the use of switches as a physical input medium and lights
as a physical output medium additionally demands a user who is comfortable with the
binary number system.

To translate the childish division algorithm into PDP-8 machine language, we e go-
ing to assume a similar "amicable" user. This "amicable" user is willing to toggle bi-
nary values into the sr to provide inputs to the algorithm (as described in section
8.3.2.2.2) and observe the binary result in the accumulator. The main difference be-
tween the "amicable" user of the algorithm implemented in PDP-8 machine language
and the "friendly" user of the algorithm implemented in the hardware given in chapter
2 is how the user must operate the machine. The PDP-8 software version (which has
two HLT instructions) re-uses the single sr input bus so that the "amicable" user must
press the cant button twice. The hardware in chapter 2 uses two separate input buses
(x and y) so that the "friendly" user only presses the ib non nce.

pter,1the input and The following summarizes the hardware of the PDP-8 that is utilized for crude input

and output by the software implementation of the childish division algorithm:
s~ ~ ~ ~~~~~ig assme etrasl aible sr. ntis wlv wthes h "amicable"usriwlintoogeb-
1 use~~~~nr ale in the sredo proider inputst thle.grtm(a eciedi eto

two anetenlsau instutos peuthen) onn ted ptoaps bustn so ta the "amicable"mt

andr canpush by tafe thesftaegmlen atiopaaeau n o the hlihdvsnaritm
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pter, the input and The following summarizes the hardware of the PDP-8 that i utilized for crude input
Iprintf .Trans- and output by the software implementation of the childish division algorithm:
menting the 6xxx a) one external data input bus (sr), connected to twelve switches, so the "amicable"
cepts not covered user can toggle in the desired binary input values.

b) an external status input (cont), connected to a push button, so the "amicable"
user can push cont after toggling each separate value in on the sr.
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c) an external data output bus (ac), connected to twelve lights, so the "amicable"
user can observe the computation of the quotient (and other things) in binary as it
progresses. (If the clock is fast enough, the user will not notice anything except the
result.)

d) an external command output (present-state), connected to lights, so the
"amicable" user can know when ac has become the correct quotient (i.e., when
present_state becomes IDLE).

8.3.2.5.3 Childish division program in machine language
On the left side of the following is the PDP-8 machine language code for the childish
division algorithm. On the right side is the corresponding assembly language mnemon-
ics and symbolic operands, in the style explained in appendix A, with comments fol-
lowing the slash. Only the machine language resides in memory. The commented as-
sembly language is shown only to clarify how the program operates:

/ Childish division algorithm in PDP-8 machine language
/
/ The following 2 instructions allow the user to observe
/ the previous result (r2) in the ac

0000/7300 LO, CLACLL

0001/1033 TAD r2
/

0002/7402
0003/7200
0004/7404
0005/3100

0006/7402
0007/7404
0010/3101

/(link,ac = {0,0}

/{link,ac = O,r2}

/ The following 4 instructions wait for the user to toggle in
/ the first value on sr (while still displaying r2 on ac)
/ When the user presses cont, this first value toggled
/ in on sr is stored into x

HLT
CLA
OSR

DCA x

/wait for user to toggle first value
/ {link,ac} = {0,0}
/ {link,ac} = {O,Olsr)

/x = sr; {link,ac} = {0,0}

/ The following 3 instructions wait for the user to toggle in
/ the second value on sr (ac is now cleared)
/ When the user presses cont, this second value toggled
/ in on sr is stored into y

HLT
OSR
DCA y

/ wait for user to toggle second value
/ {link,ac = {O,Olsr}
/ = sr; {link,ac} = {0,0}

/ The following 3 instructions initialize rl and r2
/ prior to the while loop

Continued

0011/1100
0012/3032
0013/3033

/
/ Th,
/ wI

0014/7200
0015/7100
0016/1101
0017/7040
0020/7020
0021/7001
0022/1032
0023/7430
0024/5000

/The

0025/3032
0026/1033
0027/7001
0030/3033
0031/5014

/
/ ThE
/ thE
/

0032/0000 rl,
0033/0000 r2,

/
/ The
/

0100/0000 x,
)00/0000 y,

8.3.2.5.4 An
The following ta
childish division
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8.3.2.5.4 Analysis of childish division software
The following table summarizes how many clock cycles it takes for each part of the
childish division program given in section 8.3.2.5.3 to execute:
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"amicable" Continued
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ights, so the
(i.e., when

the childish
ge mnemon-
mments fol-
mmented as-

0011/1100 TAD x / {link,ac} = {0,0+x}
0012/3032 DCA rl /rl = x; {link,ac} = 0
0013/3033 DCA r2 /r2 = 0;

/
/ The following 9 instructions implement
/ while (rl>=y)

0014/7200 CLA
0015/7100 CLL / {link,ac} = {0,0)
0016/1101 TAD y / {link,ac) = {O,y}
0017/7040 CMA / link,ac} = {0,-y}
0020/7020 CML / {link,ac} = {-0,-y)
0021/7001 IAC / {link,ac} = (-O,-y}+l
0022/1032 TAD rl / {link,ac} = {-0,-y}+l + rl
0023/7430 SZL / test whether {-0,-y}+l + rl >= 0
0024/5000 JMP LO / if {-0,-y}+l + rl < 0, exit while (goto L)

/ if {-O,-y}+l + rl >=0, stay in while loop

/The following 5 instructions implement body of the while loop

0025/3032 DCA rl /rl = rl - y; i.e. rl=-y+l+rl; ac=0
0026/1033 TAD r2 / {link,ac} = {OO+r2}
0027/7001 IAC / {link,ac} = {OO+r2}+1
0030/3033 DCA r2 /r2 = r2+1
0031/5014 JMP L1 /continue while loop

/
/ The following 2 words store date manipulated by
/ the childish division algorithm
/

0032/0000 rl, 0000
0033/0000 r2, 0000

/
/ The following 2 words store data input from the sr
/

0100/0000 x, 0000

0101/0000 y, 0000

(
N

r

I

Continued

A

I Continued
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The times are listed in three columns. The left column indicates operations that execute
just once, before the while loop begins. The right column indicates operations that
execute just once, upon exiting from the while loop. The middle column indicates
operations that occur each time through the loop. The while statement itself involves
formation of the 13-bit twos complement (32 cycles) and testing (12 cycles). The entry
44 (32+12) occurs both in the middle and right columns because this machine code
occurs each time through the loop as well as the final time when the condition rl>=y
becomes false. Just as in chapter 2, the number of times the loop executes is propor-
tionate to the quotient. Neglecting how long it takes for the user to toggle in the inputs,
from the time the program actually starts computing the quotient (when the program
counter was 0011) until the machine returns to state IDLE is 21 + 67 + 75 *quo-
tient clock cycles.

8.3.2.5.5 Comparison with special-purpose implementation
This table compares different implementations of the childish division algorithm:

12-bit
section clock cycles 12-bit memory ctrl

registers words states
2.2.7 3+quotient 3 0 2

special 2.2.3 2+2*quotient 2 0 4
purpose 2.2.2 3+3*quotient 2 0 5
hardware 2.2.5 2+3*quotient 3 0 5

PDP-8 software 8.3.2 88+75*quotient 5 30 31
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High-level Operations Before During After

while while while

rl = x; 14

r2 = 0; 7
while (rl >= y) 44 44

rl = rl - y; 7

r2 = r2 + 1 24

} 5
display r2 in accumulator and halt 18

Total Clock Cycles 21 75 67
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The "section" column indicates where the ASM (and in the case of the PDP-8 software,
also the machine language) is defined. The "clock cycle" column indicates how long it
takes to compute the quotient, neglecting the time for the user to toggle in the binary
inputs. The "12-bit registers" indicates how many hardware registers of this size are
required (in the case of the PDP-8, this is the accumulator, instruction register, memory
address register, memory buffer register and program counter). We neglect one bit reg-
isters such as halt and link as being insignificant in the total cost. We also neglect the
cost of the combinational logic that interconnects the registers within the architecture
(since this is the subject of section 8.4). The "12-bit memory words" indicates how
many words the machine language version requires for both program and data. Spe-
cial-purpose implementations of this algorithm do not need memory because the hard-
ware registers continually hold the data, and the controller implements the algorithm.
The ctrl states" indicates how many states are required by the hardware ASM.

Any way you look at the above table, software appears to be a real loser. Compared to
the fastest special-purpose implementation listed above (section 2.2.7), the software
approaches being about seventy-five times slower for a large quotient:

Lim (8 8 +75*quotient)/(3+quotient) = 75

quotient -

For the particular case traced above and in chapter two (quotient=14/7), the ratio is
238/5, or about 47 times slower. One reason why the hardware implementation in sec-
tion 2.2.7 makes the software look so bad is because the hardware does the equivalent
of three high-level operations (test rl >=y, rl=rl -y and r2 =r2 +1) in parallel dur-
ing each clock cycle. The childish division algorithm has the potential for this parallel-
ism, and so we ought to exploit this.

On the other hand, if we wanted to handicap the hardware to make the contest seem
more sporting, the ASM of section 2.2.2 is the closest to the software implementation
because it only does one high-level operation at a time. For very large quotient, the
software approaches being about 25 times slower than section 2.2.2:

Lim (8 8+75*quotient)/(3+3*quotient) = 25

quotient - 00

For the particular case traced above and in chapter two (quotient=14/7), the ratio is
238/9, or about 26 times slower.
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Even when the hardware only does one thing at a time (as in section 2.2.2), the soft-
ware appears much slower. There are two reasons for this. First, it takes several PDP-8
instructions to do the equivalent of one high-level language statement (which is most
noticeable in implementing the while). Second, the way we have implemented the
ASM for the PDP-8, it takes several clock cycles (either five or seven) for each instruc-
tion to execute.

Software requires general-purpose hardware in order to run. The PDP-8 is about as
simple as a general-purpose computer can be, but even so, it requires five registers.
Software also requires memory for programs and data. Because of technological dif-
ferences explained in section 8.1, the cost to store a bit in memory is usually several
times lower than to store a bit in a register. For the sake of argument, say that the cost
for a 12-bit word in memory is five times cheaper than for a 12-bit register. The storage
costs are then 2*5 for section 2.2.2 hardware, 3*5 for section 2.2.7 hardware, and
5*5+30 for the PDP-8 implementation (assuming we only pay for the memory actually
used to implement the childish division program). Therefore, section 2.2.2 storage cost
is about one fifth that of the PDP-8 implementation, and section 2.2.7 storage cost is
about one-quarter that of the PDP-8 implementation.

8.3.2.5.6 Trade-off between hardware and software
One cannot draw sweeping conclusions having examined only a single algorithm in
hardware and software, and having examined the software on a single implementation
of a single instruction set. The difference between hardware and software may be less
pronounced when the algorithm is more complicated or when the instruction set is
more capable. In particular, algorithms that require memory for storage of data struc-
tures, such as arrays, may show software performance closer to that of special-purpose
hardware. However, for the childish division algorithm, we can conclude the software
solution gives lower performance and costs more.

Would you pay more to buy something slower? Paradoxically, in most instances, you
probably would because hardware speed and cost are often not the primary concern.
Certainly in this case, speed is unimportant when you consider the problem that the
childish division algorithm solves. It interactively obtains two 12-bit inputs, divides
them in a very inefficient way,"1 and displays the answer. It is going to take the user
several seconds to toggle in the inputs, and several more for the user to comprehend the
output. Since the largest 12-bit quotient is 4095, the maximum total time for the PDP-
8 implementation is 88+75*4095 = 307213 clock cycles. Although this seems awful in
comparison to the 4098 clock cycles required by the hardware implementation of sec-
tion 2.2.7, it is less than the blink of an eye when the clock period is 100 nanoseconds

1 Regardless of the underling implementation (hardware or software), there are much better algorithms than
the childish division algorithm if you really want to divide fast.
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(a very moderate clock speed using current integrated circuit technology). The user
will only see a brief flash before the correct answer appears. Occasionally, the specifi-
cation of a problem has a real-time aspect to it. For example, if instead of our friendly
user, the input came from another machine that needed to divide two thousand numbers
per second, only the hardware of section 2.2.7 would be able to keep up.

In most instances however, the factor that matters more than hardware speed and cost
is design speed and cost. In other words, how long does it take and how much does it
cost for the designer to produce a correct design? Designers are willing to use hard-
ware which is, in a technological"2 sense, more costly and slower than is theoretically
necessary because in doing so they obtain the benefit of rapid debugging. When a
designer finds an error, it is easier to change a few bits in the memory of a general-
purpose computer than it is to fabricate a corrected version of a special-purpose com-
puter. Also, many design changes occur not because of a designer's mistake but instead
are required due to changing specifications. Productivity tools for general-purpose com-
puters, such as compilers, assemblers, linkers, editors, debuggers, etc., make the soft-
ware designer's task of coping with bugs and changing specifications much easier than
the above machine language examples.

The situation that has existed for the last half century is designers have had the choice
between using a general-purpose computer or building a special-purpose computer. If
the market price (in dollars, rather than in gates) of the general-purpose computer is
within budget and its speed is adequate (not the fastest, just adequate) and otherwise
meets physical constraints (size, weight, power consumption, ruggedness) for the in-
tended application, the designer typically chooses the general-purpose computer be-
cause of the advantages of rapid debugging. Although most algorithms work adequately
on general-purpose computers, some demand special-purpose hardware. This has cre-
ated two different economic phenomena.

First is the emergence of the general-purpose computer industry, composed of only a
handful of companies worldwide that actually design CPUs. All together, these compa-
nies employ only a few hundred computer designers at best, and so few of the readers
of this book will ever be employed as general-purpose computer designers. These de-
signers face a daunting challenge: they design machines that will be used for tasks that
no one has yet conceived. Programmers in the future will think of new things to do with
the general-purpose machines that designers are working on today. Why does knowing
how the machine will be used assist the designer? Speed is not the primary concern of
a designer solving a specific problem because the designer can easily tell if the ma-
chine is fast enough. A special-purpose computer does not have to be the fastest com-
puter in existence-it just has to be fast enough, and, of course, do its job correctly.
General-purpose computer designers do not have the luxury of knowing what is fast

12 Here "technological" means measuring cost in in terms of registers, gates, chip area, etc., rather than in
dollars.
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enough. Because of the market pressures created by this uncertainty, they hav
oped more efficient (but intricate) variations on the fetch/execute algorithm tt
software to approach the speed of a special-purpose computer. This has con
cost of increased hardware by using sophisticated techniques, such as pipelinin
ters 6 and 9), and is why there is such variety among the instruction sets (cha:

Second, a more recent phenomenon is the emergence of hardware description la
(chapter 3) running on general-purpose computers that allow the debugging
tion) and synthesizing of efficient special-purpose computers to be almost as
the programming of software. It is the theme of this book that the worlds of 
and software are converging. You will need to be aware of both of these to pi
the next half century of the computer age.

8.4 Mixed fetch/execute
In order to illustrate that there is nothing mysterious about the design of a
purpose computer once the details of the fetch/execute algorithm are specif
translate the pure behavioral ASM (section 8.3.2.4.2) for the PDP-8 instruction
into the mixed stage of the top-down design process. Recall from section 2.1
mixed stage consists of two hardware structures: a controller and an architec

There are many possible architectures that can implement a given pure behavior
The more complicated the ASM, the more room there is for creativity in the (
the architecture. Once the designer decides upon an architecture, the desil
controller is a relatively mechanical process.

8.4.1 A methodical approach for designing the architectur
When an ASM uses more than a handful of registers and/or states, it becomes
to keep track of all of the details in your head. In such an instance, it is wise
methodical approach to designing the architecture. To begin with, note all of 
ter transfers that occur in each state. Write down this information grouped tol
destination. Since in section 8.3.2.4.2 there are six possible destinations (left-h
of A-, excluding the memory, which in section 8.3.2.4.2 is a separate actor),
six groups to note:

a) register transfers to the accumulator and/or lind. (These are together in c
since { link, ac } often acts as a 13-bit register, and so modificatic
accumulator by itself or to the link by itself should be considered as 
tions to {link, ac});

b) register
c) register
d) register
e) register
f) register

It is wise to wr
back to the AS]
register transfe
The following

RTI

ac

ac

ac

ac

li

iI:

{a,
{1

{ 1

{1

{1

ha

ha

ir

ma

ma

ma

ma

mb

mb

mb
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b) register transfers to the halt flag;
c) register transfers to the instruction register;
d) register transfers to the memory address register;
e) register transfers to the memory buffer register; and
f) register transfers to the program counter.

It is wise to write down the state(s) in which each transfer occurs so that you can refer
back to the ASM as necessary. (When both the right-hand sides and left-hand sides of
register transfers in two or more states are identical, note the names of all such states.)
The following table illustrates this for the ASM in section 8.3.2.4.2:

RTN State () 

ac - 0

ac - ac & mb

ac - ac sr

ac - ac

link - 0

link - -link

{ac,link} -

{link,ac} -

{link,ac} -

{link,ac} <-

{link,ac} <-

{link, ac}

{ac, link}

0

{link,ac + 1

{link,ac} + mb

halt <- 0

halt - 1

ir - membus

ma <- ea(ir)

ma <- ma + 1

ma p- Pc

ma <- sr

mb <- ac

mb (- membus

mb *- sr

EOCLA, E1BDCA

EOAND

EOOSR

EOCMA

EOCLL

EOCML

EORAR

EORAL

EOCLACLL

EOIAC

EOTAD

IDLE

EOHLT,INIT

F3A

F3B

EOBDEP

Fl

EOMA

EODCA

F4A

EODEP
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Continued

RTN State(s)

PC <- ma EOJMP

PC <- PC + 1 F2, EOASKIP

PC - sr EOPC

Note that implicitly, the { 1 ink, ac } group should be thought of as implementing the
following register transfers:

{link,ac} <- {link,O}

{link,ac} *- {link,ac & mb}

{link,ac} - {link,ac sr}

{link,ac} <- {link,-ac}

{link,ac} <- {Oac}

{link,ac} A- {Vlink,ac}

{ac,link} <- {link,ac}

{link,ac} *- {ac,link}

{link,ac} -

{link,ac} -

0

{link,ac} + 1

{link,ac} - {link,ac} + mb

EOCLA, E1BDCA

EAND

EOOSR

EOCMA

EOCLL

EOCML

EORAR

EORAL

EOCLACLL

EOIAC

EOTAD

These two ways of describing link and accumulator register transfers are equivalent.
The former is easier for the designer to comprehend. The latter is important in the next
step the designer takes.

8.4.2 Choosing register types
Here is where the creative part occurs. Whatever hardware structure the designer chooses
must be capable of implementing each of the above register transfers during the state(s)
indicated. The controller will take care of making sure the states happen at the proper
times, so we do not have to worry about that. Our concern now is that the architecture
can manipulate the data as listed above.
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The first decision the designer must make is what kind of structural device will imple-
ment each register. One possibility would be to use enabled registers for every variable
in the ASM (other than memory); however, this will typically cause the architecture to
be more complex than if other types of registers are selected. A better approach is to
look at each group (corresponding to transfers to a particular register) individually and
note those register transfers where the right-hand side consists only of constants and/or
the variable (or concatenated variables) on the left-hand side.

implementing the

DCA

For the link and accumulator group, there are several such register transfers:

rs are equivalent.
?ortant in the next

{link,ac} <- {link,O} EOCLA, ElBDCA

{link,acl -- {link,-ac} EOCMA

{link,ac} *- {O,ac} EOCLL

{link,ac} <- {-link,ac} EOCML

{link,ac} *- 0 EOCLACLL

{ac,link} <- {link,ac} EORAR

{link,ac} - {ac,link} EORAL

{link,ac} <- {link,ac} + 1 EOIAC

For the halt flag, both of the possible register transfers are of this kind:

halt <- 0 IDLE

halt - 1 EOHLT,INIT

For the memory address register, only one of the register transfers meet this criteria:

designer chooses
during the state(s)
pen at the proper

at the architecture

Similarly, for the program counter, there is only one register transfer that uses pc on
both sides:

| pc *- pC + 1 F2, EOASKIP

For the instruction register and memory buffer register, there are no such register trans-
fers.

ware
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The reason for identifying such register transfers is that, in theory, such transfers can be
implemented internally within a register device without the need for any external data
interconnection. Although such devices may be slightly more expensive, the intellec-
tual simplification they provide to the architecture is usually worth the added cost.

For registers where no such transfers occur, it is clear that the designer should use
enabled registers. Therefore, to implement an architecture for the ASM of section
8.3.2.4.2, the instruction register and the memory buffer register should be enabled
registers. For these registers, whatever new data is loaded always comes from outside
the enabled register.

In the case of the memory address register and the program counter, it is obvious from
the above that an up counter register is the most appropriate choice. For the halt flag, a
clearable enabled register (or its equivalent) is a reasonable choice because this allows
the halt <- 0 transfer to occur internally (leaving only the halt - 1 to be
provided externally).

The choice of the register type for { link, ac } is less clear. In theory, one could
imagine a device that is capable internally of doing all the operations listed for the link
and accumulator. The problem is that such a contrived device is not one of the standard
register building blocks discussed in appendix D. The intellectual simplification of
register building blocks occurs not only because they hide details internally (hierarchi-
cal design) but also that their behavior is widely understood in industry and they can be
concisely explained in a single cohesive sentence. (An up counter can hold, load, clear
and increment its data. These operations are no more and no less than what is required
to "count up.") It would not be wrong to build a device that does everything for the link
and accumulator. (An automated synthesis tool, such as the one described in chapter 7,
might take such an approach.) As a matter of good style for a manually synthesized
design and out of consideration to others who attempt to understand the architecture,
we will instead choose standard register building blocks of the kind described in ap-
pendix D.

Of the building blocks described in appendix D, there are two possible choices for the
link and accumulator: the up counter and the shift register. If the designer chooses an
up counter, the following register transfers can be implemented internally by the de-
vice:
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{link,ac} - link,O} EOCLA, EBDCA

{link,ac} - {,ac} EOCLL

{link,ac} <- EOCLACLL

{link,ac} - {link,ac} + 1 EOIAC
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If the designer chooses a shift register, a different set of register transfers can be imple-
mented internally by the device:

{ac,link} <- {link,ac} EORAR

| {link,ac} - {ac,link} EORAL

Of the complete group of link and accumulator register transfers, the ones that cannot
be implemented by either of these building blocks include:

The best way to implement such computations that must occur outside the register
building block is with a combinational ALU, such as the one described in section 2.3.4,
that is capable of doing addition and logical operations. Since the ALU can add an
arbitrary number to the accumulator (as required in state EOTAD), it can also incre-
ment the accumulator (as required in state EOIAC). The ALU can perform sixteen dif-
ferent logical (bitwise) operations, including AND, OR and NOT (as required in states
EOAND, EOOSR, EOCMA and EOCML). The ALU can output zero, and so the clearing
operations (as required in states EOCLA, ElBDCA, EOCLL and EOCLACLL) can be
accomplished at no added cost. Since the ALU is suitable for either design alternative
({ link, ac } as an up counter or { link, ac as a shift register) but the ALU can do
the incrementing that would otherwise require a counter, an appropriate design deci-
sion is to use a shift register for {link, ad}.

Here are the register types chosen above:
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{link,ac} - {link,-ac} EOCMA

{link,ac} - {-link,ac} EOCML

{link,ac} - {link,ac & mb} EOAND

{link,ac} - {link,ac sr} EOOSR

{link,ac} - {link,ac} + mb EOTAD

{link,ac} 13-bit shift register
mb 12-bit enabled register
ma 12-bit up counter register
ir 12-bit enabled register
PC 12-bit up counter register
halt 1-bit clearable enabled register
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8.4.3 Remaining register transfers
Having decided on each register type, we can eliminate those register transfers that
occur internally within the register device, which leaves the following:
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The remaining { 1 ink, ac } transfers are listed above in their original form to provide
documentation that more closely matches the original ASM. For example, ac <- 0 is
moreconcise than {link, ac} <- {link, 0}. Here is the bloc

8:

8.4.4 Putting the architecture together
In choosing the shift register, we also determined that every one of the remaining
{ 1 ink, ac transfers (listed in section 8.4.3) can be implemented by the ALU. One
of the inputs to theALU will be the 13-bit { link, ac }. The other will be a 13-bit mux
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ac - 0 EOCLA, ElBDCA

ac <- ac & mb EAND

ac - ac sr EOOSR

ac - ac EOCMA

link - 0 EOCLL

link - -link EOCML

{link,ac} - EOCLACLL

{link,ac} <- {link,ac} + 1 EOIAC

{link,ac} - {link,ac} + mb EOTAD

halt - 1 EOHLT,EOINIT

ir - membus F3A

ma <- ea(ir) F3B

ma <- pc Fl

ma sr EOMA

mb E- ac EODCA

mb <- membus F4A

mb <- sr EODEP

pc <- ma EOJMP

pc <- sr EOPC
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that selects between { 0, sr }, { 0, mb } and the constant one. It is important to note
that although the { link, ac } is a unified thirteen-bit shift register, the link and accu-
mulator portions are controlled separately. Therefore, it is possible to load just the
accumulator, just the link or both of them. The controls for the { link, ac } are as
follows:

The default (when l inkc trl and acctrl are not mentioned in a state) is to hold
the accumulator and link as they are.

The ea (ir) function can be implemented by trivial combinational logic. We leave
this as a separate device since there are other addressing modes not implemented here
that are described in appendix B and that are left as exercises.

There is only one register transfer left for the halt flag, and so its input is a constant one.
Similarly, there is only one register transfer for the instruction register, and so its input
is the memory bus (which provides m [ ma ] to the architecture from the external memory
device).

The remaining register transfers can be provided for by placing muxes on the inputs of
the appropriate registers. The input to the memory buffer register is a 12-bit mux that
selects among sr, the accumulator and memory bus. The input to the memory address
register is a 12-bit mux that selects among s r, ea (i r) and the program counter. The
input to the program counter is a 12-bit mux that selects between the sr and the memory
address register.

Here is the block diagram of the architecture that was just derived for the subset PDP-
8:
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linkctrl linkctrl acctrl acctrl action
bits symbol bits symbol

00 'HOLD 00 'HOLD do nothing

00 'HOLD 11 'LOAD ac <-alubus[ll:0]

11 'LOAD 00 'HOLD link - alubus[12]

11 'LOAD 11 'LOAD {link,ac} - alubus

10 'LEFT 10 'LEFT {link,ac} - {ac,linkl

01 'RIGHT 01 'RIGHT {ac,link} - {link,ac}
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Figure 8-12. Architecture for PDP-8 subset.
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ldhalt crhl

I ,`[H
haltbus

Figure 8-12. Architecture for PDP-8 subset (continued).

The fourth inputs to the memory address and memory buffer muxes are not required
and therefore tied to zero. It is left as an exercise to show that these fourth inputs will
help to implement more of the instructions given in appendix B.

8.4.5 Implementing the decisions
The ASM of section 8.3.2.4.2 has several decisions. Some of these test external status
inputs (cont, butPC, butMA and butDEP) that have nothing to do with the
architecture. The remaining decisions test data contained in the registers of the archi-
tecture (link, ac, ir and halt). Although it would be possible to implement each of
these decisions using a comparator, another easier way to implement these decisions
exists.

Recall from section 2.1.3.1.2 that a multi-bit external status signal which is only tested
against constants can be rewritten as a nested series of decisions that test the individual
bits of the status. Using this approach, the internal status inputs to the controller are
simply link, ac, ir and halt with no need for comparators in the architecture. In
particular, since the instruction register is used in so many decisions, it is prudent to
make it an input to the controller.

8.4.6 Mixed ASM
Here is the mixed ASM for the architecture of section 8.4.4 that implements the regis-
ter transfers of section 8.3.2.4.2:
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1 2 mbbus
12

12 ' mabus
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Figure 8-13. Mixed ASMfor PDP-8 subset.
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It is a simple, but tedious, matter to use hierarchical design to fill in the details of the
controller from the ASM of section 8.4.6. Happily, synthesis tools can also aid the
designer with this process.

8.5. Memory hierarchy
As described in section 8.2.3, the design of large and fast memories has been a chal-
lenge since the time of the earliest electronic computers. By the end of the twentieth
century, these issues became of increasing concern because improving silicon tech-
nologies 3 allowed general-purpose processors to run at ever-higher clock frequencies.
Large low-cost memory, such as dynamic memory chips, was unable to keep up with
increasing processor speeds.

If general-purpose computers accessed memory in a completely random and haphaz-
ard fashion such that we could not make any kind of accurate prediction for which
word in memory the processor would access next, this mismatch of processor and
memory speed would be unsolvable. Happily, because of the nature of the fetch/ex-
ecute algorithm and the nature of most machine language programs interpreted by the
fetch/execute algorithm, we can predict, with reasonably good odds, what word the
processor might fetch next. This solution to the mismatch between processor and memory
speed has been recognized since 1962, when Kilburn and others at the University of
Manchester designed the Atlas computer to take advantage of the fact that not all words
in memory are accessed with the same frequency.

Kilburn's solution, which has endured with minor variations for more than a third of a
century, is to design a hierarchy of memories of different speeds, sizes and costs. The
hierarchy might have several different levels, each containing a different memory tech-
nology. The lowest level has a memory technology that costs the least per bit. This
memory will have the largest number of words since we can afford to buy quite a lot of
such cheap memory. Such inexpensive memory necessarily has a slow access time.
Each higher level in the hierarchy has a kind of memory which is faster than lower
levels in the hierarchy. Because the faster memories are more expensive per bit than the
memories in the lower levels in the hierarchy, we can only afford smaller memory sizes
in the upper levels of the heriarchy.

13 Primarily smaller chip dimensions which mean lower propagation delays.
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The memory hierarchy is usually effective because, statistically speaking, most memory
accesses occur to words that have already been accessed before. If the system keeps the
few words that are more likely to be accessed in the fast but small-sized higher levels
of the hierarchy, and all the other words that are less likely to be accessed in the lower
levels, we observe two benefits. First, the cost of the system is not significantly higher
than if it were built entirely of slow cheap memory. Second, the speed of the system is
not significantly slower than if it were 1- uilt entirely of fast expensive memory. In es-
sence, we almost get the best of both alternatives. However, this good cost and perfor-
mance occurs only in a statistical sense: the "average" program will on "average"
execute almost as fast as if the system used a fast memory. The program you are inter-
ested in may actually execute considerably slower, depending on the pattern in which
that program accesses memory for the particular data you give it and depending on the
details of the memory hierarchy you use.

There are two common kinds of memory hierarchy. The first of these is known as
cache memory, which is discussed in the next section. The second of these, which is
what Kilburn used, is known as virtual memory. The idea of virtual memory is to keep
less frequently used parts of memory on disk. The access time for the data on disk is
many orders of magnitude slower than for data in semiconductor memory. It is also
very non-deterministic because of the unpredictable distance the disk has to rotate to
be positioned on the proper data.'4 Although conceptually, virtual memory is very
similar to cache memory, its implementation requires conplicated hardware and soft-
ware. Hardware implementation of virtual memory requires a disk controller, and the
management of virtual memory is usually intertwined with the software details of an
operating system. Since hardware disk controllers and software operating systems are
beyond the scope of this book, we will not consider virtual memory.

8.5.1 Cache memory
Cache memory is the fastest part of the memory hierarchy. It is built out of several
components. The cache needs its own controller, which we will ignore for the moment.
Of course, the cache needs high-speed memory for the data to be stored in the cache,
but the cache also needs a tag memory which indicates the address associated with each
portion of the cache. The data and tag memories of the cache are usually composed of
expensive high-speed static memory that can be accessed in significantly less than one
clock cycle. When the propagation delay of the rest of the system is considered, this
still allows data to be fetched from the cache in one clock cycle.

'4 Also, there is the chance the disk head has to move, which can take a significant fraction of a second.
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The tag memory is needed because a particular part of the cache may be associated
with more than one address at different times during the operation of the cache. In
contrast, a particular part of an ordinary (main) memory will always be associated with
one particular constant address. As explained in section 8.2.2.3.1, such a main memory
can be thought of as a mux which selects one of several register values. Each cell in a
main memory is always associated with its particular address because that address
specifies the port of the mux to which the corresponding register is wired.

There are two common approaches to designing a cache. In the direct mapped ap-
proach, there is only one tag memory and one data memory. In the multi-way set asso-
ciative approach, there are several parallel tag and corresponding data memories. The
direct mapped approach is simpler and therefore allows a faster access time. On the
other hand, the direct approach is often not as successful in keeping the appropriate
words in the cache as the multi-way approach, and so even though the access time of
the multi-way approach is slower, it may be faster overall for some programs than the
direct approach. This section, however, will concentrate on the direct mapped approach,
which is easier to comprehend.

The typical cache memory uses the low-order bits of the address bus to select informa-
tion out of both the data and tag portions of the cache. In order for a memory access to
be fast, the information fetched from the tag memory must match the address bus.'5 If
it does not, the cache must be updated from some lower level of the memory hierarchy.
Commercial computer systems often have more than one level of cache. In such sys-
tems, the first level is often on the same chip as the processor to maintain the highest
(single clock) speed. The second level (referred to as L2) is contained on separate chips
that allow access in a small number of cycles. The main memory is composed of dy-
namic memory, with an access time of many clock cycles. In this section, however,
there will only be two levels in the memory hierarchy: the direct mapped cache and the
main memory.

In this chapter, we will assume each element of the cache content memory is a single
word. Often, in commercial systems, each element of the cache content memory is a
group of several contiguous words, known as a line. Using a line composed of several
words may improve the performance of the cache, but including such details here would
obscure the idea being discussed in this section: how a cache is a cost-effective way to
improve the performance of a general-purpose computer.

For example, assume a cache size of four words'6 with the following simple program
that goes through a loop eight times producing nine values'7 (7760, 7762, ... 7776 and
0000) in the accumulator:
15 In an actual implementation, only the high-order bits need to be stored in the tag memory and checked
against the high-order bits of the address bus, but we will ignore this detail for now.
16 This is too small for practical use but will illustrate how a cache works.
17These are the nine decimal values -16, -14, ... -2 and 0.
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Assuming the instructions of this program are loaded into memory in the same order as
listed above, at the time the fetch/execute cycle begins, the cache will contain:

cache

tag data

0/0004 0/5002

1/0011 1/0002

2/0006 2/7760

3/0003 3/7510

main memory

0000/7300

0001/1006

0002/1011

0003/7510
0004/5002
0005/7402

0006/7760
0011/0002

The words shown in bold for the main memory are the ones currently in the cache.
When the processor fetches the first instruction, the memory access will be slow be-
cause address 0000 is not currently in the cache. This is known as a cache miss. The
cache has to bring in this word (7300) from the main memory, and so the cache now
looks like:

emory is a single
tent memory is a
posed of several
Details here would
t-effective way to

X simple program
1762, ... 7776 and

cache
tag data

0/0000 0/7300
1/0011 1/0002

2/0006 2/7760

3/0003 3/7510

main memory

0000/7300
0001/1006
0002/1011

0003/7510
0004/5002

0005/7402

0006/7760
0011/0002

Fetching the next instruction (1006) causes another cache miss:
memory and checked
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0000/7300 CLACLL // ac = -16
0001/1006 TAD A

0002/1011 L, TAD B // ac = ac + 2
0003/7510 SPA // if ac>=0, halt
0004/5002 JMP L // if ac<0, stay in loop
0005/7402 HLT

0006/7760 A, 7760 // equivalent to decimal -16

*0011

0011/0002 B, 0002 // +2
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cache main memory
tag data 0000/7300
0/0000 0/7300 0001/1006
1/0001 1/1006 0002/1011
2/0006 2/7760 0003/7510
3/0003 3/7510 0004/5002

0005/7402
0006/7760
0011/0 002

However, when this TAD instruction is executed, the cache already has the data 7760
required by the processor. This is known as a cache hit. The second memory access
during this instruction is fast because it is a cache hit.

Fetching and executing the next instruction (1011) causes two cache misses:

Fetching and executing the SPA instruction (7510) causes a cache hit, and so this memory
access is fast. Since the accumulator is negative, the skip does not occur, and the pro-
cessor needs to fetch the next (5002) instruction. This causes another cache miss:

cache

tag data
0/0004 0/5002
1/0011 1/0002
2/0002 2/1011

3/0003 3/7510

main memory

0000/7300
0001/1006
0002/1011

0003/7510

0004/5002

0005/7402
0006/7760
0011/0002
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From this point on, as long as the program stays inside this three-instruction loop (TAD;
SPA; JMP), all of the instruction and data accesses are cache hits. The final cache miss
occurs when the program halts:

has the data 7760
id memory access

e misses:

nd so this memory
wccur, and the pro-
er cache miss:

cache main memory
tag data 0000/7300
0/0004 0/5002 0001/1006
1/0005 1/7402 0002/1011
2/0002 2/1011 0003/7510
3/0003 3/7510 0004/5002

0005/7402
0006/7760

0011/0002

In total, there are six cache misses'8 and 29-cache hits in this example. With the given
value of A, this is a 17% miss rate and an 83% hit rate, although the hit rate would
increase for values of A that are more negative.19

The good performance that the above program exhibits using this little cache depends
heavily on how the instructions and data are arranged. For example, if B were located
at address 0007, there would be 20 cache misses and only 15 cache hits, which is a 57%
miss rate and 43% hit rate. A larger cache size will often improve performance. If theprogram with B at address 0007 runs on a machine with a cache size of eight, the hit
rate becomes 100% because this entire tiny program can reside in the cache. If the
program with B at address 0011 runs on a machine with a cache size of eight, the hitrate is 94% (two misses) because the program cannot all fit in the cache at once (0001
and 0011 cannot reside in a direct mapped cache of size eight at the same time).

8.5.2 Memory handshaking
Regardless of whether a machine uses cache memory, virtual memory or both in its
memory hierarchy, one thing is clear: the access time is non-deterministic. Although
we expect the majority of memory accesses to occur in a single cycle, some accesses
will take additional cycles. The ASM chart for fetch/execute given in section 8.3.2.4.2
assumes that every memory access can occur in one cycle, which is not the case for amemory hierarchy. A more sophisticated ASM is required that waits for the memory

1 8The number of misses is the same in this program regardless of the value of A and therefore of how manytimes the loop executes.
9The number of hits depends on how many times the loop executes.
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hierarchy to provide the requested instruction or data. To coordinate the operation of
the memory hierarchy with the CPU requires using what is called a partial handshak-
ing protocol.

In the partial handshake protocol, there is an extra command signal, memreq, that the
CPU sends to the memory when the CPU requests a particular word of the memory
hierarchy. Unlike the simple memory described in section 8.2.2.3.1, the memory hier-
archy might ignore the address bus when memreq is not asserted. Only when memreq
is asserted does the memory take notice of the address bus and respond accordingly.

In the partial handshake protocol, there is also an extra status signal, the memory read
acknowledge (memrack), that the memory sends back to the CPU to acknowledge
that the memory hierarchy has obtained the word desired by the CPU. The CPU must
continue to assert its memory request until the memory responds with its acknowledge
signal. If the desired word is already in the cache, the memory hierarchy will instantly 20

assert memrack. Having the memory hierarchy assert memrack within the same cycle
that the CPU first asserts memreq means that only one cycle is spent on the memory
access. If the desired word is not already in the cache, the memory hierarchy will wait
however long is necessary before asserting memrack. The ASM for the CPU must
stay in a wait state prior to when the memory hierarchy asserts the memrack status
signal. For example, consider the portion of the ASM from section 8.3.2.4.2 (consist-
ing of states F3B, F4A and F4B) shown on the left:

As explained
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sion involving
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Figure 8-16

Figure 8-15. ASMs without and with memory read handshaking.

20 Ignoring a trivial aount of propagation delay, as was done in earlier portions of this chapter.

Verilog Digital Computer Design: Algorithms into Hardware

-

342



ie operation of
lial handshak-

mreq, that the
of the memory

memory hier-
when memreq
I accordingly.

As explained in section 8.3.1.5, these states fetch the operand for PDP-8 instructions,
such as TAD, on the assumption that every memory access can occur in one clock
cycle. In state F3B, the memory address register is scheduled to change to the effective
address of the instruction. As with all -, the change does not take effect until the next
rising edge of the clock. Assuming the instruction is a TAD, the CPU will be in state
F4A when that next rising edge occurs. In state F4A, the memory buffer register is
scheduled to be loaded with the corresponding contents of memory that comes via the
memory bus. In this ASM, there is never more than one clock cycle for the memory to
give the correct data to the CPU.

e memory read
o acknowledge
The CPU must
ts acknowledge
will instantly20

the same cycle
on the memory
rarchy will wait
the CPU must

emrack status
1.2.4.2 (consist-

In contrast, the more complicated ASM on the right uses handshaking to adapt to the
speed of each particular memory access. This requires introducing an extra state,
F4WAIT, and asserting memreq in both states F4A and F4WAIT. Also, there is a deci-
sion involving memrack that occurs in both states F4A and F4WAIT. If the memory
access is fast, the CPU never goes to state F4WAIT, and so the state transitions of the
left ASM are identical to the state transitions of the right ASM. On the other hand, if
the memory access is slow, the machine goes to state F4WAIT where it will loop until
the memory hierarchy asserts memrack. Note the data that the memory hierarchy
provides on membus must be valid before the hierarchy can assert memrack.

A similar handshaking approach is required for memory writes, except the memory
hierarchy responds back with a memory write acknowledge (memwack):

<

F4WAIT
nreq

- membus

Figure 8-16. ASM with memory write handshaking.

chapter.
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8.5.3 Architecture for a simple memory hierarchy
The memory hierarchy is a separate actor from the CPU, and so the memory hierarchy
needs its own controller and architecture. Assuming we keep the names the same as in
the earlier sections of this chapter, the memory hierarchy and the CPU communicate
address and data using mabus, mbbus and membus. More importantly, the CPU tells
the memory hierarchy what it needs done to memory with write and memreq, and
the memory responds back when the requested operation is complete using either
memrack or memwack. Both the CPU and the memory hierarchy are fed the system
clock.2' Here is a diagram that illustrates this interconnection:

CpU peripheral

mabus, 
a

membus

mbbus d

Tmemreq 
write I
memrack

memwack

MEMORY
HIERARCHY

Figure 8-17. Connection of processor to memory hierarchy.

We are going to design a memory hierarchy consisting of a main memory and a cache.
There are many choices available to the designer of a cache. Although the cache could
be either set associative or direct mapped, we will use the direct mapped technique
since it is easier to understand. Also, there is a choice about how the cache treats writes:
either a write-through cache or a write-back cache .

A write-back cache waits until it is necessary to write data back into the main memory.
This has the advantage that operations on values such as loop counters do not have to
wait for the slower access time of the main memory. The problem with the write-back
approach is that the main memory and the cache can become inconsistent with each
other. Because cache consistency is not guaranteed at all times with the write-back
approach, a request from the CPU for a memory read may also cause a write to the
main memory (that restores cache consistency). This makes a write-back cache consid-
erably harder to design than a write-through cache. It may even make the write-back

21 This is a requirement of the partial handshake protocol.
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cache slower than a comparable write-through cache.22 The complexity of write-back
caches are even more pronounced when multiple CPUs share the same main memory
but have distinct caches.

In contrast, write-through caches are simple enough23 that the design of an elementary
one can be described using only the mixed Moore ASM notation (section 2.3) or using
the equivalent Verilog (section 4.2). The essential idea of a write-through cache is that
when the CPU requests the memory hierarchy to do a write operation, the memory
hierarchy will store the data into both the main memory and the cache. A write-through
cache is guaranteed to be consistent with the main memory.

We are going to skip over the pure behavioral stage of the design, and proceed straight
to the mixed stage so that we may focus on the architecture of the memory hierarchy. 24

This architecture consists of the main memory, the cache content memory and the cache
tag memory. The main memory is asynchronous with a deterministic access time bounded
by a known number of clock cycles. Like the one and only memory shown previously
in section 8.4.7, the main memory of the hierarchy has its data input connected to
mbbus and its address input connected to mabus. The distinctions between the main
memory of the hierarchy and the memory of section 8.4.7 are the main memory of the
hierarchy receives its mainwrite signal from the internal cache controller (rather
than from the CPU) and the data output of the main memory of the hierarchy does not
connect directly to the CPU. Instead, the data output of the main memory connects to
the data input of the cache content memory.

The cache content and cache tag memories are synchronous memories that can be
accessed within one clock cycle. The address inputs to both the cache content and
cache tag memories come from the low order j bits of the CPU's memory address bus.
We will use 'CACHESIZE to indicate the number of words that can reside in the
cache, which is the same as 2. The data output of the cache content register
(cachecontent[mabus % CACHE_SIZE] ) is connected to the memory bus
that goes back to the CPU. The data output of the cache tag register
(cache-tag[mabus % CACHE SIZE] ) is connected to a comparator. The other
input of the comparator is the memory address bus from the CPU.25 The output of the
comparator is the memory read acknowledge signal (memrack). This signal is sent to

22Whether write-through or write-back is faster depends on several factors, including the pattern in which
the particular program accesses memory.
23 A write-back cache requires the Mealy notation of chapter 5.
2 4We are also avoiding the pure behavioral stage now because, even on this simple write-through cache, the
pure behavioral ASM requires the Mealy notation of chapter 5. The mixed ASM does not need the Mealy
notation because the memrack signal is generated by the architecture, and not the controller.
2 5 Many implementations would only use the high order a- j bits, but for simplicity, we use all a bits.
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both the CPU (where it controls the duration of the wait loops described in section
8.5.2) and to the cache controller. The cache controller generates the ldcont and
ldtag commands for the cache content and cache tag memories. When asserted, these
commands indicate that the cache content and cache tag memories will be loaded with
new information at the next rising edge of the clock.

The cache controller also generates the memory write acknowledge (memwack) signal
after the main memory, the cache tag memory and the cache content memory have
been updated as a result of a write signal from the CPU. The following shows the
architecture for the memory hierarchy (using the write-through direct mapped cache
described above) and the corresponding mixed Moore ASM for the cache controller:

MEMORY HIERARCHY

mabus ,- - - addra1 a
I ~MAIN

l MEMORY
mbbus din dout

dl d I

i | mainwrite mainbus I

l cachecontent
I + addr dout | r *membusFigure 8-1

tagbus l The ASM stay
l 7 addr dout / + _ I 0 memrack

lae ta a == possibilities ftl cacheag cmp I request is for 

I a n C : cache or the re

Idtag 72 l request from 

a The first possi
this case, mem

mainwrite I Because the m
memreq CACHE Idcont tor, both the A
write CONTROLLER Idtag | o memwack delay states. T

L… - - - - - - - - - - - - - - - - - - - - - - - - - . and the ASM :
that same state

Figure 8-18. Memory hierarchy architecture with direct mapped write-through
cache.
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Figure 8-19. ASMfor direct mapped write-through cache memory controller

The ASM stays in state CACHEIDLE unless a memory request occurs. There are three
possibilities for a memory request. Two of these possibilities are when the memory
request is for a read operation (i.e., write is zero): either the requested data is in the
cache or the requested data is not in the cache. The third possibility is a memory write
request from the CPU (regardless of whether it is in the cache).

The first possibility is when the data being read by the CPU is already in the cache. In
this case, memrack will be true during the first clock cycle that memreq is asserted.
Because the mrnemrack signal comes straight from the combinational logic compara-
tor, both the ASM for the CPU and the ASM for the cache controller proceed without
delay states. The ASM for the CPU makes a transition such as from state F4A to F4B,
and the ASM for the cache controller makes a transition from CACHEIDLE back to
that same state.

e c
_+ memwack

d write-through
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The second possibility is when the data being read by the CPU is not in the cache
during the first clock cycle that memreq is asserted. During this clock cycle memrack
will be false. It will stay false for as long as the output of the cache tag memory does
not equal the memory address bus from the CPU. In a case like this, when memrack is
false, the ASM for the CPU makes a transition such as from state F4A to F4WAIT, and
the ASM for the cache controller makes a transition from CACHEIDLE to state RI.
The ASM has an appropriate number of empty delay states (not shown) to allow for the
read access time of the asynchronous main memory. Then, in state RL, the cache con-
troller issues the ldcont command. This causes the cache content memory to be
loaded at the next rising edge of the clock with the data obtained from the slow main
memory. Also in state RL, the cache controller issues the ldtag command. This causes
the cache tag memory to be loaded at the next rising edge of the clock with the address
being provided by the CPU. Because of this change to the tag memory, when the cache
controller proceeds to the empty state, RA, the architecture will for the first time assert
memrack. The one empty state, RA, is all that is necessary to allow the CPU to make
a transition such as from state F4WAIT to F4B. Of course, the cache controller makes
a transition during that same clock cycle from state RA back to CACHEIDLE.

The third possibility is when the CPU makes a memory write request. The ASM for the
cache controller proceeds from state CACHEIDLE to state WI during the same clock
cycle that the ASM for the CPU proceeds from a state such as E l ADCA to E 1 DCAWAIT.
The ASM has an appropriate number of delay states (not shown) that each assert
mainwri te. This allows for the write access time of the asynchronous main memory.2 6

Finally, in state WLA, the cache controller asserts ldcont, ldtag and memwack.
The assertion of ldcont and ldtag is not necessary for this write operation but is
required for any future read operations to be fast. Therefore, a separate empty state for
write acknowledgement is not necessary here as was the case for read acknowledgement.
Because memwack is asserted in state WLA, at the same time that the ASM for the
cache controller makes a transition from state WLA to state CACHEIDLE, the ASM
for the CPU makes a transition such as from state ElDCAWAIT to ElBDCA.

The following example is a program that adds two numbers together and stores the sum
in memory. Both state machines (CPU and memory controllers) cooperate to fetch
instructions and data and to store results back in memory. This example illustrates each
of the three possibilities explained above. The first two instructions, as well as the first
word of data fetched, are already in the cache. In such an instance (shown in bold) the
cache state remains in CACHEIDLE and the CPU does not need a wait state. This
situation is signaled by memreq and memrack both being one during the same clock
cycle.

26 The read and write access times need not be the same.
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As execution proceeds, the next instruction causes a cache miss, which causes the
memory controller to leave CACHEIDLE and causes the CPU to enter a wait state
(shown in italic):

F2 0002 1000 0002 1006 0 1000 CACHEIDLE 0 0 0
F3A 0002 1000 0003 1006 0 1000 CACHEIDLE 1 0 0
F3WAIT 0002 1000 0003 1000 0 1000 R1 1 0 0
F3WAIT 0002 1000 0003 1000 0 1000 R2 1 0 0
F3WAIT 0002 1000 0003 1000 0 1000 R3 1 0 0
F3WAIT 0002 1000 0003 1000 0 1000 RL 1 0 0
F3WAIT 0002 1000 0003 1000 0 1000 RA 1 1 0
F3B 0002 1000 0003 1007 0 1000 CACHEIDLE 0 1 0

Fetching the operand of this instruction causes a cache hit, but fetching the following
instruction causes a cache miss:

General-Purpose Computers
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F1 0002 1006 0000 xxxx 0 xxxx CACHEIDLE 0 0 0
F2 0000 1006 0000 xxxx 0 xxxx CACHEIDLE 0 1 0
F3A 0000 1006 0001 xxxx 0 xxxx CACHEIDLE 1 1 0
F3B 0000 1006 0001 7300 0 xxxx CACHEIDLE 0 1 0
EOCLACLL 0100 1006 0001 7300 0 xxxx CACHEIDLE 0 0 0
F1 0100 1006 0001 7300 0 0000 CACHEIDLE 0 0 0
F2 0001 1006 0001 7300 0 0000 CACHEIDLE 0 1 0
F3A 0001 1006 0002 7300 0 0000 CACHEIDLE 1 1 0
F3B 0001 1006 0002 1006 0 0000 CACHEIDLE 0 1 0
F4A 0006 1006 0002 1006 0 0000 CACHEIDLE 1 1 0
F4B 0006 1000 0002 1006 0 0000 CACHEIDLE 0 1 0
EOTAD 0006 1000 0002 1006 0 0000 CACHEIDLE 0 1 0
F1 0006 1000 0002 1006 0 1000 CACHEIDLE 0 1 0
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F4A 0007 1000 0003 1007 0 1000 CACHEIDLE 1 1 0
P4B 0007 2000 0003 1007 0 1000 CACHEIDLE 0 1 0
EOTAD 0007 2000 0003 1007 0 1000 CACHEIDLE 0 1 0
F1 0007 2000 0003 1007 0 3000 CACHEIDLE 0 1 0
F2 0003 2000 0003 1007 0 3000 CACHEIDLE 0 0 0
F3A 0003 2000 0004 1007 0 3000 CACHEIDLE 1 0 0
F3WAIT 0003 2000 0004 2000 0 3000 R1 1 0 0
F3WAIT 0003 2000 0004 2000 0 3000 R2 1 0 0
F3WAIT 0003 2000 0004 2000 0 3000 R3 1 0 0
F3WAIT 0003 2000 0004 2000 0 3000 RL 1 0 0
F3WAIT 0003 2000 0004 2000 0 3000 RA 1 1 0
F3B 0003 2000 0004 3005 0 3000 CACHEIDLE 0 1 0

Because this example uses a write-through cache, executing the DCA instruction causes
the memory controller to leave state CACHEIDLE and causes the CPU to enter a wait
state:

EODCA 0005 2000 0004 3005 0 3000 CACHEIDLE 0 0 0
ElADCA 0005 3000 0004 3005 0 3000 CACHEIDLE 1 0 0
ElDCAWAIT 0005 3000 0004 3005 0 3000 W1 1 0 0
ElDCAWAIT 0005 3000 0004 3005 0 3000 W2 1 0 0
ElDCAWAIT 0005 3000 0004 3005 0 3000 W3 1 0 0
ElDCAWAIT 0005 3000 0004 3005 0 3000 W4 1 0 0
ElDCAWAIT 0005 3000 0004 3005 0 3000 WLA 1 0 1
ElBDCA 0005 3000 0004 3005 0 3000 CACHEIDLE 0 1 0
F1 0005 3000 0004 3005 0 0000 CACHEIDLE 0 1 0

Fetching the final instruction causes another cache miss:

F2 0004 3000 0004 3005 0 0000 CACHEIDLE 0 0 0
F3A 0004 3000 0005 3005 0 0000 CACHEIDLE 1 0 0
F3WAIT 0004 3000 0005 7300 0 0000 R1 1 0 0
F3WAIT 0004 3000 0005 7300 0 0000 R2 1 0 0
F3WAIT 0004 3000 0005 7300 0 0000 R3 1 0 0
F3WAIT 0004 3000 0005 7300 0 0000 RL 1 0 0
F3WAIT 0004 3000 0005 7300 0 0000 RA 1 1 0
F3B 0004 3000 0005 7402 0 0000 CACHEIDLE 0 1 0
EOHLT 0002 3000 0005 7402 0 0000 CACHEIDLE 0 1 0
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8.5.4 Effect of cache size on the childish division program
There are many alternatives that a designer must choose from when implementing a
cache. It is often hard to predict manually what effect these choices will have on the
speed of the system when it is running a particular program. This is a case where simu-
lation is essential to allow the designer to estimate the effects different design decisions
will have on the overall performance of the system. For example, one could simulate
to observe the effect of cache size. One of the reasons HDLs such as Verilog have
become popular is because designers need to conduct such simulations before building
their machines.

The ASMs for the PDP-8 (section 8.3.2.4.2) and the cache controller (section 8.5.3)
were translated into Verilog code (not shown), and the childish division program (sec-
tion 8.3.2.5.3) was run for x=14 and y=7 with various cache sizes. In each case, there
are 53 read accesses and seven write accesses. In this simulation, all write accesses and
any cache misses cause the CPU to wait for five clock cycles. Here are hit and miss
ratios for reads in this simulation:

8.6 Conclusion
General-purpose computers implement the fetch/execute algorithm, which in turn al-
lows the hardware to interpret other algorithms coded in machine language that is stored
in memory. Memory is the critical component for a general-purpose computer to be
useful, and various technologies have been used to implement memory during the last
half century. Static memories are fast, but dynamic memories are cheaper. Memory
hierarchies that include a cache offer the best compromise between speed and cost.
From an abstract behavioral viewpoint, all memory technologies can be thought of as
arrays of binary words, but in reality, memory devices are independent actors that op-
erate in parallel to the CPU. When the access time is non-deterministic, there must be
handshaking between the memory and the CPU so that the CPU can adjust its speed to
that of the memory.

The design process for a general-purpose CPU is similar to that of special-purpose
hardware. The example used in this chapter of the PDP-8 was implemented at the
behavioral and mixed stages of the design process. A methodical architecture was
presented, and a variation using a direct mapped cache was considered. These designs
were benchmarked using the childish division program to show that software running
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on the CPU designed in this chapter is slower and less efficient than when the childish
division algorithm is implemented in special-purpose hardware. The next chapter will
look at how this performance discrepancy can be diminished.

8.7 1 urther reading
BELL, C. GORDON and A. NEWELL, Computer Structucz..: Readings and Examples,
McGraw-Hill, New York, NY, 1971. Chapter 5 is the defi tive description of the PDP-
8 from the man who also invented the first HDL (a language known as ISP).

BELL, C. GORDON, J. C. MUDGE and JOHN E. MCNAMARA, CoM puter Engineering: A
DEC View of Hardware Systems Design, Digital Press, Bedford, MA, 1978. Chapter 8.

LAvINGTON, S., Early British Computers: The Stor of Vintage Computers and the People
Who Built Them, Digital Press/Manchester University Press, Bedford, MA, 1980. De-
scribes the work of Kilburn, Williams, Turing, Wilkes and other British pioneers.

The Origins of Digital Computers: Selected apers, 2nd ed., Edited by B. Randell,
Springer-Verlan, Berlin, 1982. Reprints of original papers by computer pioneers.

PATTERSON, DAVID A. and JOHN L. HENNESSY, Computer Organization and Design: The
Hardware/Software Interface, Morgan Kaufmann, San Mateo, CA, 1994. Chapter 7
explains virtual memory and multi-way set associative caches.

PROSSER, FRANKLIN P. and DAVID E. WINKEL, The Art of Digital Design: An Introduction
to Top down Design, 2nd ed., Prentice Hall PTR, Englewood Cliffs, NJ, 1987. Chapter
7 describes an elegant central ALU architecture for the complete PDP-8 instruction set.

SLATER, ROBERT, Portraits in Silicon, MIT Press, Cambridge, MA, 1987. Gives biogra-
phies of several important pioneers including Babbage, Zuse, Atanasoff, Turing, Aiken,
Eckert, Mauchly, von Neumann, Forrester, Bell and Noyce.

WAYNER, P., "Smart Memory," BYTE, June 1995, p. 190.

WOLF, WAYNE, Modern VLSI Design: A Systems Approach, 2nd ed., Prentice Hall PTR,
Englewood Cliffs, NJ, 2nd ed., 1994, p. 356-370. Shows how to layout a VLSI chip
that imple.nents a PDP-8 architecture.

8.8 Exercises
8-1. Revise the ASM of section 8.3.2.1 to include the ISZ instruction described in
appendix B.

8-2. Revise the architecture of section 8.4.7 to correspond to problem 8-1.
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8-3. Revise the mixed ASM of 8.4.6 to correspond to problem 8-2.

8-4. Revise the ASM of section 8.3.2.1 to include the JMS instruction described in
appendix B.

8-5. Revise the ASM of problem 8-4 to include all the addressing modes described in
appendix B.

8-6. Revise the ASM of problem 8-5 to include the interrupt instructions ION and IOF
and associated hardware described in appendix B.

8-7. Revise the architecture of section 8.4.7 to correspond to problem 8-6.

8-8. Revise the mixed ASM of 8.4.6 to correspond to problem 8-7.

8-9. Suppose a direct mapped write-through cache of size four contains the contents of
addresses 0004, 0001, 0002 and 0003 when starting to run the following PDP-8 pro-
gram:

0000/7200
0001/1004
0002/3006
0003/7402
0004/1000

a) How many cache read hits occur?
b) How many cache read misses occur?
c) What will be in the cache-tag and cachecontents when the program halts?

8-10. Translate the ASM of figure 8-8 into behavioral Verilog. Use test code that loads
and runs the childish division program of section 8.3.2.5.3 using the sr.

8-11. Translate the architecture of figure 8-12 together with the mixed ASM of figure
8-13 into Verilog. Use the same test code as problem 8-10.

8-12. Modify problem 8-11 to include the direct mapped cache designed in section 8.5.
Assume it takes five clock cycles to read or write to the main memory. Use similar
Verilog test code.
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90 PIPELINED GENERAL-
PURPOSE PROCESSOR

The fetch/execute algorithm described in section 8.3.1.5 typically requires five clock
cycles to execute each instruction. In the terminology of chapter 6, that ASM uses a
multi-cycle approach. The clock is fast because its frequency is determined by the
maximum propagation delay of a single combinational unit, most likely the ALU. On
the other hand, the effective speed is approximately one-fifth of what could be achieved
if pipelining were used instead.

In order to pipeline an algorithm that makes decisions (as fetch/execute must do in
order to decode instructions), we need to use a Mealy ASM with ovals. (See chapter 5
for details about Mealy ASMs.) A Mealy approach is required because the pipeline will
process different stages of independent instructions at the same time. Later stages de-
pend upon the completion within one clock cycle of the earlier stages. In a Mealy
ASM, a conditional computation begins instantly and is ready one clock cycle after the
decision. In a Moore ASM, a conditional computation cannot begin until one clock
cycle after the decision, and the result is not ready until two clock cycles after the
decision. This would be too late for a pipelined fetch/execute, and so a Mealy ASM is
required to describe the overall behavior of a pipelined general-purpose computer.

The existence of the NOP instruction (7000) is important to the design of the pipelined
fetch/execute. By putting a NOP in the pipeline when none existed in the original pro-
gram, it will be possible to cope with several special situations. The essential goal of
the pipelined machine is to end up with the same answer in memory and the accumula-
tor as would be obtained from a non-pipelined version. Since a NOP leaves both the
accumulator and memory alone, NOP provides for a safe way to stall later stages of the
pipeline while earlier stages of the pipeline are being filled. This is quite advantageous,
since it can eliminate the need for "FILL" and "FLUSH" states of the kind described in
chapter 6.

9.1 First attempt to pipeline
The following is a somewhat flawed attempt to design a pipelined ASM that is equiva-
lent to the multi-cycle ASM of 8.3.1.5. This ASM is for a three-stage pipeline consist-
ing of instruction fetch, operand fetch and instruction execution. Ideally, in each clock
cycle independent instructions are being fetched, having an operand fetched and being
executed. It is important to understand that what is being pipelined is the fetch/execute
algorithm itself and not the software algorithm implemented by the machine language
program (which may not even be possible to pipeline). The efficiency of a software
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algorithm running on a pipelined general-purpose computer will be better than the
LL- same software running on a multi-cycle general-purpose computer, but not as good as

the efficiency of a special-purpose computer that implements the same algorithm inA1\ ^ hardware rather than in software.
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In this ASM, the operations of states F2, F3A, F3B, F4A, F4B, EOCLA, EOTAD, EODCA,
ElADCA, E1BDCA and EOHLT from the ASM of 8.3.1.5 have been merged into state
F1 using the Mealy notation. The most noticeable change is that the set of registers
used is somewhat different than before. The memory address register has been elimi-
nated altogether so that three separate things can be done in parallel to memory during
the same clock cycle: an instruction can be fetched, an operand can be fetched and the
accumulator can be stored. A single memory address register would not allow all of
these to happen in parallel.

The instruction register of section 8.3.1.5 is now replaced by two registers, irl and
ir2, so that the machine can distinguish the instructions as they travel through the
pipeline. The memory buffer register is no longer used for writing to the memory, and
instead is used only to hold an operand fetched from memory in the previous clock
cycle. The memory buffer register has been renamed as mb2, reminding us that it is the
operand for the instruction (ir2) in the final stage of the pipeline.
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forever
begin
@(posedge sysclk) enter-new-state('Fl);

if (halt)

else
begin
pc <= (posedge sysclk) pc + 1;
irl <= (posedge sysclk) m[pc];
ir2 <= (posedge sysclk) irl;
mb2 <= a(posedge sysclk) m[ea(irl)];
if (ir2[11:9] == 1)

ac <= (posedge sysclk) ac + mb2;
else if (ir2[11:9] == 3)
begin

m[ea(ir2)] <= (negedge sysclk) ac;
ac <= @(posedge sysclk) 0;

end
else if (ir2 == 12'o7200)

ac <= @(posedge sysclk) 0;
else if (ir2 == 12'o7402)
halt <= @(posedge sysclk) 1;

else if (ir2 == 12'o7000)

end
end
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State INIT is identical to the one in the multi-cycle ASM. Since state INIT makes
halt equal to one, when state F 1 executes for the first time, the machine goes to state
IDLE, where it waits for cant to become true. Note that state Fl does not do anything
unconditionally, thus the program counter remains the way state INIT initialized it.

In state IDLE, halt becomes zero. There is an additional detail in state IDLE which
was not present in section 8.3.1.5. The instruction pipeline (irl and ir2) gets initial-
ized to NOPs. After cant becomes true, it will take two clock cycles for the pipeline to
fill with actual instructions from the program before the first instruction can execute.
By putting NOPs in iri and i r2, the machine can execute the imaginary NOPs harm-
lessly while the pipeline is filling with actual instructions. This eliminates the need for
"FILL" states of the kind discussed in chapter 6.

When the machine is not halted in state Fl, there are three separate things that occur in
parallel:

a) The youngest instruction is fetched into irl (pc pc + 1 and
ir - m [pc] occur in parallel),

b) The operand for the middle aged instruction is fetched as that instruction
moves down the pipeline (ir2 - i r andmb2 <- m[ea(irl) I occur in
parallel)

c) The oldest instruction is decoded and executed (decisions similar to section
8.3.1.5 but involving ir2)

The execution of each instruction must be described in a Mealy oval. When i r2 con-
tains a TAD instruction, the accumulator is scheduled to be updated by adding it to the
operand fetched in the previous stage. When i r2 contains a DCA instruction, the ac-
cumulator is scheduled to be stored (m [ ea (ir2) < - ac) in parallel to scheduling
that the accumulator be cleared.

9.2 Example of independent instructions
The ASM of section 9.1 is only able to execute certain PDP-8 programs correctly. By
"correctly," we mean that the pipelined version produces (in fewer clock cycles) the
same result that the multi-cycle version (section 8.3.1.5) produces in more clock cycles.
Since the multi-cycle and the pipelined versions proceed differently, we have to wait
until both machines are halted to check if the results are the same. The limitation on the
kind of machine language program that figure 9-1 will execute properly is that each
instruction is independent of the others. In other words, there are no data dependencies.
(This is the only kind of pipelining discussed in chapter 6.) An example of such a
program is the one given in appendix A, which is used with the multi-cycle ASM in
section 8.3.1.6:

)TAD, EODCA,
merged into state
set of registers
has been elimi-
memory during
fetched and the
not allow all of

isters, irl and
vel through the
he memory, and
previous clock

g us that it is the
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Here is what happens when the first pipelined ASM executes this program:

In the above, bold shows how the first and third TAD instructions travel through the
pipeline, and italics show how the CLA, the second TAD, and the DCA instructions
travel through the pipeline. In the first clock cycle after leaving IDLE ($time 359),
irl and ir2 contain NOPs, so nothing happens to the accumulator. In the next clock
cycle, irl contains the first instruction (7200), but ir2 still contains a NOP. Only in
the third clock cycle after leaving IDLE ($ time 559) does an actual instruction from
the program execute-in this case the accumulator is scheduled to be cleared. This
action becomes visible at $time 659. At that same time the first TAD instruction is
ready to execute. In the previous clock cycle, the operand (0112) needed for this TAD
instruction was scheduled to be loaded into mb2. Therefore, at $ time 659 the ac -

ac + mb2 can be scheduled. The sum (0000+0112) becomes visible at $time 759.
The remaining TAD instructions have filled the pipeline, so they can execute one per
clock cycle. This is possible because the operands (0152 available at $time 759 and
0224 available at $ time 859) have also been fetched. At $ time 959, the correct sum
(0510) is stored into memory at address 0111.
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0100/7200

0101/ 1106

0102/1107

0103/1110

0104/ 3111

0105 /7402

0106/0112

0107/0152

0110/0224

0111/00 00

INIT pc=xxxx irl=xxxx mb2=xxxx ir2=xxxx ac=xxxx h=x 59
F1 pc=0100 irl=xxxx mb2=xxxx ir2=xxxx ac=xxxx h=1 159
IDLE pc=0100 irl=xxxx mb2=xxxx ir2=xxxx ac=xxxx h=1 259
F1 pc=0100 irl=7000 mb2=xxxx ir2=7000 ac=xxxx h=0 359
F1 pc=0101 irl=7200 mb2=xxxx ir2=7000 ac=xxxx h=0 459
F1 pc=0102 irl=1106 mb2=xxxx ir2=7200 ac=xxxx h=0 559
F1 pc=0103 irl=1107 mb2=0112 ir2=1106 ac=0000 h=0 659
F1 pc=0104 irl=11l0 mb2=0152 ir2=1107 ac=0112 h=0 759
F1 pc=0105 irl=3111 mb2=0224 ir2=1110 ac=0264 h=0 859
F1 pc=0106 irl=7402 mb2=0000 ir2=3111 ac=0510 h=0 959
F1 pc=0107 irl=0112 mb2=xxxx ir2=7402 ac=0000 h=0 1059
F1 pc=0110 irl=0152 mb2=xxxx ir2=0112 ac=0000 h=1 1159
IDLE pc=0110 irl=0152 mb2=xxxx ir2=0112 ac=0000 h=1 1259
IDLE pc=0110 irl=7000 mb2=xxxx ir2=7000 ac=0000 h=0 1359
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program:

K h=x 59

K h=1 159
K h=1 259

x h=0 359

x h=0 459
x h=0 559
0 h=0 659
2 h=0 759
4 h=0 859

0 h=0 959
0 h=0 1059

0 h=1 1159

0 h=1 1259

0 h=0 1359
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[e DCA instructions
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9.3 Data dependencies
What happens if the instructions are not independent of each other? For software to do
practical things, often one instruction needs to depend on results computed by previous
instructions. This is known as a data dependency. For example, a slight variation of the
program from appendix A:

illustrates the problem that the above ASM has with instructions that are not indepen-
dent. In this program, instead of doing a third TAD at 0103, the DCA (3111) occurs.
This is followed by a TAD ( 1111) from this same location. The TAD instruction at 0104
is dependent on the DCA instruction at 0103. Here is the wrong result that figure 9-1
produces:

In the above, italics show how the instruction at 0104 travels through the pipeline.
Everything looks fine until $ time 959. The mb2 register (shown in bold italics) should
contain the operand needed in the next clock cycle for the TAD (1111) instruction.
Unfortunately, at $time 859 when mb2 was scheduled to be loaded, memory at ad-
dress 0111 still contains the zero put there originally. The DCA (3111) instruction that
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0100/7200
0101/1106

0102/1107
0103/3111 - this is different from appendix A
0104/1111 <- this is also different
0105/ 74 02
0106/ 0112
0107/0152
0110/022 4
0111/0000

INIT pc=xxxx irl=xxxx mb2=xxxx ir2=xxxx ac=xxxx h=x 59
F1 pc=0100 irl=xxxx mb2=xxxx ir2=xxxx ac=xxxx h=1 159
IDLE pc=0100 irl=xxxx mb2=xxxx ir2=xxxx ac=xxxx h=1 259
F1 pc=0100 irl=7000 mb2=xxxx ir2=7000 ac=xxxx h=0 359
F1 pc=0101 irl=7200 mb2=xxxx ir2=7000 ac=xxxx h=0 459
F1 pc=0102 irl=1106 mb2=xxxx ir2=7200 ac=xxxx h=0 559
F1 pc=0103 irl=1107 mb2=0112 ir2=1106 ac=0000 h=0 659
F1 pc=0104 irl=3111 mb2=0152 ir2=1107 ac=0112 h=0 759
F1 pc=0105 irl=1111 mb2=0000 ir2=3111 ac=0264 h=0 859
F1 pc=0106 irl=7402 mb2=0000 ir2=1111 ac=0000 h=0 959
F1 pc=0107 irl=0112 mb2=xxxx ir2=7402 ac=O00 h=0 1059
F1 pc=0110 irl=0152 mb2=xxxx ir2=0112 ac=0000 h=1 1159
IDLE pc=0110 irl=0152 mb2=xxxx ir2=0112 ac=0000 h=1 1259
IDLE pc=0110 irl=7000 mb2=xxxx ir2=7000 ac=0000 h=0 1359
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I
is going to put the correct value (0264) into memory has not yet finished executing. By
$time 1059, this error in the accumulator (also shown in bold italics) becomes obvi-
ous. The accumulator is supposed to contain 0264, but instead it contains 0000.

9.4 Data forwarding
The problem illustrated in the last section is known as data dependency. Data depen-
dency means that the machine needs an operand that has not yet been stored in memory
because a previously fetched instruction has not yet finished executing. To overcome
this data dependency, we can introduce the idea of data forwarding into the following
improved version of the pipelined ASM. This ASM is nearly identical to the earlier
one, except how mb2 is computed depends on what is in the pipeline. Under most
situations, mb2 comes from memory as it did earlier (mb2 - m [ea (irl) ). In one
special situation, the current value of the accumulator is "forwarded" to the mb2 regis-
ter. This situation occurs when the oldest instruction (ir2, the one currently execut-
ing) is a DCA and the effective address of that instruction is the same as the effective X

address of the instruction (ir) that will execute in the next clock cycle. The ASM in
figure 9-2 uses data forwarding. ,

The following shows in bold how the Verilog must be changed to implement the data
forwarding given in the ASM:

The following shows how data forwarding solves this problem:

Figure 9-2.
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if (halt)

else
begin

pc <= (posedge sysclk) pc + 1;
irl <= @(posedge sysclk) mpc];
ir2 <= (posedge sysclk) irl;
if ((ir2[ll:9] == 3)&&(ea(irl)==ea(ir2)))

nib2 <= (posedge sysclk) ac;

else

mb2 <= @(posedge sysclk) m[ea(irl)];
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Figure 9-2. Pipelinedfetch/execute with data forwarding.

rdware
361Pipelined General-Purpose Processor



As in the last example, italics show how the instruction at 0104 travels through the
pipeline. In this case, data forwarding only occurs at $time 859, because
ea(llll)==ea(3111)&ir2 [11:9]==3. The underlining emphasizes theparts
of i r 1 and i r2 that must be identical for data forwarding to occur. During that clock
cycle, the accumulator (shown in non-italic bold) contains 0264. The effect of the data
forwarding becomes visible at $ time 959, when mb2 (shown in italic bold) becomes
0264, which is correct. At $time 1059, we see that the accumulator (shown in italic
bold) has the correct value because of this data forwarding.

9.5 Control dependencies: implementing JMP
The multi-cycle ASM of section 8.3.2.1 implemented several additional instructions.
Of these, the JMP (5xxx) instruction presents a problem to implement with a pipelined
ASM. If we do not do something special, two of the instructions that follow the JMP
will execute prior to executing the instruction being jumped to. To avoid this error, the
following ASM does not fetch these instructions after the JMP, but instead it puts two
NOPs in the instruction pipeline:
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ir1
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tmb2-.-m[

Figure 9-3.
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if (h

else

beg

i

INIT pc=xxxx irl=xxxx mb2=xxxx ir2=xxxx ac=xxxx h=x 59
Fl pc=0100 irl=xxxx mb2=xxxx ir2=xxxx ac=xxxx h=l 159
IDLE pc=0100 irl=xxxx mb2=xxxx ir2=xxxx ac=xxxx h=1 259
F1 pc=0100 irl=7000 mb2=xxxx ir2=7000 ac=xxxx h=0 359
Fl pc=0101 irl=7200 mb2=xxxx ir2=7000 ac=xxxx h=0 459
F1 pc=0102 irl=1106 mb2=xxxx ir2=7200 ac=xxxx h=0 559
Fl pc=0103 irl=1107 mb2=0112 ir2=1106 ac=0000 h=0 659
F1 pc=0104 irl=3111 mb2=0152 ir2=1107 ac=0112 h=0 759
Fl pc=0105 irl=111 mb2=0000 ir2=3111 ac=0264 h=0 859
F1 pc=0106 irl=7402 mb2=0264 ir2=1111 ac=0000 h=0 959
F1 pc=0107 irl=0112 mb2=xxxx ir2=7402 ac=0264 h=0 1059
Fl pc=0110 irl=0152 mb2=xxxx ir2=0112 ac=0264 h=l 1159
IDLE pc=0110 irl=0152 mb2=xxxx ir2=0112 ac=0264 h=1 1259
IDLE pc=0110 irl=7000 mb2=xxxx ir2=7000 ac=0264 h=0 1359

r
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Figure 9-3. Pipelinedfetch/execute with JMP

The following shows in bold how the Verilog must be changed to implement JMP
properly for the pipelined ASM:

Pipelined General-Purpose Processor

if (halt)
. . .

else
begin

if (irl[11:9] == 5)
begin

Pc <= (posedge sysclk) ea(irl);
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Continued

irl <= (posedge sysclk) 12'o7000;
ir2 <= (posedge sysclk) 12'o7000;

end
else
begin

pc <= @(posedge sysclk) pc + 1;
irl <= @(posedge sysclk) m[pc];
ir2 <= @(posedge sysclk) irl;

end
if ((ir2[11:9] == 3)&&(ea(irl)==ea(ir2)))

This occurs when the instruction in irl is a JMP (rather than waiting until ir2 con-
tains the JMP). To illustrate how this works, consider the following variation of the
program in appendix A:
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Instead of a TAD instruction at address 0102, there is a JMP (5105) instruction that
avoids executing the TAD (1110) instruction at address 0103 and the DCA instruction
at 0104. The following shows how figure 9-3 executes this program correctly:
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0100/ 72 00
0101/1106
0102/5105 <- This is different from appendix A
0103/1110
0104/3111

0105 /74 02
0106/0112

0107/ 0152

0110/ 0224
0111/0000

INIT pc=xxxx irl=xxxx mb2=xxxx ir2=xxxx ac=xxxx h=x 59
F1 pc=0100 irl=xxxx mb2=xxxx ir2=xxxx ac=xxxx h=l 159
IDLE pc=0100 irl=xxxx mb2=xxxx ir2=xxxx ac=xxxx h=1 259
F1 pc=0100 irl=7000 mb2=xxxx ir2=7000 ac=xxxx h=0 359
Fl pc=0101 irl=7200 mb2=xxxx ir2=7000 ac=xxxx h=0 459
F1 pc=0102 irl=1106 mb2=xxxx ir2=7200 ac=xxxx h=0 559
F1 pc=0103 irl=5105 mb2=0112 ir2=1106 ac=0000 h=0 659
F1 pc=0105 irl=7000 mb2=7402 ir2=7000 ac=0112 h=0 759
Fl pc=0106 irl=7402 mb2=xxxx ir2=7000 ac=0112 h=0 859
Fl pc=0107 irl=0112 mb2=xxxx ir2=7402 ac=0112 h=0 959
F1 pc=0110 irl=0152 mb2=xxxx ir2=0112 ac=0112 h=1 1059
IDLE pc=0110 irl=0152 mb2=xxxx ir2=0112 ac=0112 h=l 1159
IDLE pc=0110 irl=7000 mb2=xxxx ir2=7000 ac=0112 h=0 1259

-
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At $time 559, the pipeline is filled with instructions as before. At $tiime 659, the
first value (0000) becomes visible in the accumulator, and the operand (0112) is in mb2
for the first TAD instruction (1106). What is different at $tiime 659 is that irl con-
tains a JMP (5105) instruction. Instead of incrementing the program counter as was
done in the earlier ASMs, the program counter is loaded with the effective address
(0105) of the JMP instruction. The pipeline cannot contain any fetched instruction at
$time 759. Therefore, the same decision at $time 659 that changes the program counter
must also schedule the instruction pipeline to be loaded with NOPs. At $ time 759, the
accumulator (0000+0112) contains the correct sum from the previous TAD instruction,
but it will take two clock cycles before another instruction from the program can ex-
ecute. At $ time 959, the HLT instruction is ready to execute.

9.6 Skip instructions in a pipeline
The conditional skip instructions of the PDP-8, such as SPA (Skip on Positive Accu-
mulator, 7510) and SMA (Skip on Minus Accumulator, 7500), were described as
incrementing the program counter of the multi-cycle implementation given in chapter
8. To implement these instructions with a pipelined machine requires a different ap-
proach because the program counter changes during every clock cycle of pipelined
execution.

One of the important ideas of this book is the meaning of the non-blocking assignment.
Regardless of what kind of machine you are building, in any clock cycle there can be
only one non-blocking assignment to a particular register. It is impossible for two val-
ues to be stored in the same register during the same clock cycle. Therefore, we cannot
describe a skip instruction in a pipelined implementation as incrementing the program
counter yet again. The program counter at that stage is preparing to fetch the instruc-
tion after the one to be skipped, which will execute regardless of the skip. It is already
too late to increment the program counter by two at the time we realize that the next
instruction is to be skipped because the instruction to be skipped has already been
fetched into i r 1. At the time it would have been appropriate to increment the program
counter by two, we would not yet know whether the accumulator will be positive or
negative. We need a different way to think about the skip instruction.

The overall effect of incrementing the program counter yet again in the multi-cycle
implementation is to nullify the instruction that follows the skip. In a pipelined imple-
mentation, we can accomplish the same thing by replacing the instruction to be nulli-
fied with a NOP (7000):

5) instruction that
e DCA instruction
correctly:

:h=x 59
:h=i 159
:h=1 259
:h=O 359
:h=O 459
:h=O 559
h=O 659
h=0 759
h=O 859
h=O 959
h=i 1059
!h=i 1159
!h=O 1259
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always
begin
@(posedge sysclk) enter new state('INIT);
pc <= @(posedge sysclk) 12'oOlOO;
halt <= (posedge sysclk) 1;
forever
begin
@(posedge sysclk) enternewstate('Fl);
if (halt)
begin
$stop;
while (-cont)
begin
@(posedge sysclk) enternew-state('IDLE);
halt <= (posedge sysclk) 0;
irl <= @(posedge sysclk) 12'o7000;
ir2 <= @(posedge sysclk) 12'o7000;

end
end

else
begin
if ((ir2 == 12'o7510) && (-aclll)

(ir2 == 12'o7500) && (ac[11))
begin
pc <= (posedge sysclk) pc + 1;
irl <= (posedge sysclk) mpcl;
ir2 <= (posedge sysclk) 12'o7000;

end
else
if (irl[ll:9] == 5)
begin
pc <= @(posedge sysclk) ea(irl);
irl <= @(posedge sysclk) 12'o7000;
ir2 <= @(posedge sysclk) 12'o7000;
end

else
begin
pc <= (posedge sysclk) pc + 1;
irl <= @(posedge sysclk) m[pc];
ir2 <= @(posedge sysclk) irl;

end
if ((ir2[11:91 == 3)&&(ea(irl)==ea(ir2)))
mb2 <= @(posedge sysclk) ac;
else
mb2 <= @(posedge sysclk) m[ea(irl)];

Continued

end
end

The decision v
top of the alg(
value stored in
ferring irl in
larly, if that ni
precedence ov
algorithm is:

a) a s
b) a J
c) noi
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Continued

The decision whether to nullify the instruction that follows the skip must occur at the
top of the algorithm. This is because each register, such as ir2, can only have one
value stored into it during each clock cycle. The normal behavior of the pipeline (trans-
ferring irl into ir2) cannot occur when the next instruction is to be nullified. Simi-
larly, if that next instruction (in irl) is a JMP (as is likely), the skip needs to take
precedence over the JMP. Therefore the precedence of the decisions at the top of the
algorithm is:

a) a skip instruction in ir2 that is to be taken
b) a JMP instruction in i r 1
c) normal pipelined behavior
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.1

if (ir2[11:9] == 1)

ac <= (posedge sysclk) ac + mb2;
else if (ir2[11:9] == 3)
begin
m[ea(ir2)] <= (negedge sysclk) ac;
ac <= (posedge sysclk) 0;

end
else if (ir2 == 12'o7200)
ac <= (posedge sysclk) 0;

else if (ir2 == 12'o7402)

halt <= (posedge sysclk) 1;

else if (ir2 == 12'o7041)

ac <= (posedge sysclk) -ac;

else if (ir2 == 12'o7001)

ac <= @(posedge sysclk) ac + 1;
else if (ir2 == 12'o7000)

else if (ir2 == 12'o7510)

else if (ir2 == 12'o7500)

else
$display("other instructions...");

end
end

end

ware I Pipelined General-Purpose Processor 367



Any other precedence would be incorrect. At the time the algorithm makes this deci-
sion, ir2 already contains the skip instruction. Therefore, the bottom of the algorithm
(which executes in parallel) needs to treat the 7500 or 7510 as a NOP, regardless of
whether or not the following instruction will be nullified.

The above also includes the IAC (Increment ACcumulator, 7001) and CIA (Comple-
ment and Increment Accumulator, 7041) instructions. These non-memory reference
instructions are similar to the CLA (7200) instruction in that the pipeline follows its
normal behavior. To achieve simple pipelined behavior here with the CIA instruction,
we assume that the ALU can form the twos complement negation of the accumulator in
a single clock cycle.
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9.7 Our old friend: division
The recurring example in this book is the childish division algorithm, introduced in
section 2.2. It is used in chapter 2 to illustrate Moore ASMs, used in chapter 3 to illus-
trate Verilog test code, used in chapter 4 to illustrate behavioral, mixed and structural
Verilog, used in chapter 5 to illustrate Mealy ASMs, used in chapter 6 to illustrate
propagation delay and used in chapter 8 to benchmark the multi-cycle general-purpose
PDP-8 against the special-purpose hardware of earlier chapters. The conclusion in chap-
ter 8 is that special-purpose hardware implementations of the childish division algo-
rithm were considerably faster and cheaper than the same algorithm running as soft-
ware on the multi-cycle implementation of the general-purpose PDP-8. Yet most algo-
rithms are implemented in software rather than hardware because software is easier to
design and maintain. Pipelining allows a designer to create a more expensive general-
purpose computer where the speed of its software comes closer to that of special-pur-
pose hardware.

To illustrate what we have achieved by pipelining the PDP-8 as described in the previ-
ous sections, recall the description of the childish division algorithm in C:

0100/ 72 00
0101/ 112 6
0102 /3 124
0103 /3 125
0104/ 72 00
0105/ 1127
0106/ 7041
0107/1124
0110 /7510

0111/5123
0112 /3 124

0113/112 5
0114 /7 001
0115 /3 12 5
0116/ 1127
0117/ 7041
012 0/1124
0 121/7500
0122/5112
0123/7402

0124/0000 
0125/0000 
0126/0016 )
0127/0007 

l Since we have
of x and could
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For simplicity, we will assume x and y already have their values stored in memory, and
that these values are less than 2048.'

As has been illustrated many times in earlier chapters, the while loop serves two
roles: it avoids entering the loop and thus keeps r2 zero when x<y, or otherwise it
stops the loop when it has repeated the proper number of times. In chapter 8, this was
implemented as a skip and JMP at the top of the software loop and an unconditional
JMP at the bottom. Such an approach is the easiest way to translate to machine lan-
guage, but it has the cost of requiring additional instructions to execute each time through
the loop. We need to find as good a machine language translation of this algorithm as
we can. Such a machine language program will make the best use of the pipelined
machine. The following uses an SPA instruction at the top to cause the loop to be
entered the first time, and an SMA instruction at the bottom to cause the loop to exit:

*0100
0100/72 00

0101/1126

0102/3124

0103/3125

0104/ 72 0 0
0105/1127

0106/ 7041
0107 /1124
0L10/7510

0 111/5123
0112/3124 Li,

0113/112 5
0114/7001
0115 /3 125
0116/112 7
0117/ 7041
0120/1124
0121/7500
0122 /5112
0123/7402 L2,

0124/0000

012 5/0000
012 6/0016
0127/0007

RI,

R2,

X,

Y.

CLA

TAD X

DCA Ri

DCA R2

CLA

TAD Y
CIA
TAD R1
SPA

JMP L2

DCA Ri

TAD R2

IAC

DCA R2

TAD Y
CIA
TAD R1
SMA

JMP Li

HLT

0000

0000

0016

0007

// ac = +x
// rl = x
// r2 = 0

// ac = O+y

// ac = -y

// ac = rl-y

// if (rl-y >= 0) goto Li
// else goto L2
// rl = rl-y

// depends on ac containing r-y
// on both paths to this inst.
// ac = O+r2

// ac = r2+1

// r2 = r2+1

// ac =0+y
// ac = -Y
// ac = rl-y

// if (rl-y < 0) goto L2
// else goto Li
// done

//

// These must be < 2048 (3777 octal)

| Since we have not implemented the link register of the PDP-8 in this pipelined version, larger values
of x and y could cause the program to malfunction.
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The execution of the above software on the pipelined PDP-8 illustrates how the skip
instructions work:

INIT

F1

IDLE

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

F1

pc=xxxx

Pc=0100

Pc=0100

pc=0100

pc=0101

pc=0102
pc=0103
pc=0104
pc=0105
pc=0106
pc=0107
pc=0110
pc=0111
pc=0112
pc=0113

pc=0114
pc=0115

pc=0116

pc=0117

pc=0120

pc=0121

pc=0122

pc=0123

pc=0112

pc=0113

pc=0114

pc=0115

pc=0116

pc=0117

pc=0120

pc=0121

pc=0122

pc=0123

pc=0124

pc=0125

irl=xxxx mb2=xxxx
irl=xxxx mb2=xxxx
irl=xxxx mb2=xxxx
irl=7000
irl=7200
irl=1126

irl=3124

irl=3125
irl=7200
irl=1127

irl=7041

irl=1124

irl=7510
irl=5123

irl=3124

irl=1125

irl=7001

irl=3125
irl=1127

irl=7041
irl=1124
irl=7500
irl=5112

irl=7000

irl=3124
irl=1125
irl=7001
irl=3125
irl=1127
irl=7041
irl=1124

irl=7500

irl=5112

irl=7402

irl=0000

mb2=xxxx
mb2=xxxx

mb2=xxxx

mb2=0016

mb2=0000

mb2=0000

mb2=xxxx

mb2=0007
mb2=xxxx

mb2=0016

mb2=7510
mb2=7402
mb2=0016

mb2=0000
mb2=xxxx
mb2=0000
mb2=0007
mb2=xxxx
mb2=0007
mb2=7200
mb2=3124
mb2=xxxx
mb2=0007
mb2=0001
mb2=xxxx

mb2=0001

mb2=0007

mb2=xxxx
mb2=0000

mb2=7200
mb2=3124

mb2=xxxx

ir2=xxxx

ir2=xxxx

ir2=xxxx
ir2=7000
ir2=7000
ir2=7200
ir2=1126
ir2=3124
ir2=3125
ir2=7200
ir2=1127
ir2=7041
ir2=1124
ir2=7510

ir2-7000

ir2=3124
ir2=1125
ir2=7001
ir2=3125
ir2=1127
ir2=7041
ir2=1124

ir2=7500

ir2=7000

ir2=7000
ir2=3124
ir2=1125
ir2=7001
ir2=3125
ir2=1127
ir2=7041
ir2=1124
ir2=7500

ir2=7000

ir2=7402

ac=xxxx
ac=xxxx

ac=xxxx
ac=xxxx
ac=xxxx
ac=xxxx
ac=0000
ac=0016

ac=0000
ac=0000

ac=0000

ac=0007
ac=7771

ac=0007

ac=0007
ac=0007

ac=0000
ac=0000

ac=0001

ac=0000

ac=0007
ac=7771
ac=0000

ac=0000

ac=0000
ac=0000
ac=0000
ac=0001
ac=0002
ac=0000
ac=0007
ac=7771
ac=7771
ac=7771
ac=7771

h=x
h=1
h=1
h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

59
159
259
359
459
559
659
759
859
959

1059
1159
1259
1359
1459
1559
1659
1759
1859
1959
2059
2159

2259

2359

2459

2559
2659

2759

2859

2959

3059

3159

3259

3359

3459

At $ time 1259, when irl gets loaded with the first skip instruction (7510), we do
not yet know whether the accumulator will be positive or negative, so the pipeline
continues filling normally. At $ time 1359, there is a decision that must be made be-
cause irl contains the JMP instruction (5123) and ir2 contains the SPA instruction

(7510).2 As d
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h=x
h=1

h=1

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=O

h=0
h=O

h=O

h=O

h=O

h=O

h=O

h=O

59

159

259
359
459

559

659

759

859

959

1059

1159

1259

1359

1459

1559
1659

1759

1859

1959

2059
2159

2259

2359

2459

2559

2659

2759

2859

2959

3059

3159

3259

h=O 3359

h=O 3459

ion (7510), we do
e, so the pipeline
must be made be-
ie SPA instruction

(75 10).2 As described above, the skip is given precedence over the JMP. Therefore,
whether the next instruction (currently in irl) will be nullified is based on ac [11] .
In this case, ac [1 1] = = 0, so the SPA will nullify the following instruction. At $ time
1459, ir2 has become NOP (7000), but 3124 was fetched normally into irl so that
the algorithm can proceed sequentially.

A different situation occurs at $ time 2259. Here the SMA (7500) does not nullify the
JMP instruction (5112) because the accumulator is not negative, so the behavior de-
scribed in section 9.5 occurs. Both irl and ir2 are loaded with NOPs (7000), as is
visible at $ time 2359. The machine does not start executing useful instructions after
the JMP until $ time 2559 because of the time required to fill the pipeline.

Finally, at $time 3259, the SMA (7500) does nullify the JMP instruction (5112) be-
cause the accumulatoris negative, so only ir2 has aNOP(7000) at $time 3359. This
allows sequential execution of the HLT (7402) at $ time 3459.

Between $time 359 and $time 3459 are 32 clock cycles. In general, if the quo-
tient >= 1, the number of clock cycles is 12 +10 *quo tient. The following table
summarizes implementations of the childish division algorithm given in this and ear-
lier chapters:

The first seven lines above are for special-purpose computers whose ASMs implement
the childish division algorithm. The last three lines are for general-purpose computers
(whose ASMs implement fetch/execute) that need a machine language program to imple-
ment division. The "max int" column shows the maximum allowable integer input,
which is 2047 for the software given in this section. The "pipe" column indicates whether
the hardware is pipelined. The "kind of ASM" indicates whether the ASM uses condi-

2 The 7510 in mb2 is sheer coincidence.

Pipelined General-Purpose Processor

max pipe kind hardware software
int of ASM section section clock cycles

4095 n Moore 2.2.7 n/a 3 + quotient
4095 n Moore 2.2.3 n/a 2 + 2*quotient
4095 n Moore 2.2.2 n/a 3 + 3*quotient
4095 n Moore 2.2.5 n/a 2 + 3*quotient
4095 n Mealy 5.2.1 n/a 2 + 2*quotient
4095 n Mealy 5.2.3 n/a 3 + quotient
4095 n Mealy 5.2.4 n/a 2 + quotient
4095 n Moore 8.3.2.1 8.3.2.5.3 88+75*quotient
2047 n Moore 8.3.2.1 9.7 55+55*quotient
2047 y Mealy 9.6 9.7 12+10*quotient
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tional commands (Mealy) or not (Moore). The "hardware section" column indicates
where the ASM is described. The "software section" applies only to general-purpose
computer implementations and describes the machine language for a version of the
childish division algorithm. The "clock cycle" column indicates how long it takes to
compute the quotient, neglecting input/output time, if possible. [The "friendly user"
assumptions cause the special purpose machines to do useful work (clearing r2) dur-
ing this time that cannot be neglected. On the other hand, the software results ignore
these times.]

The next to the bottom line shows how long the software given in this section takes to
run on the multi-cycle hardware designed in section 8.3.2.1. This is shown to make a
fair comparison of the effects of pipelining given on the bottom line. As quotient
gets large, the speedup of the software running on the pipelined PDP-8 versus the same
software running on the multi-cycle machine of section 8.3.2.1 approaches 55/10=5.5.
But still, the speed of the special-purpose hardware in chapter 2 can be up to ten times
faster than the speed of the pipelined PDP-8. As is discussed in the next section, the
speed of the pipelined PDP-8 comes at the cost of a special kind of memory, known as
multi-port memory, which is several times more expensive than the single-ported
memory described in section 8.2.2.

The reason foi
memory acts 1
contents of me

always
dout

always
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always
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9.8 Multi-port memory
In order to realize the pipelined fetch/execute ASM in hardware, it must be possible to
do three things simultaneously with memory: fetch an instruction, fetch data and store
data. The memory devices discussed in section 8.2.2 would not allow this to happen,
because they are restricted to at most one read or write per clock cycle. To allow mul-
tiple operations per clock cycle in memory, we need a multi-port memory, which is
shown as a letter "E" on its side.

doutO Idm2
-*mal doutl m

ma2

MULTI-PORT MEMORY

Figure 9-4. Symbol for multi-port memory.
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na2 The reason for this unconventional figure is to illustrate the fact that the multi-port
memory acts like several independent devices that share a common foundation (the
contents of memory). In each clock cycle, three separate operations occur in parallel:

so that the architecture that instantiates the multi-port memory may do three things to
memory in parallel.

Figure 9-5. Implementation of multi-ported memory.

Pipelined General-Purpose Processor

always @(m[maO])
doutO = m[maO];

always @(m[mal])
doutl = m[mal];

always (posedge sysclk)
begin

if (ldm2)
m[ma2] = din2;

end
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Figure 9-5 shows a block diagram for a synchronous multi-port memory using a demux,
two muxes and enabled registers. This block diagram is a generalization of the single-
port memory shown in section 8.2.2.3.1. The distinction with the multi-port memory is
that there are two muxes, each of which can access the memory cells independently.
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9.9 Pipelined PDP-8 architecture
Figure 9-6 shows an architecture for the pipelined PDP-8 that uses the multi-port
memory. The program counter, pc, is a counter with clrpc, incpc and ldpc com-
mand signals. The other registers (ir, ir2, mb2 and the accumulator) are enabled
registers with load signals (1dirl, ldir2, ldmb2, dac). There are two muxes
that allow irl and ir2 to be loaded with NOPs (7000). There is another mux that
allows for data forwarding from the accumulator to mb2. Also, there is a comparator
that detects when ea (irl) equals ea (ir2).

Figure 9-6. Architecture for pipelined PDP-8.
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9.10 Conclusion
The pipelined PDP-8 designed in this chapter can run software in some situations about
five times faster than the multi-cycle PDP-8 given in the last chapter. Because the
propagation delays (which determine the clock frequency) in the pipelined and multi-
cycle versions are nearly identical, there are two other factors that determine the speed.
First is the number of clock cycles per instruction. (In chapter 8, most instructions take
five clock cycles, but in this chapter instructions other than JMP take only one cycle.)
Second is the the mix of instructions in the program, such as how frequently JMPs
occur. (The example here is the childish division algorithm, which may or may not be
representative of how the algorithm you want to implement will perform.)

the multi-port
and ldpc com-
tor) are enabled
are two muxes

other mux that
is a comparator

The major cost of the pipelined approach in this chapter is the multi-port memory,
which allows simultaneous access to memory for instructions and data. The problem is
that even with pipelining, this approach provides one-tenth the speed of the specialized
hardware for the childish division algorithm.

When you consider both cost and speed, special-purpose hardware is much better than
software running on a pipelined PDP-8, at least for this example. Although the relative
performance of other algorithms might be different, this example points out that other
techniques beyond pipelining of the PDP-8 are going to be required if software speed is
going to approach that of special purpose hardware. The next chapter illustrates some
of these techniques.

9.11 Further reading
PATTERSON, DAVID A. and JOHN L. HENNESSY, Computer Organization and Design: The
Hardware/Software Interface, Morgan Kaufmann, San Mateo, CA, 1994. Chapter 6
gives more details about implementing data forwarding with an instruction set more
complicated than the PDP-8.

STERNHEIM, ELIEZER, RAJVIR SINGH and YATIN TRIVEDI, Digital Design with Verilog HDL,
Automata Publishing, San Jose, CA, 1990. Chapter 3 gives a different approach to
modeling a pipelined general-purpose computer in Verilog.

9.12 Exercises
9-1. Modify the behavioral design in section 9.6 to include the ISZ instruction of the
PDP-8 (described in appendix B). Including an ISZ instruction in a program should
only increase its execution time by one clock cycle for each time the ISZ is executed.
Simulate the modified design with the following programs:
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9-2. Using the ISZ instruction, it is possible to implement a version of the childish
division program that is about twice as fast as the one given in section 9.7. Implement
such a program and use test code with the behavioral Verilog for problem 9-1 to mea-
sure how long it takes to divide x by seven, as the test code varies x from 0 through 28.
Derive a mathematical formula for clock cycles comparable to those listed in section
9.7 which generalizes the data observed by the Verilog test code. Hints: The machine
language program needs to precompute -y, and rl should reside in the accumulator
rather than in memory. The skipping action of the ISZ is irrelevant to this program.

9-3. Draw a modified architecture for problem 9-1. The only extra devices needed are
two input muxes, a comparator and an incrementor.

9-4. Modify the behavioral design in section 9.6 to include the JMS instruction of the
PDP-8 (described in appendix B). Simulate your modified design.

9-5. Draw a modified architecture for problem 9-4.

9-6. Modify the behavioral design in problem 9-4 to include the indirect page zero
addressing mode of the PDP-8 (described in appendix B). You may assume there is an
additional port to memory. How many stages will be in your pipeline?

9-7. Draw a modified architecture for problem 9-6.

9-8. Modify the behavioral design in problem 9-4 to include interrupts.

9-9. The behavioral design of section 9.4 does not execute self-modifying programs
properly. Modify the design to process properly the two kinds of dependencies that are
possible in such programs.

9-10. Draw a modified architecture for problem 9-9.
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0000/7200
0001/2007
0002/2007
0003/1007
0004/2007
0005/5003
0006/7402
0007/7774
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All general-purpose computers implement fundamentally the same algorithm in hard-
ware: fetch/execute. A multi-cycle implementation of fetch/execute, which is described
in chapter 8 using the PDP-8, takes several clock cycles per instruction. Since the PDP-
8 has a simple instruction set with a single-accumulator and a single memory address,
it often takes several instructions to execute a single high-level language statement, as
illustrated in section 8.3.2.5.3. It is possible to pipeline fetch/execute, as was shown in
chapter 9, so that most instructions appear to execute in a single clock cycle, but a
single-accumulator machine still requires several instructions to perform typical high-
level language statements. The speed of a pipelined single-accumulator machine is
several times slower than the special-purpose hardware of chapter 2, at least for the
division example used throughout this book.

In the beginning, most general-purpose computers, such as the Manchester Mark I,
adhered to this single-accumulator, single-address style of instruction set. The PDP-8
is one of the best and purest illustrations of this very simple approach. The reason for
introducing it in the preceding chapters is to illustrate how the same design process
used for special-purpose computers also works for general-purpose computers. The
simplicity of the PDP-8 allows us to focus on using ASM charts and Verilog in the
design process without having to worry about excessive complications that exist in
other instruction sets.

The problem is that, after pipelining the PDP-8, we have about reached the limits of
performance from a single-accumulator, single-address instruction set. To make soft-
ware closer to the speed of special-purpose hardware will require specifying a different
kind of machine language. The central concept of fetch/execute remains the same, but
the way the machine uses the bits in the instruction register will have to be different.

10.1 History of CISC versus RISC
One attempt to increase performance of general-purpose processors that became popu-
lar in the 1970s is the idea of a Complex Instruction Set Computer (CISC). In essence,
the idea is to merge a simple general-purpose machine together with special hardware
(and special registers) that solve certain specific computations. The thought was that
this would give the user the best of both worlds (special-purpose and general-purpose
computers). To activate each special hardware unit requires including a new instruc-
tion in the instruction set. Rather than the handful of machine language instructions
described in appendix B for the PDP-8, a CISC machine might have thousands of
distinct instructions. Fitting all these instructions into a reasonable sized instruction
register requires that some instructions occupy multiple words, which is known as a
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variable length instruction set. Such machines are aptly named CISC because the fetch/
execute algorithm, although fundamentally the same, has much more complex details
with a variable length instruction set. This is especially true if the machine is to be
pipelined.

Two factors led to the popularity of CISC processors. First, improved fabrication tech-
nologies allowed ever-increasing amounts of hardware to fit on a chip. Second, in-
struction set designers had a mistaken belief that programmers and compilers would be
able to utilize all this special-purpose hardware effectively.

By the early 1980s, several empirical studies had shown that CISC processors did not
make effective use of all of their special-purpose hardware. As a result of these studies,
several groups designed Reduced Instruction Set Computers (RISC). Like the PDP-8,
RISC machines have fixed length instruction sets. This simplifies pipelined implemen-
tation. RISC instruction sets are chosen with pipelining of fetch/execute in mind, while
CISC instruction sets make pipelining fetch/execute difficult. Unlike the PDP-8, RISC
processors have several features that allow higher performance than is possible on a
single-accumulator machine. Although CISC processors remained popular through the
end of the twentieth century (the Pentium II is a CISC processor), the momentum in
computer design shifted to the RISC philosophy.

10.2 The ARM
In the early 1980s, Acorn Computers, Ltd. designed an inexpensive computer for teaching
computer literacy in conjunction with a BBC television program in Great Britain. The
machine was originally dubbed the "Acorn RISC Microprocessor" (ARM). Several
years later, Acorn entered into a consortium with more than a dozen manufacturers,
including DEC' (the company that manufactured the PDP-8) and Apple (which uses
the ARM in its Newton PDA), to promote the ARM worldwide. The ARM acronym
was redefined to mean "Advanced RISC Microprocessor." The ARM is probably the
most elegant RISC processor ever marketed. Its instruction set is simpler than most of
the other RISC processors with which it can be compared. Although, as explained
below, it does not have the performance bottlenecks of a single-accumulator machine,
its superb simplicity is in some respects reminiscent of the PDP-8. This chapter will
use only a small subset of ARM instructions to introduce some key ideas in choosing
an instruction set for maximal performance. Appendix G explains how to access the
official ARM documentation for the complete instruction set. In particular, the ARM
supports several different modes of operation. We will only be concerned with what is
called user mode.

l DEC sold its rights to the StrongARM to Intel in late 1997, but the other members of the ARM consortium
were not part of that agreement and continue to produce various versions of the ARM.
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10.3 Princeton versus Harvard architecture
Like all other general-purpose ("stored program") computers, commercial versions of
the ARM use the same memory to store both machine language programs and data.
This approach is sometimes referred to as a Princeton architecture. The ARM, like all
other popular general-purpose computers, requires memory reference instructions, akin
to those of the PDP-8, to bring data into and out of the central processing unit. (The
mnemonics of these ARM instructions, given in appendix G, are LDR, STR, LDM,
STM and SWP.) For the moment let us ignore these memory reference instructions,
and instead assume that only programs reside in memory. A machine where programs
reside in a memory exclusively for programs is sometimes called a Harvard architec-
ture.2 Although the ARM is not actually a Harvard machine, it will simplify the discus-
sion if we assume it is.

10.4 The register file
If, at least for the moment, data is not going to reside in the same memory as programs,
where is it going to be? To achieve software performance that approaches that of
special-purpose hardware, there is only one plausible answer: put the data in hardware
registers. In contrast to the PDP-8, with its single accumulator, a RISC processor like
the ARM needs many registers for storing data.

When you design a special-purpose machine, like those in chapter 2, it is usually fairly
clear how to interconnect the registers to implement the transfers required by the algo-
rithm. The designer of a general-purpose computer does not have the luxury of know-
ing how registers might need to be interconnected because the register transfers will be
determined by software. Therefore, the registers of a RISC processor need to be lumped
together into what is called a register file. The register file is really a small and fast
synchronous multi-port memory. The ARM has sixteen registers available in its regis-
ter file in user mode.3 We will refer to these sixteen registers using the Verilog array
notation r [ 0 ] through r [ 15 ] . In assembly language, the programmer refers to these
as RO through R15. Each one of these registers contains a 32-bit value.

The program counter on the ARM is actually synonymous with r [ 15] . We can im-
prove the clarity of our Verilog description of the ARM using:

2 Harvard architectures usually have a separate memory for data, which we will ignore. Commercial ver-
sions of the ARM actually have Princeton architectures that share the same memory for data. It is an over-
simplification to think of the ARM with a Harvard architecture.

3There are several other registers available for so-called supervisor modes, but we will ignore these for
simplicity.
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'define PC r[15]

10.5 Three operands are faster than one
The most common operations in typical algorithms are things like addition and sub-
traction. For example, in the childish division algorithm implemented in section 9.7,
we need to compute a difference, d = r - y. On the PDP-8, ri and y are data that
residesin memory. The PDP-8's accumulator contains partial results as the following
four instructions execute:

As with the examples in chapters 8 and 9, the above shows the address and correspond-
ing machine language in octal. Upon completion of the second TAD instruction, the
PDP-8's accumulator contains d.

To perform a similar computation with the ARM requires that all data reside in regis-
ters. Let us assume that the ARM's r [ 0 ] register takes on the role served by the PDP-
8's accumulator (to contain the difference, d), that the ARM's r [ 1 ] register serves
the same role as the R1 location in the PDP-8's memory and that the ARM's r [ 4]
register contains the value of y.

Since there are only sixteen registers to choose from, the ARM makes it possible to
specify both operands of the subtraction (r [ 1 ] and r [ 4 ] ) as well as the destination
register (r [ 0 ] ) within a single 32-bit instruction. For example, given the above as-
sumptions, the following single ARM instruction is equivalent to the four PDP-8 in-
structions shown earlier:
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In contrast to the PDP-8 examples, the above ARM example shows the address and
corresponding machine language in hexadecimal. This is convenient since the four-bit
register specifications appear as hexadecimal digits in the machine language, as shown
above.

Assuming you have pipelined versions of the ARM and PDP-8 running at the same
clock speed, the ARM can do four times as many subtractions as the PDP-8. On a
single-accumulator machine, like the PDP-8, the accumulator serves as one of the op-
erands as well as the destination. The single-accumulator, single-address machine re-
quires this approach because most of the bits of the instruction register are devoted to
the memory address of the other operand.

RISC machines prohibit computation on values from memory. Instead, RISC machines
insist that values to be added or subtracted already reside inside the register file. Since
the register file is small compared to memory (sixteen registers in the case of the ARM),
it only takes a few bits (twelve in the case of the ARM) to describe two separate oper-
ands and a separate destination. Therefore, the complete subtraction can be done in one
instruction.

RISC instruction sets have three advantages. First, the access time of the register file is
typically faster than that of a full-sized memory. Second, the RISC instruction set typi-
cally reduces the number of instructions in a program compared to a single-accumula-
tor machine, which often means the software will run faster. Finally, the RISC instruc-
tion set allows the designer to exploit fetch/execute techniques that are more sophisti-
cated than simple pipelining, such as superscalar design. The superscalar approach
allows a general-purpose computer designer to create a machine whose software speed
comes much closer to that of special-purpose hardware.

There are some disadvantages to RISC instruction sets. First, making good use of a
RISC instruction set requires a sophisticated programmer or compiler. Second, be-
cause of the simplicity of operations on a RISC compared to a CISC, a RISC instruc-
tion set usually requires more instructions to accomplish the same computation than a
CISC instruction set. Third, because of the large fixed-sized instruction register used in
a RISC, the number of bits (as opposed to the number of instructions) to encode a
program is typically larger than any variable length CISC, or even a fixed length, single-
accumulator machine like the PDP-8.

With the advent of large multimedia applications at the end of the 1990s, interest in
variable length CISC instruction sets reemerged because of concerns about program
size. Examples of such CISC designs include Sun's Java machine and ARM's Thumb.
Interestingly, such machines internally translate the variable length CISC instruction
set used for compact encoding of programs into fixed length RISC instructions for
execution. Also, AMD's K6 has hardware that translates its extremely CISC (Pentium
like) instruction set into internal RISC instructions for execution.
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10.6 ARM subset
There are eleven different categories of ARM instructions described in appendix G. It
is possible to do very useful things in software using only a few of these instructions,
and so we can select a handful of these instructions to illustrate the design of a RISC
processor. Of the eleven categories of instructions in appendix G, we will only imple-
ment the "data processing" and "branch" categories. The data processing category is
subdivided into sixteen different mnemonics, and the branch category is subdivided
into two different mnemonics. We will only implement four of the eighteen possible
mnemonics in these two categories.

10.6.1 Data processing instructions
There are zeros in instruction register bits 27 and 26 to indicate the data processing
category. Instruction register bits 24 down to 21 determine which one of the sixteen
data processing mnemonics is associated with that particular instruction. For simplic-
ity, we will only implement the following three of the sixteen possible mnemonics:

To use one of the above three instructions in a program, the assembly language pro-
grammer would replace the RD, OPA and OPB with specific registers, such as RO, RI
and R4 in the SUBS instruction of section 10.5. Instruction register bits 15 down to 12
describe the destination, RD, and instruction register bits 19 through 16 describe the
first operand, OPA. When instruction register bit 25 is zero, instruction register bits 3
down to 0 indicate the register for the second operand OPB. The leftmost four bits of
every ARM instruction determines whether the instruction executes. Typically, these
four bits contain 4'bl l 10. Finally bit 20 has a special meaning. When this bit is a one,
the mnemonic has an "S" on the end to indicate this special meaning. For example, the
instruction in section 10.5 has the mnemonic SUBS rather than simply SUB, as illus-
trated by the following:
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ir[27:26]==2'bOO&&ir[24:21]==4'bOlOO ADD RD,OPA,OPB

ir[27:26]==2'bOO&&ir[24:21]==4'bOO10 SUB RD,OPA,OPB
ir[27:26]==2'bOO&&ir[24:21]==4'bllOl MOV RD,OPB
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10.6.2 Branch instruction
The second major instruction category we will use for our subset of the ARM instruc-
tion set is the branch instruction. When instruction register bits 27 down to 25 are
3'blO1, the ARM categorizes the instruction as a branch. There are two mnemonics for
this category: B (branch) and BL (branch and link). Instruction register bit 24 distin-
guishes between the simple branch instruction and the branch and link (zero means
simple branch). We will not implement the branch and link instruction here, although it
is straightforward. (It utilizes R14 to save a return address, quite analogously to the
way the JMS instruction on the PDP-8 uses a memory location to save a return ad-
dress.)

The branch instruction on the ARM is very similar to the JMP instruction of the PDP-
8, with three differences. First, the branch instruction of the ARM uses a relative ad-
dressing mode, rather than the direct addressing mode of the PDP-8's JMP instruction.
In a relative addressing mode, the offset field of the branch instruction is added (as a
signed twos complement value) to the program counter (rather than being moved to the
program counter as occurs on the PDP-8). Second, the branch instruction of the ARM
refers to the offset in terms of 32-bit words, but the program counter of the ARM refers
to eight-bit bytes. (The value in the ARM's program counter is always divisible by
four, and so the offset field of the branch instruction is one-quarter the value needed to
add to the program counter.) Third, since the offset field is only 24 bits wide, it must be
sign extended before it is added to the program counter.

dware RISC Processors

e 0 5 1 0 0 0 4 hexadecimal

.110 00 0 0010 1 0001 0000 00000000 0100 binary

l l lIl l l | +- ir[3:0]==4 so 'OPB is r[4]
l l l l | | + ir[15:12] == 0 so 'RD is r[0]

l l l l | + ir[19:16] == 1 so OPA is r]
| | | | + ir[20] == 1 so mnemonic ends with S"

+ ir[24:211==2 so mnemonic starts with SlI
i.e., 'RD <- 'OPA - 'OPB

+ ir[25] == 0 so 'OPB is a register
+ ir[27:26] == 0 so it is data processing

+ ir[31:28] == 4'bl1lO so it executes

SUBS RO,Rl,R4 mnemonic

DUB "
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The following example branch instruction forms an infinite loop by branching back to
itself. Because of the relative addressing mode, this same machine language instruc-
tion will work identically regardless of the location where it occurs in a program:

L2 L2 mnemonic (L2 is a label)

e a f f f f f e hexadecimal

110 101 0 111111111111111111111110 binary

l | + two's complement -2 offset

+ ir[24] ignored here
+ ir[27:25] == 5 so it branches

+ ir[31:28] == 4'blllO so it executes

It may seem a little strange, but the -2 indicates branching back to the same instruction.
In other words, the new value of the program counter is the value of the program
counter at the time the instruction is fetched plus 4 * off s et+ 8, where the of f set is
a sign extended version of instruction register bits 23 down to 0. The reason the ARM
designers chose to make -2 mean branching back to itself will become clear later in this
chapter.

10.6.3 Program status register
Another detail in which the ARM is different than the PDP-8 is the way in which the
ARM tests for conditions, such as testing for negative numbers. On the PDP-8, since
the accumulator is the only place where a number to be tested can reside, the hardware
simply uses the most significant bit of the accumulator to determine whether that num-
ber is negative or not. On the ARM, there are sixteen different registers that a program-
mer might choose to test, and so there are sixteen different sign bits that the hardware
might need to use, which would not be economical. Instead, the ARM allows the pro-
grammer to specify a one as bit 20 of the instruction register for a data processing
instruction ("S" suffix on the mnemonic). When bit 20 is a one, certain critical infor-
mation about the result of the data processing instruction is saved in the program status
register. (The "S" suffix means set the PSR.) In this chapter, we will consider bit 31 of
the program status register (PSR), which is known as the "N" (negative) flag. The N
flag stores the sign bit of the result of the most recent data processing instruction with
an "S" suffix mnemonic.
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Forexample,supposer[1] == 32'hO0000007andr[4] == 32'h00000007
prior to the execution of the SUBS R0,R1,R4 instruction (e0510004) given in section
10.6.1. Becausetheresultis notnegative(r[O] == 32 'hO0000000) andbit20of
the instruction register is set, the N flag becomes zero.

As a different example, suppose r [1] == 32 h0000000 and r [4] = =
32 hO 0000007 prior to the second execution of the same SUBS RO,R1,R4 instruc-
tion (e0510004). Because the result is negative seven (r [ 0 ] == 32 hf f f f f f f 9)
and bit 20 of the instruction register is set, the N flag becomes one.

If bit 20 of a data processing instruction is zero, the PSR remains unchanged. For
example, suppose r[1] == 32'hOO000007andr[4] 32'h00000007
prior to the execution of a SUB RO,R1,R4 instruction (e0410004) similar to the SUBS
except that bit 20 of the instruction register is zero. Even though the result is not nega-
tive (r [O] == 32 'hO 0000000), the N flag remains what it was (one) because bit
20 of the instruction register is zero.
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There are several other bits in the PSR which we will not implement here. For example,
bit 30 of the PSR is the "Z" flag, which indicates whether the result (of the most recent
data processing instruction with an "" suffix mnemonic) was equal to zero. Bit 29 of
the PSR is the "C" flag, which indicates whether the result (of the most recent data
processing instruction with an "" suffix mnemonic) produced a carry (analogous to
the LINK of the PDP-8). Bit 28 of the PSR is the "V" flag, which indicates whether the
result (of the most recent data processing instruction with an "" suffix mnemonic)
caused a signed overflow (what should be a negative number appears positive or vice
versa).
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10.6.4 Conditional execution
One of the most interesting and useful features of the ARM is that every instruction can
be conditional, that is, if a certain condition recorded in the PSR is not satisfied, the
instruction is treated as a NOP. If that condition is satisfied, the instruction executes
normally. The condition is indicated by bits 31 through 28 of the instruction register.
Although there are sixteen different conditions that the actual ARM recognizes (as
shown in appendix G), we will only consider the following four in the subset imple-
mented here:
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As illustrated in earlier sections, most instructions have 4 bl 110 for instruction reg-
ister bits 31 down to 28 so that execution does not depend on the psr. Although the
ARM documentation discourages it, for our subset, we will treat f0000000 as a NOP.
(There are many other ways to form a NOP on this machine.)

Using a condition suffix like PL or MI for an instruction on the ARM is very analogous
to preceding an instruction on the PDP-8 with an SMA or SPA, respectively. The only
difference on the ARM is that since the condition is part of each instruction, only one
instruction needs to be fetched, rather than two. For example, the childish division
program given in section 9.7 uses an SPA prior to a JMP for the special case when the
quotient is zero:

0110/7510 SPA

0111/5123 JMP L2

These two PDP-8 instructions are analogous to the BMI instruction (it branches when
the PSR indicates minus, so it nullifies (treats like a NOP) the instruction when the
PSR indicates plus):

As another example, the PDP-8 program in section 9.7 also uses an SMA prior to a
JMP for deciding whether to go through the loop another time:

The analogous ARM instruction is BPL:
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ir[31:28]==4'bO100 minus MI psr[31]==l psr[31]==0

ir[31:28]==4'bO101 plus PL psr[31]==0 psr[31]==l

ir[31:28]==4'blllO always none 1 0

ir[31:28]==4'bllll never NV 0 1

00000010/4a00003 BMI L2

0121/7500 SMA

0122/5112 JMP LI
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10.6.5 Immediate operands
The only practical way to put a constant value into the PDP-8's accumulator is to use a
memory reference instruction. This means that two memory locations must be accessed:
the one that contains the instruction and the one that contains the data.

Although the ARM does actually have memory reference instructions (which we are
ignoring for now), the ARM provides a different way of working with constant values,
known as immediate operands, that only requires one memory access. This is possible
because the constant is part of the instruction. In a data processing instruction, when
instruction register bit 25 is a one, OPB is an immediate constant, rather than the value
of a register. Assuming that instruction register bits 11 down to 8 are zeros, the value of
the immediate constant is given by instruction register bits 7 down to 0. (We will ignore
the rotation that the full-fledged ARM does when instruction register bits 11 down to 8
are non-zero.) For example, consider the ARM instruction that adds the constant one to
the R2 register without setting the PSR:

ADD R2,R2,1

e

1110

2 8 2 2 0

/. . \/ .. \ / \ /. \ /.
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mnemonic

00

0 1

00000001

hexadecimal

binary

+- ir[7:0]==l so 'OPB is 1
+ ir[l1:8] ignored here

ir[15:12] == 2 so 'RD is r[2]
- ir[19:16] == 2 so 'OPA is r2]

ir[20] == 0 so don't set psr
ir[24:21]==4 so mnemonic is ADD'

i.e., 'RD -- 'OPA + 'OPB
i.e., r[2] - r[2] + 1

ir[25] == 1 so 'OPB is immediate
ir[27:26] 0 so it is data processing

ir[31:28] == 4'blllO so it executes

As another example, consider the ARM instruction that initializes the RI register with
the decimal constant fourteen:
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The multi-cycle ASM in figure 10-1, which follows the basic outline of the PDP-8's
ASM given in section 8.3.1.5, implements the fetch/execute algorithm for the ARM
instruction set described in section 10.6.

The state names are the same as the ones in the PDP-8's ASM, except for the execute
states. In the ASM for the ARM, state EODP occurs when a data processing instruction
(such as ADD or SUB) executes, and state EOB occurs when a branch instruction (B)
executes.

10.7.1 Fake SWI as a halt
The actual ARM does not have a halt instruction. Instead, it has a software interrupt
(SWI) instruction (efOOOOOO) which changes the mode from user mode to a supervisor
mode. Since we are ignoring the issue of modes, and since it is helpful to keep this
ASM as similar as possible to the ASM in chapter 8 for the purpose of Verilog test
code, we will treat the SWI as a halt. The operation of the SWI on the actual ARM is
much more complicated, as explained in appendix G.
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I Figure 10-.

Ma ROXe mnemonic -

e 3 a 0 1 0 0 e hexadecimal

1110 00 1 1101 0 0000 0001 0000 00001110 binary

l l l l l l l l +- ir[7:0]==14 so'OPB is 14
l l l l l Il | + ir[11:8] ignored here
l l lIl | | + ir[15:12] == 1 so 'RD is rl]
l l l l | + ir[19:16] ignored: not used byMOV
l | | | + ir[20] == 0 so don't set psr
l | | + ir[24:21] == 13 so mnemonic is MOV"
I l l i.e., 'RD - 'OPB

l l l i.e., r[l] - 14
+ ir[25] == 1 so 'OPB is immediate

+ ir[27:26] == 0 so it is data processing
+ ir[31:28] == 4'blllO so it executes

MOV R1,0x~e mnemonic
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10.7.2 Fetch states
State INIT initializes the program counter, halt and program status registers. The ma-
chine will then proceed to state FI and to state IDLE.

When a program executes, the normal sequence is to proceed through states Fl, F2,
F3A, F3B and one of the execute states. State F2 increments the program counter by
four (rather than by one) because the program counter refers to an address in terms of
eight-bit bytes but each 32-bit instruction is actually four bytes long. In a related way,
when state F3A fetches an instruction from memory, the memory address is shifted
over two bits to the right because the program counter is four times the required memory
address.4

10.7.3 The condx function
The decoding (F3B) and executing (EODP, EOB or EOHLT) states for the ARM are
quite different than the analogous states for the PDP-8. First of all, every instruction on
the ARM has the potential of being conditional, which is why instruction register bits
31 down to 28 are reserved for this purpose. The first decision that occurs in state F3B
is whether the instruction should be nullified or not. On the actual ARM, this decision
involves sixteen possibilities. Even though we are only going to implement four of
these (4, 5, e and f), it is prudent to isolate this detail in a function which we will refer
to as condx(ir[31:28] ,psr).

In the actual hardware, there will be some combinational logic that implements this
function. The important observation is that whether an instruction is executed or is
nullified depends only on two things: instruction register bits 31 down to 28 and the
current information in the program status register (which, in this implementation, only
contains the N flag). Because these details have been isolated inside the condx func-
tion, the other twelve conditions (0-3, 6-d) not considered here could be implemented
fairly easily without having to change this ASM.

After recognizing that the condition for the instruction has been satisfied, state F3B
proceeds to decode the instruction. If it is a data processing instruction (instruction
register bits 27 and 26 equal zero), the ASM proceeds to state EODP. If it is a branch
instruction (instruction register bits 27 down to 25 equal 5), the ASM proceeds to EOB.
If it is a SWI instruction, the machine proceeds to the PDP-8 like state EOHLT for the
purpose of communicating with the Verilog top-level module that will test this ma-
chine. (As mentioned above, the actual ARM would do something more complicated
for SWI.)

4 The reason for this inconsistency only becomes apparent with some of the instructions we are ignoring,
such as LDR and STR, that use byte-sized data in memory.
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10.7.4 Data processing
State EODP has two actions that it must perform. First, it needs to perform the re-
quested data processing using the operands ('OPA and 'OPB) and to store this result
into the destination register ('RD). Second, it needs to deal with the program status
register.

10.7.4.1 The dpfunction
Which kind of data processing occurs in state EODP depends upon instruction register
bits 24 down to 21. In this implementation, we are only considering three data process-
ing operations (ADD, SUB and MOV). Once again, it is advisable to isolate such de-
tails in a function, which we will refer to here as dp, so that the implementation of the
other 13-data-processing operations will be straightforward. The important observa-
tion is that the result of the data processing only depends on 'OPA, 'OPB and instruc-
tion register bits 24 down to 21.

10.7.4.2 Conditional assignment of par
Using instruction register bit 20, the programmer can choose whether or not a data
processing instruction will modify the program status register. If instruction register bit
20 is zero, state EODP leaves the program status register the way it is. On the other
hand, if instruction register bit 20 is a one (meaning the mnemonic has an "" suffix),
state EODP has a conditional oval which assigns a new value to the program status
register. This new program status register value is a function (f) of the unconditional
data processing that occurs in this state (dp (i r [ 2 4: 211 , ' OPA, ' OPB) ). Again,
isolating details in a function will make it easier to implement the full capabilities of
the ARM, should you choose to do so. For now, f simply masks off the sign bit of the
result to record the N flag. This assignment to the program status register must be
conditional in state 'EODP because the information to compute the new program status
register properly might not exist after that clock cycle (i.e., 'RD might refer to the same
register as 'OPA or 'OPB).

10.7.4.3 Use of macros
The use of macros ('PC, 'RD, 'OPA and 'OPB) helps conceal many of the tedious
details required to implement the ARM. For example:

'define RD r[ir[15:12]]

allows us to describe the destination register for a data processing instruction without
having to mention the instruction register bits.
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More importantly, macro definitions allow simple descriptions of the operands of the
data processing instructions. For example, from the short explanation in section 10.6. 1,
one might think that 'OPA would simply be defined as r [ i r [ 19: 16 ] ], but there are
some other details to consider. For example, when 'OPA is supposed to be what the
programmer refers to as R15, this is in fact the program counter. According to the
specification of the ARM instruction set (appendix G), when R15 is the first operand of
a data processing instruction, the value of R15 used in the computation will be eight
larger than the value the program counter contained when the instruction was fetched.
At the time 'OPA is evaluated, the program counter has already been incremented by
four in state F2. Therefore, if the programmer wants to use R15 as 'OPA, the value used
in state EODP should be r [ 15 + 4. On the other hand, if the programmer wants to use
a different register, its value should not be incremented.

To distinguish between R15 or another register inside a macro requires using the Verilog
conditional operator ( ? : ). This feature of Verilog, which acts like the similar feature
of C, works with three values: the first value occurs before the question mark, the
second value occurs between the question mark and the colon, and the third value
occurs after the colon. If the first value is equal to one, the result is the second value;
otherwise the result is the third value. From a hardware standpoint, the Verilog condi-
tional operator is like a mux, where the select is the first value. In this particular situa-
tion, the expression ir [ 19: 16 ] ! =15 chooses between two different results:
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'define OPA (ir[19:16]!=15?r[ir[19:16]]:r[ir[19:16]]+4)

As in C, parentheses are a good idea to avoid creating precedence problems when
Verilog substitutes such a complicated macro.

The definition of 'OPB is even more involved because instruction register bit 25 al-
lows the programmer to choose between an immediate value or a register value. The
same problem with R15 mentioned above also must be considered:

'define OPB (ir[25]?ir[7:0]:(ir[3:0]!=15? r[ir[3:0]]:r[ir[3:0]]+4))

In fact, there are other issues about 'OPB that we are ignoring here. (The actual ARM
allows rotation of 'OPB, which would require a more complicated expression for 'OPB.)

10.7.5 Branch
State EOB performs the relative branch by adding four plus four times the signed offset
(from the low-order 24 bits of the instruction register) to the program counter.
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10.7.5.1 Multiplying by four
The reason for multiplying by four is that instructions on the ARM are required to
reside at byte addresses that are divisible by four. The low-order two bits are not re-
corded in the branch instruction in order to maximize the distance that a programmer
can choose to branch with the available bits of the instruction register.
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10.7.5.2 Adding four in the multi-cycle implementation
The reason for adding four in this multi-cycle implementation is to adhere to the speci-
fications referred to in appendix G. The ARM documentation specifies that an offset of
-2 in a branch instruction (eafffffe) means branching back to itself. Remember that the
-2 will be multiplied by 4 to yield -8. By state EOB, the program counter has been
incremented by 4. To leave the program counter the same as it was when the branch
instruction (eafffffe) was fetched, an additional 4 must be added to the program counter
(-8 + 4 + 4 == 0).
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10.7.5.3 Sign extension macro
The offset times four needs to be treated as a signed 32-bit value. The offset in the
instruction register is only 24-bits wide (bits 23 down to 0). This means the sign bit
(ir [ 23 ] ) must be duplicated several times on the left, in a process commonly re-
ferred to as sign extension. The following macro performs both the sign extension and
the multiplication by four using the Verilog concatenation operator:

'define OFFSET4 {ir[23],ir[23],ir[23],ir[23],ir[23], ir[23],ir[23:0],2'bOO)
roblems when

ister bit 25 al-
ster value. The

10.7.6 Verilog for the multi-cycle implementation
Throughout this book, algorithms have been described using ASM charts and Verilog.
For simple machines, like the childish division examples of chapter 2, the ASM and the
Verilog are equivalent, and either notation gives a completely accurate description of
the hardware. It is a theme of this book that both ASM charts and Verilog are important
to understand, and that each notation offers the designer useful insights.

he actual ARM
sion for 'OPB.)

The last section illustrates the proper use of an ASM in a complex design: to provide
documentation so people can see the "big picture." The last section actually uses quite
a bit of Verilog notation to achieve the proper level of abstraction. This section shows
that Verilog implements not only what the ASM describes but also fills in the details
that should be omitted from the ASM. Verilog can do all this reasonably because it is a
textual language.

ie signed offset
Counter.
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The previous sections use many paragraphs to describe the data processing function,
dp. Such a description is informal and therefore cannot be synthesized into hardware.
Although such details could have been put formally into the ASM, they would have
made the ASM considerably more complicated. Ultimately, such a complex ASM would
lead us down the wrong path for the performance issues (such as pipelined and/or
superscalar design) described later in this chapter. In Verilog, we can be precise but still
set aside such details because they can occur in a different part of the source code (the
function definition). Although such thinking is commonplace in modem software de-
sign, hardware designers are only beginning to realize the power of the notation avail-
able in Verilog.

In the case of the dp function, we are only implementing three of the sixteen possible
operations:

function [31:0] dp;
input [3:0] opcode;
input [31:0] opa,opb;
begin

if

dp = opa - opb;

else if (opcode == 4'bO100)
dp = opa + opb;

else if (opcode == 4'bllOl)

dp = opb;
else
begin

dp = 0;
$display("other DP instructions...");

end
end

endfunction

(opcode == 4'bOO10)
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function
input [
begin

f = d
end

endfuncti

This function formally describes the SUB, ADD and MOV instructions. Except for the
$display statement, this function could be synthesized into the combinational ALU
required in the actual hardware. (The $ display statement wams us if we attempt to
execute a data processing instruction that is one of the 13 not implemented here.) This
function can be reused as we improve the performance of the design. Because these
details have been isolated into a function, it is easy for a designer to know where to
modify the Verilog code in order to implement the remaining 13 operations.
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In a similar way, we can define the Verilog function that determines whether the condi-
tion for a particular instruction to execute is true:
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Again, isolating this in a function makes it easy to know how to implement the remain-
ing operations. Also, as will be shown later, defining this function will prove extremely
helpful as we use more sophisticated techniques to improve performance.

For our subset of the ARM, we only implement the N flag in the program status regis-
ter. The function which creates this information from the result of the ALU is trivial:
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ations.

Generating all bits of the program status register is considerably more complicated, but
isolating it here helps some future designer whose job might be to do so.

A great deal of the abstraction needed for this design comes from the Verilog macros
mentioned in the last section. For this multi-cycle implementation, these are:
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function condx;
input [3:0] condtype;
input [31:0] psr;
begin

if (condtype == 4'blllO)

condx = 1;
else if (condtype == 4'bOl00)

condx = psr[31];

else if (condtype == 4'bO101)
condx = psr[31];

else
condx = 0;

end
endfunction

function [31:0] f;
input [31:0] dpres;
begin

f = dpres & 32'h80000000;
end

endfunction
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'define PC
'define RD
'define OPA
'define OPB

'define OFFSET4

r[15]

r[ir[15:12] ]
(ir[19:16]!=15?r[ir[19:16?:r[ir[19:16]]+4)
(ir[25] ?ir[7:0O]:(ir[3:0O]!=15?r[ir[3:0O] ]:r[ir[3:0O] ]+4) )

{ir [23], ir [23], ir [23], ir [23], ir[23], ir [23], ir [23:0O], 2 bOO}
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For example, the definition of 'OPA says if the register number given in instruction
register bits 19 down to 16 is not the program counter ( ! =15), use the value of that
register; otherwise (= = 1 5) use the program counter + 4. This decision is required here
because of the definition of the ARM instruction set. The Verilog conditional operator
allows for compact, if somewhat cryptic, code for the decision. Recall that 'OPA will
be substituted back where required in the code automatically by Verilog, and so the
designer using Verilog can usually ignore these details. A designer using only an ASM
would have been required to put all this detail in the ASM.

Another advantage of using Verilog here is that as we proceed to a more sophisticated
technique for higher performance (such as pipelining), we can change the definition of
the macros to match the more sophisticated technique, but keep the macro name the
same. This is good, because the concept behind the macro is the same, even though its
implementation will be different in later sections of this chapter. Given the above mac-
ros and functions, the actual translation of the ASM to implicit style Verilog is simple
and is left as an exercise.

10.8 Pipelined implementation
The problem with the multi-cycle implementation is that it requires five cycles per
instruction. To improve this performance, we can use a pipelined approach. There are
several reasons why a pipelined implementation of our ARM instruction subset will be
easier than the pipelined PDP-8 discussed in chapter 9. First, the ARM has a RISC
instruction set which was designed to be pipelined. Second, we are neglecting memory
reference instructions, and so the issues of operand fetch and data forwarding may be
ignored here. Third, we can reuse the functions defined above without modification.
Fourth, the Verilog macros given earlier can easily be redefined to match the needs of
the pipelined implementation.

10.8.1 ASM for three-stage pipeline
The original versions of the ARM (referred to as the ARM 1 -ARM6) use a three-stage
pipeline, but some of the more recent versions of the ARM use a five-stage pipeline.
We will implement a three-stage pipeline because it is easier, and is similar to the three-
stage examples in chapter 9. Also, since the original ARM instruction set was designed
for a three-stage pipeline, implementing a pipeline of that size is most natural. The

Figure 10-

5Although the Al
other than NOP, f

Verilog Digital Computer Design: Algorithms into Hardware396



f4)
i[ir[3:0 +4) )
3:01 ,2'bOO}

three stages are referred to as fetch, decode and execute. For our subset, decoding only
considers instruction register bits 27 down to 24. The logic for decoding our subset is
trivial and hardly warrants its own separate pipeline stage. The full ARM instruction
set includes eleven categories, and so full decoding is rather involved, especially con-
sidering the memory reference instructions. Therefore, for our simple ARM subset, we
will implement a three-stage pipeline but with the middle stage doing nothing. Later in
this chapter, the middle pipeline stage will take on an important role.en in instruction
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As in chapter 9, it will be necessary to have multiple instruction registers (irl and
ir2). The youngest instruction is in memory, the middle-aged instruction is in irl
and the oldest instruction is in ir2. Also, as in chapter 9, we need to use NOPs to deal
with the filling of the pipeline after a branch instruction. There are many ways to de-
scribe a NOP in ARM machine language. The simplest5 is f00000. Here is the
pipelined ASM for our ARM subset:
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Figure 10-2. Pipelined ASMforARM subset.

5 Although the ARM's designers may someday redefine the meaning of this machine code to be something
other than NOP, f000000 is convenient since it is easy to recognize
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Rather than translate this ASM as is into Verilog, the following sections discuss some
interesting issues that it raises. These issues, such as Mealy ASMs and the non-block-
ing assignment, have been touched upon in earlier chapters, but with an example of this
size these issues become more important.

10.8.2 Mealy ASM
There are several reasons why the pipelined ARM needs to be designed using a Mealy
ASM. As in the examples in chapter 9, a decision has to be made and an assignment has
to be scheduled in a single cycle because the result of the assignment must be available
in the next clock cycle. With the PDP-8, this typically arises with assigning a value to
the accumulator having decided already that a TAD instruction is supposed to execute.
On the ARM, this same issue arises with assigning a value to the 'RD macro (which
could be any of the sixteen user registers), having decided a data processing instruction
is supposed to execute. The decision (that recognizes the instruction) and the resulting
assignment occur in the same clock cycle.

The ARM's conditional execution feature offers an additional reason why a Mealy
approach is required. Often, a data processing instruction that assigns a new value to
the program status register (such as SUBS) will execute just before a subsequent in-
struction that depends on this result in the program status register (such as BMI). The
decision whether to execute the subsequent instruction cannot occur earlier than the
clock cycle when that instruction is in the final stage of the pipeline because, until that
stage, the program status register does not reflect the result of the preceding instruc-
tion. If the condition is satisfied, the subsequent instruction must schedule whatever
assignment(s) are associated with its execution in this same clock cycle; therefore a
Mealy approach is mandatory.

10.8.3 Two parallel activities
There are two parallel activities that occur in state F1. The first determines what will be
in the instruction registers and the program counter in the next clock cycle. The second,
which is similar to the corresponding part of the ASM in section 10.7, deals with de-
coding and executing the instruction in the final stage of the pipeline.

The first parallel activity in state Ft (determination of what will be in the instruction
registers and the program counter) has two cases. Let's refer to these as the "B/R15"
case (for branch or modifying the program counter) and the "normal" case (increment
program counter). The "B/R15" case is when the instruction in the final
stage of the pipeline is an instruction that will execute (as indicated by
condx (ir2 [ 31: 2 8 , psr) ) and that is either a branch instruction (bits 27 down to
25 equal to 5) or a data processing instruction that modifies r [ 15] (since r [ 15 ] is
the same as the program counter, such an instruction is effectively like a branch in-
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struction). The "B/R15" case is sim-ilar to the JMP instruction on the pipelined PDP-8
given in section 9.5, except that on the ARM the branch instruction cannot be executed
until it reaches the last stage of the pipeline. On the PDP-8, it is possible to begin
execution of the JMP when it reaches the middle stage of the pipeline because the JMP
on the PDP-8 is unconditional. Since the branch on the ARM is conditional, the bits in
the program status register must be valid before the decision to branch can occur. In
general, the program status register will not be valid for a particular instruction until
that instruction reaches the final stage of the pipeline. This is because the program
status register might have been changed by the preceding instruction, which only com-
pleted its execution after the preceding clock cycle. If the "B/R15" instruction ex-
ecutes, the instruction registers are filled with NOPs.

The "normal" case decides what will be stored in the instruction registers and the pro-
gram counter for situations other than the "B/R15" case. In the "normal" case the
program counter is incremented by four, and the instructions move down the pipeline.

Besides the part of the ASM that decides what will be stored in the instruction registers
and the program counter, there is the part of the ASM that decodes and executes the
instruction in the final stage of the pipeline. In this part of the ASM there are five
cases:

,nullify"
"dp set"
"dp no set"
'ir2 is B"
"SWI

psr prevents this instruction from executing
execute data processing instruction that modifies psr
execute data processing instruction that leaves psr alone
modify R15
set halt flag

Except for the "ir2 is B" case, these are identical to the multi-cycle ASM given in
section 10.7. In the "ir2 is B" case, four times the sign extended offset ('OFFSET4) is
added to the program counter. Here is where we see that the ARM was designed to
work with a three-stage pipeline. The reason that an offset of -2 means branch back to
itself is that by the time the branch instruction has reached the final stage of the pipe-
line, the program counter will already have been incremented twice, i.e., it is eight
greater than when the branch was fetched. When the offset is -2, 'OFFSET4 is -8 and
so adding it to the program counter in this case puts the program counter back to where
the same branch instruction will be fetched again.
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10.8.4 Proper use of <=
One of the main themes of this book is the proper use of the non-blocking assignment
statement. A common mistake with non-blocking assignment is to attempt to assign
more than one value to a register during one clock cycle. To avoid making this mistake,
a designer needs to check all possible paths through the ASM. Since there are two paths
through one-half of the ASM and there are five paths through the other half that ex-
ecutes in parallel, there are, in theory, ten paths for the designer to check, but of these,
two are contradictory. It is impossible for ir2 to contain a branch or data processing
instruction that modifies R15 in the same clock cycle that it contains an SWI instruc-
tion. Also, when "ir2 is B," the "normal" case cannot occur. When these cases are
eliminated, we are left with eight cases to consider. The "B/R15" case might occur in
parallel with either the "nullify," "dp set," "dp no set" or "ir2 is B" case. Alternatively,
the "normal" case might occur together with either the "nullify," "dp set," "dp no set"
or "SWI" case.

The "B/R 15" and "normal" cases are the only places where the instruction registers are
scheduled to be assigned, and so there is no problem with them. The "dp set" case is the
only place where the program status register is scheduled to be assigned a value, and so
it is fine. Also, the "SWI" case is the only place where the halt flag is scheduled to be
assigned a value; thus we do not need to be concerned with it. The danger arises with
the program counter and 'RD, since 'RD could be r [ 15 ], which is the program counter.
To avoid this danger, we must leave the program counter alone in the "B/R15" case,
because the program counter is modified in parallel by the "dp no set," "dp set" or "ir is
B" cases of this Mealy ASM.

10.8.5 Verilog for the pipelined implementation
Here is a partial listing of the Verilog translation for the ASM from section 10.8. 1:
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'define RD
'define OPA

'define OPB

'define OEFSE
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forever

begin

@(posedge sysclk) enter_new state('Fl);

else

begin

if (condx(ir2[3l:28],psr) &&
((ir2[27:25]==3'blOl)

|| (ir2[27:261==2'bOO&&ir2[15:12]==4'bllll)))

begin // B/R15"
irl <= (posedge sysclk) 32'hfOOOOOO;
ir2 <= (posedge sysclk) 32'hfOOOOOO;

end
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Continued

Some of the macros need to be redefined to take into account that i r2 is the final stage
of this pipeline:

Interestingly, because the original ARM was designed with a three-stage pipeline in
mind, the definition of 'OPA and 'OPB are simpler than for the multi-cycle implemen-
tation. This simplification occurs since r [ 15 ] does not have to be explicitly men-
tioned. The value of r [ 15 ] at the time the instruction is in the final stage of the pipe-
line is, by definition, the correct value to use.
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else

begin // "normal"

'PC <= @(posedge sysclk) 'PC + 4;
irl <= (posedge sysclk) m['PC>>2];

ir2 <= (posedge sysclk) irl;

end

if (condx(ir2[31:28],psr))

begin

if (ir2[27:26] == 2'bOO)

begin // "dp set" or dp no set"
'RD <= @(negedge sysclk)

dp(ir2[24:21]'OPA'OPB);

if (ir2[20]) //"dp set"

psr <= @(posedge sysclk)

f(dp(ir2[24:21],'OPA,'OPB));

end

else if (ir2[27:25] == 3'blOl) //"ir2 is B"

'PC <= @(posedge sysclk) 'PC + 'OFFSET4;
else if (ir2[27:24] == 4'bllll)//"SWI"
halt <= @(posedge sysclk) 1;

else

$display("other instructions...");

end

end

end

'define RD r[ir2[15:12]]
'define OPA r[ir2[19:16]]
'define OPB (ir2[25] ? ir2[7:0] : r[ir2 [3:01])

'define OFFSET4 ir2 [23], ir2 [23], ir2 [23], ir2 [23], ir2 [23], ir2 [23], ir2 [23 :0] , 2 'bOO}

i
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Continued

Some of the macros need to be redefined to take into account that i r 2 is the final stage
aion 10.8.1: of this pipeline:aion 10.8.1:aion 10.8.1:
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Some of the macros need to be redefined to take into account that i r 2 is the final stage
of this pipeline:

,define RD r[ir2[15:12]]
,define OPA r[ir2[19:1611
,define OPB (ir2[25] ? ir2[7:0] : r[ir2[3:011)

'define OFFSEN {ir2 23] , ir2 23] , ir2 231 , ir2 231 , ir2 231 , ir2 231 , ir2 23 01 2 'bOO)

Interestingly, because the original ARM was designed with a three-stage pipeline in
mind, the definition of 'OPA and 'OPB are simpler than for the multi-cycle implemen-
tation. This simplification occurs since r [ 1 5 ] does not have to be explicitly men-
tioned. The value of r [ 1 5 ] at the time the instruction is in the final stage of the pipe-
line is, by definition, the correct value to use.
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Interestingly, because the original ARM was designed with a three-stage pipeline in
mind, the definition of 'OPA and 'OPB are simpler than for the multi-cycle implemen-
tation. This simplification occurs since r [ 1 5 ] does not have to be explicitly men-
tioned. The value of r [ 1 5 ] at the time the instruction is in the final stage of the pipe-
line is, by definition, the correct value to use.
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Execution of a data processing instruction involves non-blocking assignment to 'RD,
which is a macro that substitutes the subscripted Verilog array, r [ ir2 [ 15 :12] ].
This non-blocking assignment therefore uses negedge rather than posedge to be
portable for the reasons explained in section 6.5.2. (Remember that, in this pipelined
implementation, ir2 changes every clock cycle.)

10.9 Superscalar implementation
The pipelined implementation given in the last section has a speed that approaches (but
never quite reaches) one clock cycle per instruction. Because ARM data processing
instructions have three register operands ('RD, 'OPA and 'OPB), one basic computa-
tion, such as incrementing r [ 2 , can be performed per clock cycle. Although this can
be up to three times faster than the pipelined single-accumulator design described in
chapter 9, it still is certain to be no better than the slowest special-purpose designs in
chapter 2 (such as section 2.2.2). Even for a simple algorithm like childish division, it
is often possible for more than one computation to occur in parallel (e.g., incrementing
r [ 2 ] in parallel with subtracting from r [ 1 ] ). A pipelined general-purpose processor
only works because of quite a bit of parallel activity in the implementation of fetch/
execute. Even so, a pipelined general-purpose computer cannot exploit the parallelism
in an algorithm. Such parallelism can be exploited by special-purpose hardware (such
as section 2.2.7).

Since the designer of a general-purpose computer can never be certain how fast is "fast
enough," it would be desirable if the general-purpose computer could execute more
than one instruction in parallel. Such an approach, known as a superscalar implemen-
tation, is an extension to the pipelined approach. Superscalar implementation is con-
siderably more complex than the pipelined approach because the hardware itself must
take seemingly sequential instructions and recognize when it is permissible for them to
execute in parallel. In essence, some of the intelligence and skill of the hardware de-
signer (as illustrated by the design alternatives of chapter 2) must be placed inside the
hardware itself. Because the hardware of a superscalar general-purpose computer will
never have as much information about the software algorithm as the designer of a
special-purpose computer has about the ASM, a superscalar general-purpose machine
will not be as fast as the best special-purpose hardware. Also, the complexities of
superscalar design means its hardware cost may be many times the cost of the equiva-
lent but faster special-purpose machine. However, the economies of scale for general-
purpose computers have made superscalar processors viable.
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10.9.1 Multiple-port register file
From a structural standpoint, a superscalar general-purpose processor can be distin-
guished from the slower design alternatives given earlier in this chapter (multi-cycle
and pipelined) because the superscalar machine needs multiple ALUs for executing
multiple instructions per clock cycle. The simplest case is to imagine that we can afford
to have two ALUs, and therefore, under the best circumstances, two instructions can
execute per clock cycle.

A consequence of having multiple ALUs is that the register file must be more sophisti-
cated. If there are two ALUs, each of which might have to be fed two independent
operands in each clock cycle, we need a register file with four read ports. From a
behavioral standpoint, we will refer to the operands of the final stage of the pipeline the
way we did in the last section ('OPA and 'OPB). However, sometimes another instruc-
tion will be executing in parallel. The operands of this parallel instruction will be re-
ferred to as 'POPA and 'POPB.

The two results of the two ALUs need two write ports into the register file. From a
behavioral standpoint, we will refer to these as 'RD and 'PRD.

A register file that has four read ports and two write ports is considerably more expen-
sive than the register file used in the pipelined implementation. There will be addi-
tional complexities with r [ 15 ] because it serves the role of the program counter. We
will see later that the program counter in a superscalar design does some non-intuitive
things.

10.9.2 Interleaved memory
In order to keep a superscalar processor going at full speed, it is necessary to provide it
with as many new instructions as it is capable of executing per clock cycle. For ex-
ample, if our machine is to execute two instructions per clock cycle, it will be neces-
sary to load both irl and ir2 with instructions from memory addresses 'PC+4 and
'PC, respectively.

The single-port memory shown in figure 10-3, which can be used for the multi-cycle
and pipelined implementations, does not allow more than one instruction to be fetched
per clock cycle:
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m[O]

m[4]

m[8]

m[1 2]

first instruction

second instruction

third instruction

fourth instruction

Figure 10-3. Non-interleaved memory.

Although a dual-ported memory for instructions would allow fetching of two instruc-
tions per clock cycle, such a memory is expensive. A cheaper alternative is to use an
interleaved memory. A simple interleaved memory stores half of the instructions in one
bank and the adjacent instructions in another:

m[O] first instruction second instruction m[4]

m[8] third instruction fourth instruction m[12]

Figure 10-4. Interleaved memory.

In other words, two separate memories act as one. This approach is sufficient only
because when the superscalar fetch/execute algorithm wants two instructions, they will
always reside in separate banks. One of the instructions comes from an address divis-
ible by eight; the other instruction will be plus or minus four of that address. From a
behavioral standpoint, we will simply use the same kind of Verilog array notation for
the two instructions that are fetched in parallel: m [m PC+4) >>2 ] and m [ PC>>2]

10.9.3 Examples of dependencies
If all instructions in a program were independent of each other, such as:

SUB R1,R1,R4
ADD R2,R2,1

designing a superscalar machine would be fairly easy. For example, the above two
instructions could be fetched from the interleaved memory in parallel, presented to the
two separate ALUs (for subtraction and addition, respectively) in parallel and their
results could be written back to the register file in parallel.
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Unfortunately, in real programs, instructions are often dependent on each other. For
example:

SUB R2,R1,R4
ADD R2,R2,1

It might appear that data forwarding (of RI minus R4) could be helpful here. Such an
approach would be algorithmically correct but would be slow. To make these instruc-
tions execute in parallel, the clock period would have to be slow enough allow enough
time for both the ADD and the SUB:

of two instruc-
ive is to use an
tructions in one

, sufficient only
ctions, they will
n address divis-
address. From a
-ray notation for
im['PC>>2].

forwarded
value

R1 ALU ALU
doing doing new R2

R4 SUB ADD

slower clock period

Figure 10-5. Forwarding results of dependent instructions slows clock.

Instead of data forwarding in a situation like this, it is better for the machine to execute
only one instruction per clock cycle. At least this way, the clock cycle remains fast. In
other words, it behaves like the simple pipeline approach of section 10.8. The hope is
that after executing these two instructions sequentially, the machine will fetch some
independent instructions (like the ones shown earlier) that it can execute in parallel.

Some programs have combinations of instructions that simply cannot be executed in
parallel:

SWI
ADD R2,R2,1

The machine is supposed to halt (in our subset, at least) before the ADD instruction
executes. In such a situation, we have to revert back to a one instruction per clock cycle
(simple pipeline) approach, which allows the machine to process the SWI in exactly
the order the programmer intends. On a machine that actually implements interrupts
(unlike our subset), exact processing of interrupts and similar issues are significant.

~, the above two
, presented to the
parallel and their
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A very common problem that occurs with superscalar design is that we cannot be cer-
tain, at the time when we have the hardware resources for doing so, whether we are
supposed to execute an instruction (such as ADDPL):

SUBS R1,R1,R4
ADDPL R2,R2,1

The SUBS instruction will modify the program status register, but the ADDPL instruc-
tion needs to know that new program status information to decide whether to execute.
If these instructions only executed one per clock cycle, there would be no difficulty.
Also, if it were not for the "S" and "PL" suffixes on the mnemonics, there would be no
problem with executing them in parallel during the same clock cycle. Although we
could revert back to a simple pipeline approach (one instruction per clock cycle), the
point of superscalar design is to maximize speed.

It might be tempting to try "program status forwarding" in a case like this. Such an
approach would be algorithmically correct, but would have the undesirable side effect
of doubling the propagation delay (the ADD cannot start until the SUB completes).
This would mean the clock cycle of the machine would be twice as long, which would
more than negate any advantage of our attempt at superscalar design.

10.9.4 Speculative execution
In contrast to such a flawed approach, the typical superscalar implementation uses a
technique, known as speculative execution, to solve the problem of not knowing whether
an instruction that could execute in parallel is supposed to execute. For most instruc-
tions on a RISC machine, the only irreversible consequence of executing that instruc-
tion is the storage of its result back in the register file. Speculative execution means we
compute the result of an instruction at a time when it is uncertain whether or not that
instruction will execute, but at that time we do not store the result back in the register
file.

10.9.5 Register renaming
Instead, we put the result of an instruction that is being executed speculatively in a
rename register. Such a register has the ability, at a later time, to take on the role of any
of the user registers in the machine. In a later clock cycle, if the machine discovers that
the instruction that executed speculatively in the previous clock cycle was not sup-
posed to execute, the contents of the rename register can simply be discarded, and it
will be as though the instruction never executed. If the machine discovers that the
instruction was supposed to execute, the rename register takes on the role of the desti-
nation register. For our simple implementation, this will be very much like data for-
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warding of a single value. In a more complicated superscalar design, the renaming
process could be much more sophisticated because every register in the file might have
been renamed. Our simple implementation guarantees that at most one register will be
renamed in any given cycle.

To implement this, there will have to be three components of the renameable register:
regval, which indicates its 32-bit value, regtag, which indicates its identity if
speculative execution succeeds (since it could be any of the registers) and regcond,
which indicates the condition upon which the instruction is supposed to execute. In
Verilog, these are declared as:

reg [31:0] regval;
reg [4:0] ren tag;
reg [3:0] ren-cond;

It is interesting to note that ren-tag is five, rather than four, bits wide. This is re-
quired because, in addition to the sixteen user registers, we need to indicate when the
renamed register is not valid. To do so, the following constant is defined:

I define INVALID 16

When an instruction cannot be executed speculatively (as in the SWI example from
section 10.9.3), the machine assigns 'INVALID to rentag. In the next clock cycle,
this will cause ren_val to be ignored.

On the other hand, when an instruction can be executed speculatively, the machine
assigns the destination register number to rentag, the condition upon which that
assignment succeeds to rencond and the potential new value of that register to
renval.

10.9.5.1 First special-purpose renaming example
Even though register renaming and speculative execution may appear difficult to
understand at first, they are simple extensions to the idea of the non-blocking assignment
which has been discussed in earlier chapters. It is still true that only one assignment can
be scheduled for a particular register during a particular clock cycle and that such
assignments do not take effect until the next clock cycle. In order to see how register
renaming and speculative execution relate to concepts in earlier chapters, let us set
aside our goal of implementing the general-purpose ARM for a moment and consider
some simple special-purpose machines that illustrate these same concepts. In other

ware
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2
words, we are going to describe a special-purpose machine that only executes one
(nonsensical) algorithm, which we will state in terms of ARM mnemonics:

Designing such a special-purpose machine is easy if all we wanted to do is to carry out
the same register transfers as would occur when the above instructions execute on the
pipelined implementation of the general-purpose ARM given in section 10.8. 1:

@(posedge sysclk) #1;
r[2] <= @(posedge sysclk) r[1] - r[4];
psr <= f(r[1] - r[4]);

@(posedge sysclk) #1;
if (psr[31]==O)

r[3] <= @(posedge sysclk) r[3] + r[3];
@(posedge sysclk) #1;

r[3] <= @(posedge sysclk) r[3] + 1;
@(posedge sysclk) #1;

In the first clock cycle, the sign bit of the difference is scheduled to be stored in the
psr. In the next clock cycle, after this assignment has taken effect, the psr determines
whether or not the doubling of r [ 3 ] will occur (which makes this a Mealy machine).
In any event, incrementation of r [ 3 ] does not occur until the third clock cycle, at
which $ t ime the appropriate value (either doubled or not) will be available. The fourth
clock cycle does nothing because of the NOP in the algorithm.

It is possible to cut the number of states in half by combining two actions per state;
however, there is a difficulty. SUBS sets the psr, but the ADDPL that we desire to
execute in parallel depends on that psr. Here is where speculative execution and register
renaming come into play. The register transfers of the special-purpose machine described
by the Verilog below are similar to those carried out when the equivalent instructions
execute on the general-purpose superscalar ARM given in section 10.9.6; however, the
following is much simpler because it only considers actions that occur related to the
specific instructions:
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In parallel to the subtraction during the first clock cycle, the doubling of r [ 3 ] occurs
before the machine can know whether the difference will be positive. Therefore, the
machine saves the doubled value in ren val, and at the same $time makes note in -
rencond of the condition ('PL) under which this speculative doubled result is to be
renamed as r [ren tag] . In the second clock cycle, after the psr resulting from the a
subtraction is valid, the machine makes a decision whether or not renaming occurs. If it
does not, incrementation of r[ 3 ] occurs based on the value already in the register file
from two or more clock cycles ago. If renaming does occur, there is a literal substitution

r determis of renval for r[ 3 ] in this clock cycle. Regardless of whether renaming occurs in
the second clock cycle, rencond is set to 'NV because the NOP will not cause any -

ock cycle t renaming in the third cycle (not shown).

10.9.5.2 Second special-purpose renaming example
Let's consider a second example, similar to the last one, except the destination of the

rns per sta; third instruction (shown in bold) is not the same as the destination of the ADDPL
we desire to instruction that executes speculatively:

stored in the 
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ily machine).
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te. The fourth

)ns per state;
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SUBS R2,R1,R4 ;//sets psr
ADDPL R3,R3,R3 ;//speculative
ADD R6,R3,1 ;//R3 same but not dest
NOP ;//NOP to simplify discussion

Again, there is no problem when all we want to do is to carry out the same register
transfers as would occur when the above instructions execute on the pipelined
implementation of the general-purpose ARM given in section 10.8. 1:
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@(posedge sysclk) #1;
r[2] <= @(posedge sysclk) r[1] - r[4];
psr <= f(r[1] - r[4]);
ren val <= @(posedge sysclk) r[3] + r[3];
ren tag <= (posedge sysclk) 3;
rencond <= @(posedge sysclk) 'PL;

@(posedge sysclk) #1;
rencond <= @(posedge sysclk) 'NV;
if ((rencond == 'L)&&(psr[3l]==O) 

(ren-cond == 'MI)&&(psr[31]==l) ||
(ren_cond == 'AL))

r[3] <= @(posedge sysclk) renval+l; //renamed
else

r[3] <= @(posedge sysclk) r[3]+1; //not renamed
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n parallel to the subtraction during the first clock cycle, the doubling of r 3 occurs
)efore the machine can know whether the difference will be positive. Therefore, the
machine saves the doubled value in ren -va 1, and at the same time makes note in 00
-en cond of the condition ('PL) under which this speculative doubled result is to be
enamedasr[ren tagl.lnthesecondclockcycleafterthepsrresultingfromthe No
subtraction is valid, the machine makes a decision whether or not renaming occurs. If it
loes not, incrementation of r 3 occurs based on the value already in the register file
rorn two or more clock cycles ago. If renaming does occur, there is a literal substitution
)f ren-val for r 3 in this clock cycle. Regardless of whether renaming occurs in
he second clock cycle, ren -cond is set to 'NV because the NOP will not cause any 00
naming in the third cycle (not shown).

10.9.5.2 Second special-purpose renaming example
,et's consider a second example, similar to the last one, except the destination of the
hird instruction (shown in bold) is not the same as the destination of the ADDPL
instruction that executes speculatively:
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does not, incrementation of r 3 occurs based on the value already in the register file
stored in the from two or more clock cycles ago. If renaming does occur, there is a literal substitution
r determines of ren -va 1 for r 3 1 in this clock cycle. Regardless of whether renaming occurs in
ily machine). the second clock cycle, ren - cond is set to 'NV because the NOP will not cause any 00
Dck cycle, at renaming in the third cycle (not shown).

t. The fourth 10.9.5.2 Second special-purpose renaming example

Let's consider a second example, similar to the last one, except the destination of the
)ns per state; third instruction (shown in bold) is not the same as the destination of the ADDPL
we desire to instruction that executes speculatively:
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Of course, things get more interesting when we use speculative execution and register
renaming. The register transfers of the special-purpose machine below are similar to
those carried out when the equivalent instructions execute on the general-purpose
superscalar ARM given in section 10.9.6:

The first clock cycle is identical to the speculative example in section 10.9.5.1; thus the
speculative doubling of r [3] occurs before the machine knows whether the difference
of r [1] and r [4] will be positive. Again, ren val will contain the doubled value
and ren cond will indicate the condition ('PL) when renval is to be renamed as
r [ren-tag] . In the second clock cycle, after the ps r resulting from the subtraction
is valid, the machine makes a decision whether or not renaming occurs. If it does not,
the assignment to r [6] occurs based on the value of r [3] already in the register file
from two or more clock cycles ago. If renaming does occur, the situation is quite different
than in the example of section 10.9.5.1. In this example, the destination of the third
instruction (r [6] ) is different than the destination of the speculative instruction (r [3]).
There is still a literal substitution of ren val for r [3], but there must also be storage

Verilog Digital Computer Design: Algorithms into Hardware

@(posedge sysclk) #1;

r[2] <= @(posedge sysclk) r[l] - r[4];

psr <= f(r[l] - r[4]);

@(posedge sysclk) #1;

if (psr[31]==0)

r[3] <= (posedge sysclk) r[3] + r[3];
@(posedge sysclk) #1;

r[6] <= (posedge sysclk) r[3] + 1;
@(posedge sysclk) #1;

INIT
halt-i
psr+-O

ir2[27:26]=
&&conc

0

ir1+-I
ir2-

'Pi
irl-r

ir2-
en_val- dr

renI

@(posedge sysclk) #1;

r[2] <= (posedge sysclk) rl] - r[4];

psr <= f(r[l] - r[4]);

renval <= @(posedge sysclk) r[3] + r[3];
ren tag <= @(posedge sysclk) 3;
ren cond <= @(posedge sysclk) 'PL;

@(posedge sysclk) #1;

rencond <= @(posedge sysclk) 'NV;
if ((ren-cond == 'PL)&&(psr[31]==0) |

(rencond 'MI)&&(psr[31]==1) |

(ren-cond == 'AL))
begin

r[ren tag] <= @(posedge sysclk) ren val; //renamed
r[6] <= @(posedge sysclk) renval+1;
end

else

r[6] <= @(posedge sysclk) r[3]+1; //not renamed

U 
_,~I 11U VI

Figure 10-6.
.
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of renval in r [ren tag] so that r [3] will contain the doubled value for future
clock cycles (not shown).

10.9.6 ASM for the superscalar implementation
The preceding examples only considered speculative execution in the very limited con-
text of a single algorithm. We want to use this in the general context of the fetch/
execute algorithm for a superscalar processor. Figure 10-6 is the ASM for the superscalar
implementation of the same subset of ARM instructions used earlier in this chapter.

Although the reader may not realize it at first, much of the motivation for the ARM
subset used throughout this chapter was to keep this intricate ASM as simple as pos-
sible. Also, this ASM deals with the simplest case of superscalar design (two instruc-
tions per clock cycle). Common commercial superscalar processors are much more
complicated than this trivial example.6 Even so, this ASM is something to behold! The
observation is that superscalar design is significantly more complicated than multi-
cycle or pipelined design, even for a tiny subset of instructions.

10.9.7 Three parallel activities
The ASM in section 10.9.6 shows three parallel activities that occur in each clock cycle
when the machine is in state Fl. The first parallel activity (arbitrarily shown at the top
of this Mealy ASM only to be consistent with earlier ASMs in this chapter) deals with
the instruction registers in the pipeline and the program counter. This first parallel
activity also deals with speculative execution.

The second parallel activity (arbitrarily show in the middle) deals with register renam-
ing. The final parallel activity (arbitrarily shown at the bottom) deals with executing
instructions sequentially in the final stage of the pipeline. This portion of the ASM is
identical to the pipelined ASM given in section 10.8.1.

10.9.7.1 Pipeline, parallel and speculative execution
The first parallel activity deals with several different interacting components of the
superscalar machine. This portion of this ASM is doing analogous work to what the
first portion of the ASM of section 10.8.1 does. The essential goal is to decide what will
be in the instruction register pipeline (irl and ir2) for the next clock cycle. In the
pipelined implementation, this was easy: either put NOPs into the pipeline or move the
instructions down the pipe. In this superscalar implementation, there are seven distinct
cases, only one of which will occur in any clock cycle. For ease of discussion, let's
number these cases 1-7:

6 As of 1997, despite its suitability for superscalar implementation, ARM had not yet introduced such a
version of its processor, instead focusing on low-cost, low-power versions that use only pipelining.
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1. ir2 has a branch or data processing instruction that changes R15.
2. There is a dependency between irl and ir2.
3. irl has a branch that changes R15.
4. irl has a branch that is nullified.
5. irl has a data processing instruction that does not affect psr.
6. irl has a data processing instruction that does affect psr.
7. irl has a data processing instruction that is nullified.

Each one of these cases corresponds to an oval in the Mealy ASM. In all of these cases,
it is guaranteed that an instruction in i r2 will execute (as described later at the bottom
the ASM). The determination of which of the above seven cases applies here is based
upon whether irl can be executed in parallel to ir2. We must know that to decide
how much to increment the program counter and how to load the instruction registers
for the next clock cycle. The more instructions we can execute in parallel, the more
new instructions have to be fetched.

Cases 1 and 2 describe situations when it is not possible for irI to execute in parallel
with ir2. Cases 3-7 describe situations when it is possible to do something with irl
in parallel to ir2

Case 1 is similar to the analogous case of the ASM of section 10.8.1 ("B/R15"-put
NOPs in the instruction register pipeline), except case 1 must also make the renamed
register invalid. There is no result being computed in parallel by this case.

Case 2 is similar to the only other analogous case of the ASM of section 10.8.1 ("nor-
mal"-instructions travel down the pipeline), except case 2 must also make the re-
named register invalid. There is no result being computed in parallel by this case. The
decision that causes case 2 to occur is extremely intricate; thus we will defer those
details until we get to the Verilog function. (The motivation here is similar but hope-
fully even more persuasive than earlier in this chapter: both ASMs and Verilog have
their place in the toolset of the designer.) The name of this Verilog function is depend,
and it decides whether there is a dependency (i.e., case 2) based only on the informa-
tion in irl, ir2 and the program status register.

Of the remaining cases, the only one in which truly speculative execution occurs for
the instruction in ir is case 5. In cases 3, 4, 6 and 7, it is known whether the instruc-
tion in irl will execute. The reason this is known is because of some details in the
definition of the depend function for case 2. In other words, if you are not in case 1,
2 or 5, the machine has enough information to say with certainty whether the instruc-
tion in irl will execute. (It is the responsibility of the designer to make sure this
property holds, but let's ignore the details of that for a moment.)

RISC Processors
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Case 5 is interesting because it is the reason for using a renamed register. The value
scheduled to be assigned to the renamed register is the result from the parallel ALU.
The function computed by this ALU is based on irl [24: 21] . The other ALU uses
i r2 [24: 21] . The condition that says whether the value in the renamed register will
actually be used in the next clock cycle comes from ir [31 28] in this clock cycle.
The tag for the renamed register is scheduled to become the register specified as the
destination in this instruction (irl [15 12]). At the next rising edge of the clock
after case 5 occurs, ren-tag will be the register number that will be modified if this
speculatively executed instruction actually executes; ren_cond will indicate whether
the register indicated by ren tag should change based on the program status register
in this next clock cycle and ren_val will be that new value.

There is a hidden detail in the depend function that relates to case 5. The depend
function prevents parallel execution if both the instructions in irl and r2 set the
program status register. Because of this, distinguishing between case 5 versus cases 6
and 7 is simply a matter of looking at irl [20] . If irl [20] and ir2 [20] indicate
both instructions will modify the program status register, case 2 applies, and the in-
structions will execute sequentially. The reason for this is that both instructions cannot
modify the program status register in the same clock cycle, but it is acceptable for each
of them to modify the program status register in sequence.

If by the point of the decision ir [20] indicates that this instruction will modify the
program status register, we know that r2 will not. This means the program status
register in the current clock cycle (rather than in the next clock cycle as was the situa-
tion for case 5) accurately reflects the information needed to decide whether irI will
execute. Therefore, the decision to choose between cases 6 and 7 is
condx (irl [31: 28] ,psr). Note once again the advantage of being able to reuse
this Verilog function. If it is known in this clock cycle (case 6) that the instruction will
execute, rencond will become 4'blllO (always) in the next clock cycle, rather
than whatever condition was present in ir [31 28]. If it is known in this clock
cycle (case 7) that the instruction will not execute, ren_condwill become 4 'blli
(never) in the next clock cycle. This way we can use the same hardware that imple-
ments speculative execution also to handle cases 6 and 7.

The reason we cannot use speculative execution here (i.e., making ren cond be
irl [31 28]) is that case 6 changes the program status register. If a conditional in-
struction that changes the program status register (such as ADDPLS) executes due to
the current program status information, it is possible register renaming will fail to hap-
pen in the next clock cycle because the condition is no longer true. That would prevent
an instruction that is supposed to execute from actually executing. Therefore, cases 6
and 7 evaluate condx with the current program status register and communicate this
unambiguously into the next clock cycle with the 4'blllO or 4 'b1ll.
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Cases 5, 6 and 7 have quite a few things in common. In each case, two data processing
instructions execute in parallel. This means the program counter needs to increment by
eight rather than four. Also two instructions need to be fetched in parallel from the
interleaved memory. In each case, renval is computed, whether or not it will actu-
ally be used later. In theory, for case 7, ren-val need not be computed, but it is easier
(and harmless) to do so.

Cases 3 and 4 deal with a branch instruction in i r 1. If we reach case 3 or 4, we know
(because of the depend function) that the instruction in r2 will not affect the pro-
gram status register. (If it does, case 2 applies instead.) Therefore, the decision whether
to take the branch can be based on condx (irl [31:281 , psr) . The reason is analo-
gous to the decision for cases 6 and 7. If the branch instruction is nullified (case 4), the
program counter is incremented by eight and two instruction are fetched (as in cases 5,
6 and 7). If the branch instruction in i r occurs (case 3), the instruction pipeline fills
with NOPs and the program counter changes (by adding 'POFFSET4 + 4, similar to
the 'OFFSET+4 in multi-cycle implementation). In either case 3 or case 4, the branch
instruction does not modify a user register; thus the tag for the renamed register be-
comes 'INVALID.

10.9.7.2 Dealing with register renaming
The second parallel activity of this ASM is to decide whether the value in the renamed
register set up in the previous clock cycle (perhaps as the result of speculative execu-
tion of an instruction by case 5 of that clock cycle) should take effect permanently in
the register file.

There are three conditions that cause the value in the renamed register to be discarded
without being written back into the register file:

a. ir2 has a data processing instruction that stores a newer value into that user
register than what is in renval (refered to as case 10).

b. rentag indicates 'INVALID.
c. evaluation of ren cond in this clock cycle fails (refered to as case 9 of this

clock cycle which relates to cases 5 and 7 of the previous clock cycle).

If none of these apply, renval is written back into the register indicated by ren tag
(case 8). The parallel write port through which this occurs can be defined in behavioral
Verilog as:

I 'define PRD r[rentag] l
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It will also be necessary to define the macros for the read ports so that they forward
renval during this clock cycle:

'define OPA ((condx(rencond,psr)&&ir2[19:16]==rentag)?ren-val:r[ir219:16]])
'define OPB (ir2[25]?ir2[7:01:((condx(rencond,psr)&&ir2[3:0]==rentag)?ren-val:r[ir2[3:0]]))
'define POPA ( (condx(rencond psr)&&irl[19:16]==ren-tag)?ren-val:r[irl[19:16]])
'define POPB (irl[25]?irl[7:0]:((condx(ren cond,psr)&&irl[3:0]==ren tag)?renva1:r ir1[3:0]]))

Here the only conditions that must be satisfied are that the operand comes from the
register described by ren tag (which is guaranteed not to be 'INVALID if ren tag
matches the register number) and rencond evaluates to true in this clock cycle.
Even though the renamed register might be discarded after this clock cycle, if the above
conditions are satisfied, the renamed register should be forwarded in this clock cycle.

10.9.8 Verilog for the superscalar ARM
This example illustrates the many advantages of using ASMs together with Verilog. It
is simply not possible to put all the details of the superscalar design into a one-page
ASM. Some of these details need to be placed into Verilog functions or macros. Most
of the functions required, such as condx, were defined earlier for the multi-cycle
implementation, and the fact that we can reuse them is very helpful.

10.9.8.1 The dependfunction
There is one function that is unique to this superscalar implementation: depend. This
function recognizes those situations where it is not possible to execute two instructions
in parallel:

a. irl

b. irl

c. irl

d. irl

e. irl

f. ir2
g. irl

operand (' POPA) same as ir2 destination ('RD).
operand ('POPB) same as ir2 destination ('RD).
is conditional non-dp and ir2 sets psr.
and i2 both set psr.
is not branch or dp.
is not branch or dp.
has R15 as operand.

The first three of these are a form of hazard known as Read After Write (RAW). If these
instructions executed sequentially, the older instruction (i r2) would write a value into
a register ('RD or psr) which the next instruction (irl) must read. To attempt to
execute these instructions in parallel would mean ir2 would read the wrong value.
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The fourth condition above is a form of hazard known as Write After Write (WAW).
This is a situation that has been warned against throughout this entire book: you cannot
have two non-blocking assignments to the same register in the same clock cycle. As
explained in section 10.9.7.1, the ASM is designed with the understanding that this
situation will never occur in case 5; thus the depend function must cause the ASM to
handle such situations in case 2 (i.e., ir2 and irl will execute sequentially).

The final three situations deal with instructions for which the ASM was not designed to
execute in parallel. Here is the Verilog function that detects these seven conditions that
cause the ASM to proceed to case 2:

Since the goal is to execute as many instructions in parallel as can be executed cor-
rectly, it is useful to ignore instructions that are known will be nullified. Since we know
with certainty whether ir2 will be nullified (based on the current program status
register), conditions a-d (which mention ir2) can be ANDed with
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function depend;
input [31:0] irl,ir2,psr;
begin

depend=(ir2[15:12] == irl[19:16]
&& ir2[27:26] == 2'bOO && irl[27:26] == 2'bOO
&& condx(ir2[31:28],psr))//POPA bad (RAW)
(ir2[15:12] == irl[3:0] && irl[25]==0
&& ir2[27:26] == 2'bOO && irl[27:26] == 2'bOO
&& condx(ir2[31:28],psr))//POPB bad (RAW)
(ir2[20]
&& ir2[27:26] == 2'bOO
&& condx(ir2[31:28],psr)
&& irl[31:28] 4'billO
&& irl[27:26] 2'bOO) //psr bad(RAW)non-dp
(irl[20] && irl[27:26] == 2'bOO
&& ir2[20] && ir2[27:26] == 2'bOO
&& condx(ir2[31:281,psr))//psr bad(WAW) dp

| ((irl[27:26] != 2'bOO)
&&(irl[27:25] != 3'blOl))//irl not dp or branch
((ir2[27:26] != 2'bOO)
&&(ir2[27:25] != 3'blOl))//ir2 not dp or branch

| (irl[27:26] == 2'bOO //irl has PC as ALUop
&& ((irl[3:0] == 4'blll && irl[25]==1'bO)

lirl[15:12] == 4'bllll
Hlirl[19:16] == 4'bllll));

end

endfunction

��l �1
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condx (ir2 [31: 28 , psr). This means the depend function only slows the ma-
chine to one instruction per clock cycle when it is actually necessary. For example, the
following two instructions

ADDPL Rl,Rl,l
| ADD R2,Rl,l I

can be processed in parallel if the ADDPL is nullified but must execute sequentially if
the ADDPL is not nullified.

10.9.8.2 Translating the ASM to Verilog
Once all the macros and functions are defined, it is easy to translate the ASM to Verilog.
For example, the following is the beginning portion of the Verilog code corresponding
to the first parallel activity of state F1 (parallel and speculative execution):

10.9.8.3 Code coverage
The power of Verilog is twofold. First, Verilog allows the designer to express the be-
havior of the hardware abstractly, without having to consider too many details. Second,
Verilog allows a designer to test the design using simulation. It would be an
underutilization of Verilog to synthesize a design without having ever simulated it. So,
the designer has two responsibilities. The first responsibility, of course, is to design the
hardware. The second responsibility, which is more important but sometimes neglected
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begin

if (condx(ir2[31:28],psr) &&

((ir2[27:25] == 3'blOl)

(ir2[27:26] == 2'bOO &&
ir2[15:12] == 4'bllll)))

begin

irl <= @(posedge sysclk) 32'hfOOOOOOO;
ir2 <= @(posedge sysclk) 32'hfOOOOOOO;
ren-tag <= (posedge sysclk) 'INVALID;

'ifdef DEBUG

$display(

' 1. ir2 branch or R15 prevents | ,$time);

cover(l);

'endif

end

else ...
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by careless designers, is the test code. This code, sometimes referred to as the testbench,
exercises the Verilog that simulates the hardware. Ideally, we would like to try every
possible case. For tiny special-purpose machines, such as the 12-bit childish division
test code example in section 3.7.3, this is barely possible. For a general-purpose ma-
chine, it is impossible to test everything. The usefulness of simulation, however, de-
pends on how completely the Verilog code that simulates hardware has been tested by
the Verilog test code. It does not do any good to test the same correct Verilog statement
a million times but ignore another statement that has a bug in it. The advantage of
Verilog is that its software-like statements can be used to warn the designer that parts of
the Verilog code that simulates hardware has not been tested.

The superscalar implementation given in the last section is far more complex than any
of the earlier designs in this book. It is not feasible to test every possible program to see
if it works correctly. We will create several programs, but then Verilog will inform us
whether all of the cases we are interested in have been tested. The reason for doing this
is that the designer will more than likely make a mistake in guessing what cases a
moderately complex program will test. The operation of the superscalar machine is so
counterintuitive (even on a small program) that it is better for Verilog to keep track of
what is being tested.

10.9.8.4 Using 'lifdef for the cover task
The Verilog code, of which a portion was shown in section 10.9.8.2, has several state-
ments that compile conditionally, such as:

What this means is that if the macro is defined:

'define DEBUG

the call to the system task, $display, and the cover task (described below) will be
compiled with the rest of the Verilog. If this ' define were omitted from the top of
the file, it would be as though the $display and cover tasks were not there. The
reason for using i fde f is that once simulation is correct, the macro can be unde-
fined, and the Verilog will no longer exhibit these test actions.
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'ifdef DEBUG
$display(

" 1. ir2 branch or R15 prevents Il",$time);
cover(l);

'endif
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Note that ' ifdef is different than an if statement (where the tasks would be com-
piled, but might not execute). In particular, ' i fde f can be used to alter which control
statements are compiled into the code. For example, cases 9 and 10 of the renaming
parallel activity do nothing:

If 'DEBUG is not defined, there is no need for the else begin ... end to be
compiled. The above shows how the scope of statements that are conditionally com-
piled can cross begin end boundaries. This is possible because the substitution oc-
curs at compile time.

In addition to calling on these tasks, the cover task has to be defined. We only want to
define it if the 'DEBUG macro is defined. Therefore, the task and everything associ-
ated with it will be enclosed in the ' ifdef:
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'ifdef PRO(

arm7_mach:

arm7_mach.

arm7_mach:
arm7_mach:

arm7_mach:

'ifdef DEBUG

else

begin
$display("10. dp overwrites renamed r%d',
rentag,$time);

cover(10);

end

'endif

'ifdef DEBUG

reg ['MAX_CASENO:O] coverage-set;
task cover;

input caseno;

integer caseno;

begin
coverage-set = coverageset

((1 << 'MAXCASENO) >> caseno);
end

endtask

initial

begin

coverageset = 0;
wait(halt l'bO);
wait(halt === l'bl);

$display("coverage=%b",

coverageset['MAX-CASENO-1:0]);

end

'endif

--
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Notice how this is completely different from an if statement. An if can only exist
inside a behavioral block or task. This ' i fdef is outside the task and the initial
block. If 'DEBUG is not defined, the reg, the cover task and the initial block
will not be defined.

Each case of interest in the code has a number between 1 and 'MAXCASENO,
which is used to identify that case in the call to cover. (There is no case 0.) What
cover does is to OR the corresponding bit of the coverage set with one.

After the program has halted, the initial block prints out the coverage set. The more
cases of the Verilog code that were covered by the program, the more ones there will be
in the coverage set. We will run several programs in order to obtain complete coverage.
(In reality, we have not considered enough test cases here to have total confidence in
this design, but this task can be expanded to cover an arbitrary number of cases.)

10.9.9 Test programs
The special-purpose machines in chapters 4 and 5 are easier to test than a general-
purpose machine because the test code simply has to supply test data to the machine
being tested. A special-purpose machine is supposed to follow some algorithm that
manipulates the data, and it is often easy to tell if the result is correct. A general-pur-
pose machine implements a (sometimes intricate) variation of fetch/execute which in
turn interprets a program that manipulates the data. It is much harder to tell if a general-
purpose machine is correct.

10.9.9.1 A test of R15
One of the details of the ARM instruction set that takes special consideration in all the
implementations is RI5. R15 is, in fact, just another name for the program counter. The
Verilog macros for all the above implementations have to take this into account. Addi-
tionally, on the pipelined implementation, R15 as a destination causes the pipeline to
fill with NOPs just as though a branch had occurred. On the superscalar implementa-
tion, there are many places where special consideration is given to R15.

Therefore, we need an ARM program that exercises at least some of this Verilog code
involving r [15] . Here is such a program:

ware RISC Processors

'ifdef PROGRAM1 //test R15 source and destination
arm7_machine.m[0]=32'he3bOOOOO; //MOVS RO,O
arm7_machine.m[1]=32'heO8flOOO; //ADD Rl,R15,RO
arm7_machine.m[2]=32'heO80200f; //ADD R2,RO,R15
arm7_machine.m[3]=32'heO8f3000; //ADD R3,R15,RO
arm7_machine.m[4]=32'heO80400f; //ADD R4,RO,R15

would be corn-
r which control
�f the renaming

___7
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A Verilog macro, 'PROGRAM 1, is defined when this is the program we want to use to
test the machine with. This test code can be used with any of the implementations. For
example, the pipelined implementation produces the following:

PC=00000024 IR1=eafffffe

rO=fffffffs rl=0000000c
PC=OOOOOOOc IR1=f0000000
rO=fffffff8 rl=OOOOOOOc
PC=00000010 IR1=eO8f3000

rO=fffffff8 rl=OOOOOOOc
PC=00000014 IR1=eO80400f
rO=fffffff8 rl=OOOOOOOc
PC=00000018 IR1=e3bOeOff
rO=fffffff8 r=OOOOOOOc

IR2=elaOfOOl N=O

r2=00000010 r3=00000014
IR2=fOOOOOOO N=O
r2=00000010 r3=00000014
IR2=fOOOOOOO N=O
r2=00000010 r3=00000014
IR2=eO8f3000 N=O
r2=00000010 r3=00000014
IR2=eO80400f N=O
r2=00000010 r3=0000000c

1251

r4=00000018

1351

r4=00000018

1451

r4=00000018
1551

r4=00000018

1651

r4=00000018

Continued

cond=e, 
rO=ffffffl
2.depend 
8.writeba(

Notice the va]
$time 1151..
to what was vi
This program 
the pipelined i
vents executio
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that case 2 hap

|| (irl[27
&& ((irl

I rl [
| |irif

The coverage s'
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10.9.9.2 Oi
The last progral
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Notice the contents of the registers at $time 1251 and the NOPs in the pipeline at
$time 1351. Also notice the contents of the registers at $time 1651. On the other
hand, the superscalar implementation produces equivalent results in an entirely differ-
ent way:
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Continued

arm7_machine.m[5]=32'he3bOeOff; //MOVS R14,Oxff
arm7_machine.m[6]=32'he2400008; //SUB RO,RO,8
arm7_machine.m[7]=32'hela~fOOl; //MOV R15,R1
'endif

PC=00000024 IR1=eafffffe IR2=ela0f001 N=O 1051
rO=fffffff8 r1=0000000c r2=00000010 r3=00000014 r4=00000018
1.ir2 branch or R15 prevents | 1051
other DP instructions...
5.use || ALU noS irl=fOOOOOOO A=fffffff8 B=fffffff8 1151
PC=0000000c IR1=fOOOOOOO IR2=fOOOOOOO N=O 1151
rO=fffffff8 rl=0000000c r2=00000010 r3=00000014 r4=00000018
PC=00000014 IR1=eO80400f IR2=eO8f3000 N=O
cond=f,renR 0 =00000000 1251

rO=fffffff8 rl=OOOOOOOc r2=00000010 r3=00000014 r4=00000018
2.depend prevents || 1251
9.nullify renamed r 0 Idp 1251
6.use || ALU S irl=e3bOeOff A=fffffff8 B=OOOOOOff 1351
PC=00000018 IRl=e3bOeOff IR2=eO80400f N=O 1351
rO=fffffff8 rl=OOOOOOOc r2=00000010 r3=OOOOOOOc r4=00000018
PC=00000020 IRl=elaOfOOl IR2=e2400008 N=O
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Continued

cond=e,renR14 =0000OOff 1451
rO=fffffff8 rl=OOOOOOOc r2=00000010 r3=OOOOOOOc r4=00000010
2.depend prevents || 1451
8.writeback renamed r4 |ldp 1451

we want to use to
lamentations. For

1251

r4=00000018

L351

r4=00 0000 18
1451

r4=00000018

1551

r4=00000018

1651
r4=00000018

in the pipeline at
551. On the other
an entirely differ-

1051
1=00000018

1051

f8 1151

1151
1=00000018

1251
1=00000018

1251

1251

1351

1351
1=00000018

Notice the values of the registers at $time 1051 and the NOPs in the pipeline at
$time 1151. Also notice the value of the registers at $time 1451. These correspond
to what was visible in the pipelined implementation at $ time 1251, 1351 and 1651.
This program does not execute much faster on the superscalar implementation than on
the pipelined implementation because the superscalar implementation properly pre-
vents execution of more than one instruction per clock cycle when R15 is involved.
This program is important as a means of testing the Verilog code because it illustrates
that case 2 happens due to the following portion of the depend function:

(irl[27:26] == 2'bOO
&& ((irl[3:0] == 4'bllll && irl[251==1'bO)

Ilirl[15:12] == 4'bllll
Ilirl[19:161 == 4'bllll));//irl has PC as ALUop

The coverage set for this program is 1100110101; in other words, cases 1,2,5,6, 8 and
10 are covered. Notice how helpful the output from the $displays is in annotating
why these cases occur.

10.9.9.2 Our oldfriend: division
The last program has no practical value other than that of testing the operation of cer-
tain ARM instructions. The remaining programs that we will consider will be based on
the childish division algorithm used in earlier chapters. Like the PDP-8, the ARM does
not have a divide instruction in the hardware; thus to do division requires some soft-
ware. Although if speed were essential one would choose a faster algorithm for divi-
sion than the childish algorithm, this simple algorithm illustrates many of the proper-
ties that more sophisticated algorithms also have. This is the reason why it has been
implemented many times in this book, in both hardware and software. Here again is the
childish division algorithm in C:
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is greater than
negative, at wl
flag that woulc

By defining 'P
(not shown) w,
program can b.
pipelined impli

Since we have not implemented the memory reference instructions of the ARM, the
values of x and y must be constants. We will use immediate addressing with x and y.
For example, let us assume that x is 14 and y is 7, which is a typical test case used with
this algorithm in chapters 2, 4, 5, 8 and 9. It is natural for the ri and r2 high-level
variables to reside in RI and R2, respectively. Ri and R2 are the registers that the
assembly language programmer refers to, but these are r [ 1 ] and r [ 2 ] in Verilog.
Also, it will be convenient for y to reside in R4. The implementations of this algorithm
given in chapters 8 and 9 made use of the accumulator of the PDP-8 to contain the
difference. We need to have a similar register on the ARM. In the following program,
let us use RO to serve the same role as as the accumulator. This illustrates an important
property of all RISC machines (notjust the ARM): there is nothing special about RO-
we could have chosen any other available register to hold the difference. The following
is an ARM program that implements this algorithm in the most straightforward way
possible:

PC= 0000001
rO=000000

PC=0000001

rO=ffffff

PC=0000002

rO=ffffff

PC=0000002

rO=ffffff

PC=0000002
rO=ffffff

The loop exect
duces a negativ
branch. Not she
GRAM5 on the
different way:

The above is analogous to the PDP-8 program given in section 8.3.2.5.3. The first three
MOV instructions set up RI, R4 and R2 to their initial values of x (14), y (7) and zero,
respectively. The SUBS is the only instruction that sets the program status register. The
purpose of the SUBS instruction is twofold: to compute the difference and to see if
R1>=R4. The BMI makes use of this program status information. As long as Rl >= R4,
the BMI is nullified and the loop continues. The difference would then be moved from
RO to RI, and R2 is incremented. The unconditional branch to the label LI causes the
test at the top of the loop to happen again. This loop repeats while the difference (in RO)

2.depend pi

lO.dp over
PC=00000014

cond=f,r(

rO=0000000(
PC=oooooo1A

rO=ffffffft

l.ir2 bran(

other DP it

5.use | AI
PC=0000002(

rO=ffffffft

PC=00000021
cond=f,r(

rO=fffffff5
2.depend pi

9.nullifl
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rl=x;

r2=0;

while (rl>=y)

{
rl = rl - y;

r2 = r2 + 1;

}

OOOOOOOO/e3aOlOOe MOV Rl,OxOe
00000004/e3aO4007 MOV R4,0x07
00000008/e3aO2000 MOV R2,QxOO
OOOOOc/eO510004 Li SUBS RO,Rl,R4
00000010/4a00002 BMI L2
00000014/elaO000 MOV Rl,RO
00000018/e2822001 ADD R2,R2,OxOl
OOOOlc/eafffffa B Li
00000020/efOOOQO L2 SWI

_-
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is greater than zero. The BMI branches to the label L2 when the difference in RO is
negative, at which point the SWI causes the Verilog test code to finish (using the halt
flag that would not exist on a an actual ARM).

By defining 'PROGRAM5 in the test code, appropriate Verilog assignment statements
(not shown) would place the above machine language instructions into memory. This
program can be used with any of the implementations of the ARM. For example, the
pipelined implementation produces the following:

PC=00000014 IR1=4aO00002

rO=00000000 rl=00000000
PC=00000018 IR1=elaO1000

rO=fffffff9 rl=00000000
PC=00000020 IRl=fOOOOOOO

rO=fffffff9 rl=00000000

PC=00000024 IRl=efOOOOOO

rO=fffffff9 rl=00000000
PC=00000028 IR1=xxxxxxxx

rO=fffffff9 rl=00000000

IR2=e0510004 N=O
r2=00000002 r3=xxxxxxxx

IR2=4a000002 N=1
r2=00000002 r3=xxxxxxxx

IR2=fOOOOOOO N=1
r2=00000002 r3=xxxxxxxx

IR2=fOOOOOOO N=1
r2=00000002 r3=xxxxxxxx

IR2=efOO0000 N=1
r2=00000002 r3=xxxxxxxx

2251

r4=00000007

2351

r4=00000007

2451

r4=00000007

2551

r4=00000007

2651

r4=00000007

U4

The loop executes two times. The third execution of the SUBS ($time 2251) pro-
duces a negative number (fffffff9), which sets the N flag. This in turn causes the BMI to
branch. Not show earlier, the BMI had been nullified. On the other hand, running 'PRO-
GRAM5 on the superscalar implementation produces equivalent results in an entirely
different way:

RISC Processors

2.depend prevents 1351
10.dp overwrites renamed r 0 1351
PC=00000014 IR1=4a00002 R2=e0510004 N=O
cond=f,renR 0 =00000000 1351

rO=00000000 r1=00000000 r2=00000002 r3=xxxxxxxx r4=00000007
PC=00000018 IR1=elaO1000 IR2=4a00002 N=1 1451
rO=fffffff9 rl=O0000000 r2=00000002 r3=xxxxxxxx r4=00000007
1.ir2 branch or R15 prevents 1451
other DP instructions...

5.use || ALU noS irl=fOOOOOOO A=fffffff9 B=fffffff9 1551
PC=00000020 IRI=fOOOOOOO R2=fOOOOOOO N=1 1551
rO=fffffff9 rl=00000000 r2=00000002 r3=xxxxxxxx r4=00000007
PC=00000028 IR1=xxxxxxxx IR2=efOO0000 N=1
cond=f,renR 0 =00000000 1651

rO=fffffff9 r1=00000000 r2=00000002 r3=xxxxxxxx r4=00000007
2.depend prevents || 1651
9.nullify renamed r 0 I dp 1651
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The contents of the registers in the superscalar implementation at $ time 1651 are the
same as the registers in the pipelined implementation at $ t ime 2651. The output from
the $ di spl ay statements explain the intricate way in which the superscalar machine
was able to produce the correct answer in less time. The depend function only slows
the machine down (case 2) three times. For example, at $time 1351, depend detects
the conditional branch (BMI in this example) following the data processing instruction
that sets the program status register (SUBS in this case). At $time 1641, depend
detects SWI. The Verilog coverage set for the superscalar run of 'PROGRAM5 is
1110110111. This means all but cases 4 and 7 were exercised.

10.9.9.4 
One of the bi
made to exec
executed cons
instruction, st
condition is tj
any branch pi

One technique
running on a 
using for loc

10.9.9.3 Faster childish division
In section 9.7, a variation of the childish division algorithm was given that illustrates a
different way of implementing a while loop in software (testing at both the top and
bottom of the loop). The effect of this is to reduce the number of times the branch
penalty is incurred and to reduce the number of nullified branch instructions. The fol-
lowing ARM program implements this approach by using both the BPL and BMI in-
structions:

the compiler k
code looks lik(

which can be i]

Running on the pipelined implementation, this program (let's refer to it as 'PROGRAM4)
produces at $ time 2051 the same results that 'PROGRAM5 produces (also running
on the pipelined implementation) at $time 2651. This illustrates that to make good
use of a pipelined machine, a good compiler is essential. Manually created assembly
language programs are often not as effective as the automatically created machine lan-
guage from compilers. Running on this superscalar implementation, this program pro-
duces at $time 1451 the same results that 'PROGRAM5 (also running on the super-
scalar implementation) produces at $ time 1651.

The Verilog coverage set for the superscalar run of 'PROGRAM4 is 1100110110. 'PRO-
GRAM4 does not add to the coverage of the Verilog code provided by 'PROGRAM5
(1110110111); thus we need an additional test program to cover cases 4 and 7.

If the program I
the loop compl
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OOOOOOOO/e3aOlOOe MOV Rl,OxOe
00000004/e3aO2000 MOV R2,OxOO
00000008/e3aO4007 MOV R4,0x07
OOOOOOOc/e0510004 SUBS R0,R1,R4
00000010/4a00003 BMI L2
00000014/elaOlOOO Li MOV Rl,RO
00000018/e2822001 ADD R2,R2,0xOi
OOOOOOlc/e0510004 SUBS RO,R1,R4
00000020/5afffffb BPL Li
00000024/efOOOOOO L2 SWI
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10.9.9.4 Childish division with conditional instructions
One of the big advantages of the ARM instruction set is that any instruction can be
made to execute conditionally. In the previous program, only the branch instructions
executed conditionally, but with the ARM, the programmer is free to specify that any
instruction, such as a data processing instruction, should execute only when a certain
condition is true. The importance of this is that conditional execution does not incur
any branch penalty.

One technique that compilers use to improve the performance of high-level software
running on a pipelined and/or superscalar processor is loop unrolling. In C programs
using f or loops, such as:

for(i=O;i<3;i++)

{
rl = rl - y;

r2 = r2 + 1;

}

the compiler knows a priori how many times the loop will execute; thus the unrolled
code looks like:

rl = rl - y;

r2 = r2 + 1;
rl = rl - y;

r2 = r2 + 1;
rl = rl - y;

r2 = r2 + 1;

which can be implemented without branch penalty:

SUB R1,R1,R4
ADD R2,R2,0x0l

SUB R1,R1,R4

ADD R2,R2,0xOl

SUB R1,R1,R4

ADD R2,R2,0xOl

If the program has a f or loop that repeats too many times for it to be practical to unroll
the loop completely, it can be partially unrolled. For example:
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for(i=O;i<3000;i++)

{
rl = rl - y;

r2 = r2 + 1;

}

is the same as:

for(i=O;i<1000;i++)

{
rl = rl - y;

r2 = r2 + 1;
rl = rl - y;

r2 = r2 + 1;
rl = rl - y;

r2 = r2 + 1;

}

which would incur the branch penalty one-third as often.

The difficulty with the childish division algorithm (and with many practical programs)
is that we do not know before we run the program how many times the loop will ex-
ecute. (In the case of childish division, the number of times the loop will execute is the
answer we are trying to compute.)

Here is where conditional data processing instructions come in handy. Assuming we
do not care about the result in rl, the childish division algorithm can be partially
unrolled as the following C code:

Each time thrn
version of the
incurs the brat
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rl=x;
r2=0;
do

{
rl = rl - y;
if (rl>=0) r2 = r2 + 1;
if (rl>=0) rl = rl - y;
if (rl>=0) r2 = r2 +1;

} while (rl>=0)
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Each time through this loop is equivalent to two times through the loop in the original
version of the childish division program. This program (refered to as 'PROGRAM3)
incurs the branch penalty half as often provided that the three i f statements are trans-
lated into conditional data processing instructions:

OOOOOOOO/e3aOlOOe MOV R1,Ox~e
00000004/e3aO4007 MOV R4,0x07
00000008/e3a02000 MOV R2,OxOO
OOOO000c/e0511004 Li SUBS R1,R1,R4
00000010/52822001 ADDPL R2,R2,0x0j
00000014/50511004 SUBPLS R1,R1,R4
00000018/52822001 ADDPL R2,R2,0xOi
0000001c/5afffffa BPL LI
00000020/efOOOOOO L2 SWI

The reason that the ARM provides the ability to either set the program status register
(bit 20 equal to one) or leave the program status register alone (bit 20 equal to zero) is
so that several instructions can be made conditional on the same condition. In this
program, the SUBS (andpossibly the SUBPLS) determine whetherRI >= 0. TheADDPL
and SUBPLS instructions use this program status information to decide whether to
execute. Since the pipelined and superscalar implementations allow execution of con-
ditional data processing instructions without branch penalties, such techniques can of-
ten speed up a program.

The Verilog coverage set for the superscalar run of 'PROGRAM3 is 0110110110. 'PRO-
GRAM3 does not add to the coverage of the Verilog code provided by 'PROGRAM5
(1110110111); thus we need to do a different test to cover cases 4 and 7. One such test
is identical to 'PROGRAM3, except R is loaded with 6 rather than 14 as the value of
x.

OOOOOOOO/e3a01006 MOV R1,0x06

The coverage set for the superscalar run of this modified program is 0101111110, which
covers cases 4 and 7. Therefore, all of the ten cases identified in the source code have
been tested at least once. This is not to say that the overall design is correct, but at least
we know we have checked all the Verilog statements translated from the original ASM.
Verilog has helped us make sure that all the code has been covered.
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10.10 Comparison of childish division implementations
Determining how long it takes for each of the above division programs ('PROGRAM3,
'PROGRAM4 and 'PROGRAM5) to execute is tedious, especially on the pipelined
and superscalar versions of the ARM. A better approach is to let Verilog measure the
time for a range of input values:

spe
run f

0

M 5 33
M 4 33
M 3 44

P 5 13

P 4 13

P 3 14

S5 9
S 4 10
S3 9

The column o
machine ("M'
"S 3" indicate
on the right is
look back at tl
division algor
division algor

The above Verilog modifies the MOV immediate at address 0 to initialize different
values of x, that range from 0 to 42 and causes the arm7_machine to run the modi-
fied program. If the quotient (in r [ 2 ] ) is not erroneous, the Verilog code simply prints
the number of clock cycles (of period 100) elapsed since the machine language pro-
gram started running for the given value of x. To use the above code, 'DIVTEST, as
well as the macro for the desired machine language program ('PROGRAM3, 'PRO-
GRAM4 or 'PROGRAM5), must be defined. When each of these three programs is
run on each of the three implementations (multi-cycle, pipelined and superscalar), we
obtain the following data:

register

f/e data

0 2
0 2
0 3

0 2

0 2

4 15

0 3

0 2

3 15

4 15
4 15

3 15
3 15
4 1
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'ifdef DIVTEST

cont = 0;

t = O;
for (x=O; x<=42; x = x + 1)
begin

arm7 machine.m[O] =

(arm7_machine.m[0] & 32'hffffffOO) + x;
arm7_machine.r[15] = 0;
#200 cont = 1;
#100 cont = 0;

#400 wait(arm7 machine.halt);
if (arm7_machine.r[2] != x/7)

$display("error");

$display("x=%d cl=%d r2=%d %d",x,
($time-t)/100,arm7_machine.r[2], $time);

t = $time;

end

$finish;
'endif
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0 1 2 3 4 5 ...

M 5 33 57 81 105 129 153 ... 24*quotient + 33
M 4 33 51 71 91 111 131 ... 20*quotient + 31
M 3 44 46 69 71 94 96 ... 12.5*quotient + 44

P 5 13 20 27 34 41 48 ... 7*quotient + 13
P 4 13 15 21 27 33 39 ... 6*quotient + 9
P 3 14 14 21 21 35 35 ... 3.5*quotient + 14

S 5 9 13 17 21 25 29 ... 4*quotient + 9
S 4 10 11 15 19 23 27 ... 4*quotient + 7
S 3 9 9 13 13 17 17 ... 2*quotient + 9

The column on the left ("run") indicates which program (3, 4 or 5) was run on which
machine ("M" for multi-cycle, "P" for pipelined, or "" for superscalar). For example,
"S 3" indicates 'PROGRAM3 was run on the superscalar implementation. The column
on the right is an equation of an upper bound on this data for quotient > 0. Let us
look back at the interesting journey we have traveled with our old friend, the childish
division algorithm. The following table summarizes implementations of the childish
division algorithm given in this and earlier chapters:

register bit P S
f/e data

0 2 12 n n
0 2 12 n n
0 3 12 n n

kind hard

sect
Mealy 5.2.4
Mealy 5.2.3

Moore 2.2.7

0 2 12 n n Moore
0 2 12 n n Mealy
4 15 31 y y Mealy

2.2.3

5.2.1

10.9.6

0 3 12 n n Moore 2.2.5
0 2 12 n n Moore 2.2.2

3 15 31 y n Mealy 10.8.1

4 15 31 y y Mealy 10.9.6
4 15 31 y y Mealy 10.9.6

3 15 31 y n Mealy
3 15 31 y n Mealy
4 1 11 y n Mealy

10.8.1

10.8.1

9.6

soft

sect

n/a

n/a

n/a

n/a

n/a

10.9.9.4

n/a

n/a

upper
clock

2 +

3 +

3 +

bound on
cycles

quotient

quotient

quotient

2 + 2*quotient
2 + 2*quotient
9 + 2*quotient

2 + 3*quotient

3 + 3*quotient

10.9.9.4 14+ 3.5*quotient

10.9.9.2 9 +
10.9.9.3 7 +

10.9.9.3

10.9.9.2

9.7

9 +
13+

12+

4*quotient

4*quotient

6*quotient

7*quotient

10*quotient
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Continued

3 15 31 n n Mealy 10.7 10.9.9.4 44+12.5*quotient
3 15 31 n n Mealy 10.7 10.9.9.3 31+ 20*quotient
3 15 31 n n Mealy 10.7 10.9.9.2 33+ 24*quotient
4 1 11 n n Moore 8.3.2.1 9.7 55+ 55*quotient
4 1 12 n n Moore 8.3.2.1 8.3.2.5.3 88+ 75*quotient

The "register" columns indicate how many "data" registers and how many "fle" (fetch/
execute) registers are used. (The number of 'f/e" registers is 0 for special-purpose
hardware; the number of "data" registers is 1 for a single-accumulator machine like the
PDP-8 and much larger (e.g., 15) for a RISC machine like the ARM.) The "bit" column
shows maximum number of bits the implementation allows for x or y. (For software
implementations that use the sign bit (the PDP-8's SPA/SMA or the ARM's N flag),
this is one less than the register size.) The S" column indicates whether the hardware
is superscalar. The "P" column indicates whether the hardware is pipelined. (Remem-
ber a superscalar implementation also uses pipelining.) The "kind" column indicates
whether the ASM uses conditional commands (Mealy) or not (Moore). The "hard sect"
column indicates where the ASM is described. (The ASM implements the childish
division algorithm for special-purpose hardware but the ASM implements fetch/ex-
ecute for general-purpose hardware.) The "soft sect" applies only to general-purpose
computer implementations and describes the machine language for the childish divi-
sion algorithm. The "upper bound on clock cycles" column indicates how long it takes
to compute the quotient. This table is sorted by the linear coefficient of the upper bound;
thus for large quotient, the order in this table indicates the relative speed of the
machines, assuming that the clock frequency of each machine is the same. (The clock
frequencies may be different due to different propagation delays in each architecture,
as described in chapter 6, but we will assume the clock frequency is the same here.)

There are several interesting things to note in the above table. First, special-purpose
hardware is cheaper (number of registers) than general-purpose hardware, especially
for the faster kinds of general-purpose hardware (pipelined and superscalar). Second,
special-purpose hardware is faster than software running on general-purpose machines
except that the superscalar ARM running 'PROGRAM3 is faster than the special-pur-
pose hardware described in sections 2.2.2 and 2.2.5. Third, the expensive superscalar
implementation is competitive with cheap special-purpose hardware only for 'PRO-
GRAM3 (with its loop unrolling). This illustrates that to capitalize on sophisticated
general-purpose hardware requires a good compiler. Fourth, all things being equal,
Mealy machines tend to take fewer clock cycles than Moore machines. Fifth, a single-
accumulator multi-cycle general-purpose machine (PDP-8) is slower than a RISC multi-
cycle general-purpose machine (ARM) because the latter needs fewer instructions to
carry out the algorithm. Sixth, pipelining improves the speed of a general-purpose
machine. Seventh, pipelining the single-accumulator PDP-8 makes it faster than the
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multi-cycle ARM but slower than the pipelined ARM. The equivalent of 'PROGRAM4
on the multi-cycle PDP-8 takes 55+55* quotient clock cycles while the same pro-
gram on the pipelined PDP-8 takes 12+10* quotient clock cycles.

10.11 Conclusions
This chapter has compared three different implementations for a RISC instruction set,
using a small subset of the ARM as the example hardware and the childish division
algorithm as the example software. A multi-cycle implementation requires several cycles
to execute an instruction. A pipelined implementation requires one cycle to execute an
instruction, except for an instruction such as branch. A superscalar implementation
attempts to execute more than one instruction per clock cycle whenever possible.

A RISC machine provides a large set of registers available to the programmer, and an
instruction set that allows three register operands to be specified in a single instruction.
In comparison to a single-accumulator machine (like the PDP-8), this tends to reduc-
the number of instructions required to implement a algorithm and to enhance the
chance that adjacent instructions will be independent of each other. This latter property
makes the design of superscalar general-purpose machines feasible.

Superscalar implementations often use speculative execution, where the result of an
instruction is computed before it is known whether that instruction will actually ex-
ecute. Rather than storing the result in the actual register specified by the instruction,
the physical register where this speculative result resides will be renamed to act as the
destination if and only if the corresponding instruction actually executes. The superscalar
example in this chapter is highly simplified. Commercial superscalar machines are
often much more aggressive with speculative execution, using techniques such as branch
prediction, where the machine executes instructions before it is known whether the
branch to those instructions will actually occur, and out of order execution, where more
instructions are issued (fetched into the pipeline) than can be retired (executed) per
clock cycle. The beauty of the ARM's conditional instructions is that they allow us to
illustrate the same principles of speculative execution with much simpler hardware.

The design of a superscalar processor is considerably more complex than the design of
a pipelined or multi-cycle processor. Because of this, use of a hardware description
language such as Verilog is helpful. Through the use of macros and functions, Verilog
source code allows the designer to hide unnecessary details early in the design process,
yet have those details fully specified in the final source code. Through the use of tasks,
the Verilog designer can make sure that the test code covers all cases the designer
considers important.
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10.12 Further reading
VLSI TECHNOLOGY, INC., Acorn RISC Machine (ARM) Family Data Manual, Prentice
Hall, Englewood Chiffs, NJ, 1990. Provides documentation on an early version known
as the ARM2, which had a three-stage pipeline. How to access documentation about
more current versions is given in appendix G.
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10.13 Exercises
10-1. The following Verilog code for a special-purpose machine describes the register
transfers carried out by four ARM instructions followed by two NOPs run on the
superscalar general-purpose ARM. What are these four instructions?

The external in
cycle version.

10-6. Using a 
the multi-cycl(
ASM.

10-7. Using a 
the pipelined )
ASM.

10-8. The regi:
ports and two N
(by 4 or 8) or 1
either 0 or 4) it
the register fili
special operati

10-2. In problem 10-1, which registers are involved with renaming?

10-3. In problem 10-1, which of the seven cases described in section 10.9.7.1 applies to
each state of the special-purpose machine?

ldl

I

I

Draw a block 

10-4. In problem 10-1, which of the instructions is executed speculatively? 10-9. The inter
ries. For this 
replace these 
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@(posedge sysclk) #1;
r[2] <= (posedge sysclk) rl] + r[4];
psr <= f(r[l] + r[4]);
renval <= (posedge sysclk) r[3] - r[4];
ren-tag <= (posedge sysclk) 3;
rencond <= (posedge sysclk) 'PL;

@(posedge sysclk) #1;
renval <= (posedge sysclk) r[5] + 5;
ren-tag <= @(posedge sysclk) 5;
if ((ren-cond == 'PL)&&(psr[31]==0)

(ren-cond == 'MI)&&(psr[31]==l)

(ren-cond == 'AL))
begin

r[6] <= @(posedge sysclk) renval;
r[ren-tag] <= @(posedge sysclk) ren-val;

end

else

r[6] <= @(posedge sysclk) r[3];
@(posedge sysclk) #1;
if ((ren cond == 'PL)&&(psr[31]==0) ||

(ren-cond == 'MI)&&(psr[31]==l) ||
(ren-cond == 'AL))

r[5] <= @(posedge sysclk) renval;

434



fanual, Prentice
y version known
mentation about

ribes the register
rOPs run on the

0.9.7.1 applies to

ively?

10-5. The register file for the multi-cycle and pipelined ARM is a multi-port memory
with two read ports and one write port (similar to that described in section 9.8), except
the program counter (r [ 15 ] ) must be able to be incremented (by 4) or loaded (with
r [ 15 ] plus an externally supplied 26-bit signed value) independently of the opera-
tions that occur on the other ports. Also, there must be a port supplying r [ 151 as the
address to memory. Assume that the register file has command inputs ldPC and incPC
to deal with these special operations:

ldPC incPC action
0 0 r[15] depends on write port
o 1 r[15]*-r[15]+4
1 0 r[15 -r[151+external
1 1 impossible

The external input is 'OFFSET4 in the pipelined version and 'OFFSET4+4 in the multi-
cycle version. Draw a block diagram that implements this synchronous register file.

10-6. Using a register file of the kind given in problem 10-5, design an architecture for
the multi-cycle ARM subset given in section 10.7, and give the corresponding mixed
ASM.

10-7. Using a register file of the kind given in problem 10-5, design an architecture for
the pipelined ARM subset given in section 10.8.1, and give the corresponding mixed
ASM.

10-8. The register file for the superscalar ARM is a multi-port memory with four read
ports and two write ports. The program counter (r [ 15] ) must be able to be incremented
(by 4 or 8) or loaded (with r [ 15 ] plus an externally supplied 26-bit signed value plus
either 0 or 4) independently of the operations that occur on the other ports. Assume that
the register file has command inputs ldPC, incPC and plus4PC to deal with these
special operations:

Draw a block diagram that implements this synchronous register file.

10-9. The interleaved memory described in section 10.9.2 has two conventional memo-
ries. For this problem, since the program does not change during execution, we will
replace these memories with ROMs (oddjm and evenm). One of the ROMs is for

RISC Processors

ldPC incPC plus4PC action
o a 0 r[15] depends on write ports
0 1 0 r[15]<-r[15]+4
0 1 1 r[15]<-r[15]+4+4
1 0 0 r[15]*-r[15]+'OFFSET4
1 0 1 r[15]<-r[15]-+'OFFSET4+4
1 1 - impossible
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words whose addr/4 is odd. The other ROM is for words whose addr/4 is even.
The problem is we cannot predict whether the CPU will need the odd and even instruc-
tions fetched into irI and ir2 or vice versa. Give a block diagram for the interleaved
memory that overcomes this problem using three muxes and an incrementor in addi-
tion to the ROMs.

10-10. Using a register file of the kind given in problem 10-8 and an interleaved memory
of the kind described in problem 10-9, design an architecture for the superscalar ARM
subset given in section 10.9.6, and give the corresponding mixed ASM.

10-11. As explained in appendix G, the ARM is actually a Princeton machine, which
stores its program and data in the same memory. Like many other RISC machines, the
ARM does not allow computation on values in memory. Rather, it only allows load and
store instructions. The two most important instructions of this kind are LDR
(ir[ 2 7:26] ==1&ir[20]==1)andSTR(ir[27:26]=1&ir[20]==0). There
are several addressing modes available, but for this problem only consider the simple
indexed addressing mode (ir [ 2 4: 21 ] can be ignored in this problem) that accesses
m [ 'OPA+ 'OPB] . Assuming a single-port memory of the kind described in section
8.2.2.3.2, give multi-cycle behavioral Verilog to implement such LDR and STR in-
structions along with the other instructions described in 10.7. Create appropriate test
code.

10-12. Assuming a multi-port memory of the kind described in section 9.6, modify the
pipelined behavioral Verilog of section 10.8.7 to implement the LDR and STR instruc-
tions described in problem 10-11. Create appropriate test code. Unlike chapter 9, oper-
and fetch does not occur until the execution stage of the pipeline, because the ARM has
a load instruction (LDR), rather than the addition instruction (TAD) of the PDP-8 which
required an extra stage to complete. This is important because 'OPA or 'OPB may not
be available until that final clock cycle. For the same reason, a STR followed by a LDR
from the same address will not require forwarding .

10-13. Rework problem 10-7 to support the instructions of problem 10-12. Note that
for the STR instruction there will need to be a mux that provides i r2 [ 15 : 12 ] to one
of the read ports of the register file.

10-14. Using a multi-port memory like that in section 9.6 for problem 10-12 may be
too expensive. Design a memory hierarchy, consisting of two direct mapped caches
(section 8.5) and a main memory (that takes five cycles per access). One cache is for
data manipulated by LDR and STR instructions, and uses the read, write, memreq,
memrack and memwack signals described in section 8.5.3. The other cache is only
for instructions being fetched, and uses ireq (which combines the roles of read and
memreq for this cache) and imemack. You may assume that no machine language
instruction will be modified during the execution of the program so that there is no
need for write-through with the instruction cache.
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10-15. Draw a pure behavioral ASM chart which combines problems 10- 12 and 10- 14.
In the event that an instruction is not in the instruction cache, let NOP(s) enter the
pipeline to stall until imemack is asserted. In the event that an LDR executes when the
operand is not in the data cache, use a wait loop similar to those in section 8.5.2. For
STR instructions, use a write buffer, which consists of registers that hold the memory
address and contents while it is being written. The second of two successive STR in-
structions will go to a wait state only if the first is still being processed by the memory
hierarchy. Because of the write buffer an STR followed by a LDR from the same ad-
dress creates a dependency that will require forwarding.

10-16. Assuming a powerful multi-port memory of some kind exists, modify the
superscalar behavioral Verilog of section 10.9.8.2 to implement the LDR and STR
instructions described in problem 10- 11. Create appropriate test code.

10-17. Modify the multi-cycle behavioral Verilog of section 10.7.6 to implement the
remaining data-processing instructions described by appendix G. Give test code.

10-18. Modify the pipelined behavioral Verilog of section 10.8.7 to implement the
remaining data-processing instructions described by appendix G. Give test code.

10-19. Modify the superscalar behavioral Verilog of section 10.9.8.2 to implement the
remaining data processing instructions described by appendix G. Give test code.

10-20. The ARM has two multiplication instructions which are identified by
ir[27 :22]==0 && irl[7:4]==9,MLJL(ir[21]==0)andMLA(ir[21] ==1):

MUL r[ir[19:16]]<-r[ir[3:0]]*r[ir[11:8]]

MLA r[ir[l9:16]]<-r[ir[3:0]]*r[ir[11:8]]+r[ir[15:12]

Assume that the ALU does not include a combinational multiply operation. Modify the
multi-cycle behavioral Verilog of section 10.7.6 to implement the MUL and MLA in-
structions using a shift and add algorithm such as the one explained in problem 2-7.
Test with code that computes a quadratic polynomial, a*x*x+b*x+c.

10-21. Modify the pipelined behavioral Verilog of section 10.8.7 to implement the
MUL and MLA instructions assuming a combinational multiplier can produce one prod-
uct per clock cycle. Use the same test code as problem 10-20.

10-22. Modify the superscalar behavioral Verilog of section 10.9.8.2 to implement the
MUL and MLA instructions. Use the same test code as problem 10-20.

10-23. Modify condx and f to allow for all sixteen conditions. Hint: f will need a 33-
bit input to detect overflow. Give a written justification why your test code is adequate.

10-24. Modify 'OPB to include shift and rotate.
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11. SYNTHESIS
There are two common uses of Verilog: simulation and synthesis. Chapters 3, 5 and 6
describe various features of Verilog that are useful for simulation, which is the inter-
pretation of Verilog source code on a general-purpose computer. This chapter gives
examples of synthesis, which is the automated process of transforming a subset of
Verilog statements into a netlist of gates whose interconnnections perform the algo-
rithm specified by the Verilog source code.

11.1 Overview of synthesis
There are two main vehicles for the implementation of synthesized designs: custom
integrated circuits (sometimes called Application-Specific Integrated Circuits orASICs)
and programmable logic. Custom integrated circuits are created by transforming the
synthesized netlist for a particular design (i.e., the equivalent of gate-level structural
Verilog) into a specific geometric arrangement of metal, semiconductor and insulator
materials on an integrated circuit. To manufacture such circuits, an automated tool
draws the physical layout of the circuit on what is called a mask. The mask is then used
with photolithography or similar processes to mass-produce the circuit on chips.

Programmable logic is fabricated in a similar way, but the masks used by the manufac-
turer do not represent some specific design. Instead, a programmable logic chip con-
sists of many building block devices together with a programmable interconnection
network. After the programmmable logic chip is manufactured and sold to the designer,
bits are transferred into the chip which customize the programmable logic for a specific
design. Thus, the same physical hardware might be used by two different designers to
implement two completely different designs. Because by itself programmable logic
lacks the ability for self-modification, it is not quite general purpose in the same sense
as a stored program machine (such as the Manchester Mark I, the PDP-8 or the Pentium
II). Historically, the concept of rewiring a fixed set of building block units to solve
different problems can be traced back to the ENIAC in the early 1940s. Modern tech-
nology now allows interconnections inside a programmable logic chip to be reconfigured
by simply changing the bits, rather than having to pull out and plug in wires as was the
situation with the ENIAC's plugboards. As a further convienence, Verilog synthesis
tools allow the modem designer (who may be ignorant of the wiring bit patterns) to
reconfigure the programmmable logic by simply changing source code. Thus, in many
instances, using programmable logic with a synthesis tool provides a viable alternative
to software.
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Regardless of whether the designer is targeting custom integrated circuits or program-
mable logic, the Verilog used for synthesis is similar, except the cost of synthesizing to
programmable logic is considerably cheaper than synthesizing to custom integrated
circuits.' This chapter concentrates on programmable logic because the necessary tools
should be accessible to interested readers.

11.1.1 Design flow
Figure 11-1 gives the design flow, which shows how various automated tools interact
with one another. The design flow shows how to synthesize and test a design. The
design starts as Verilog source code. It gets translated and downloaded into a kind of
programmable logic, known as a Complex Programmable Logic Device (CPLD). Fig-
ure 11-1 illustrates the files (shown as rectangles) that are produced as output of vari-
ous tools (shown as circles), and how, in turn, these files are used as input to other
tools. The tools shown in figure 11-1 include an optional synthesis preprocessor, the
main synthesis tool, a post-synthesis place and route tool targeting programmable logic
and a download tool that transfers the design into the programmable logic chip. Also, a
standard Verilog simulator plays an important part in the design flow.

The designer only creates two or three files: one file to be synthesized, one file for the
test code and one optional file for the physical (pin number) information. The remain-
ing files of figure 11-1 are created automatically. The file containing test code can be
used with the Verilog simulator to verify the operation of the file to be synthesized and!
or the results of synthesis. The file to be synthesized, which is input to the synthesis
tool (or possibly the preprocessor), contains one or more Verilog module(s) using be-
havioral and/or structural features of Verilog. For pure behavioral synthesis, there is
only one module, which, of course, is the highest level module of the file. For structural
synthesis, there could be multiple modules defined that are instantiated hierarchically
inside the highest level module of the file.

Only the portlist of this highest level module determines how the physical pins of the
synthesized chip will be used. The portlists of lower level modules, if any, only deal
with the internal connections within the chip and therefore have no influence on the
physical pins of the chip.2 . The input and output definitions for the highest level
module should include the width of each port, since some synthesis tools require this,
but all synthesis tools and simulators accept this syntactic variation. Each bit of each
port of the highest level module corresponds to a distinct physical pin of the synthe-

Assuming the design will be manufactured only in small quanities.
2Some tools, such as PLDesigner-XL, allow a design to be partitioned onto multiple chips, but even in such
a case, the partitioning is automatic and not influenced by the Verilog ports of lower level modules.

ware
439Synthesis



supplied
optional by designer

11.1.2 T
The file to b
unsynthesiza
tial for using
a module wii
neous results
thesis of a Ve
'include

There are sev

What is not r
saving time 
far easier to d
mented in a p

The most thoi
support some
tools. This ou
netlist produc
the designer 
unsynthesizec
tor that allows
physical chip.

Although som
sense when th
natives to finc
discover whic
makes a smal.
that the correl
algorithm thai
signer use sim
is much harde
when it is give
of the design I

I l

Figure 11-1 Designflowfor CPLD synthesis. VITO, VerilogEASY MACHPRO
and PLDesigner-XL are specific tools discussed in section 11.1.3.

sized chip. The easiest and often most efficient approach is to let the synthesis tool
choose how to connect these bits to the physical pins. In some cases, such as using a
circuit board where the programmable logic chip already has its sysclk and similar
signals soldered to specific pins, it is necessary for the synthesis tool to use specific
pins. There is no standard syntax in Verilog to indicate pin numbers in the file (. v) that
contains the highest level module, but many synthesis tools allow the designer to force
the tool to connect specific bits to specific pins with the physical information file (sec-
tion 11.3.6) or a similar approach.
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11.1.2 Testing approaches
The file to be synthesized does not contain test code, since test code usually contains
unsynthesizable statements such as $display. On the other hand, test code is essen-
tial for using a synthesis tool properly. Since the Verilog file used for synthesis contains
a module with a portlist, running that file by itself on a simulator would produce erro-
neous results since the ports would be disconnected ( bz). When a designer does syn-
thesis of a Verilog file, there needs to be another Verilog file with test code that does an
' include of the synthesizable Verilog.

There are several reasonable strategies for using a simulator to test synthesizable Verilog:

a) before synthesis
b) after synthesis but before place and route
c) after place and route
d) all of the above.

What is not reasonable is to neglect testing altogether. Designers who think they are
saving time by not writing test code for use in simulation are fooling themselves. It is
far easier to detect bugs in simulation than after the synthesized design has been imple-
mented in a physical chip.

The most thorough strategy is to simulate at each step in the design flow. Most vendors
support some kind of backannotated output from the synthesis and/or place and route
tools. This output is typically some kind of structural Verilog that gives the gate-level
netlist produced by the synthesis tool. By using this output together with the test code,
the designer may verify that the synthesized result behaves similarly to the original
unsynthesized Verilog. The backannotation provides timing information to the simula-
tor that allows the designer to predict the speed of the design without having to test the
physical chip.

Although somewhat less desirable, the strategy of simulating only after synthesis makes
sense when the designer needs to explore many different algorithms and design alter-
natives to find an acceptable solution to a problem. In such a case, the first issue is to
discover which algorithms fit within the available hardware resources. If the designer
makes a small mistake with an algorithm that fits within the desired chip, it is likely
that the corrected version of the algorithm will also fit. After having discovered an
algorithm that fits within the constraints of the hardware, it is important that the de-
signer use simulation to determine whether there are any such bugs in the algorithm. It
is much harder to debug the algorithm after it is embodied in physical hardware than
when it is given only as Verilog code for simulation, and so simulation should be part
of the design process.

Synthesis

-
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When the physical chip will not be operated near its maximum frequency, there often is
no need to simulate the back annotated Verilog resulting from synthesis.3 In such a
case, simulating only before synthesis may be reasonable. For example, the clock used
in this chapter is slow enough that propagation delay is not a concern with the designs
discussed below. We will do post-placement simulation only to illustrate the logical
correctness of the process, and not out of concern for speed. In commercial design,
speed is often an important issue, but correctness is always the first concern.
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11.1.3 Tools used in this chapter
There are five specific software packages that are used as example tools in the design
flow of this chapter. The details would differ slightly if other vendors' tools were used
instead, but the basic principles of the design flow would be similar. The first software
package, which is used only with the later examples in this chapter, is the Verilog
Implicit To One hot (VITO) synthesis preprocessor described in chapter 7 and appen-
dix F. The second software package is a synthesis tool, known as PLSynthesizer, which
is available from a company called MINC Incorporated. 4 The output of PLSynthesizer
is in a proprietary HDL known as DSL. PLSynthesizer also outputs structural Verilog
which is logically equivalent to the DSL for post-synthesis simulation. The third soft-
ware package is a place and route tool, known as PLDesigner, also from MINC, that
converts the output of PLSynthesizer into what is called JEDEC format, which is a
standard file format (. j 1) used by several different vendors for downloading to pro-
grammable devices. PLDesigner may optionally use a physical information (. pi) file
to indicate pin numbers. PLDesigner outputs the equivalent of the JEDEC file as a
structural Verilog netlist for post-placement simulation. In addition, PLDesigner cre-
ates a documentation file (. doc) which indicates pin numbers and logic equations (in
DSL syntax). The fourth software package is a download tool known as MACHPRO,
from a CPLD manufacturer known as Vantis,5 that reads the JEDEC file and sends the
desired configuration to the programmable logic chip. The fifth software package is a
simulator, such as VeriWell.
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The M4-128/64 is a CPLD chip manufactured by Vantis that comes in a 100-pin pack-
age, of which 64 pins are available for the designer to use.6 Each of these 64 I/O pins
may be used as one bit of an input, output or inout port. Internally, the M4-128/
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3Provided that the subset of Verilog used means the same thing in both synthesis and simulation.

4 MINC has made a restricted version of this technology known as VerilogEASY available to readers of this

book. See appendix F for details.

5Vantis is a spinoff from Advanced Micro Devices (AMD), and the M4-128/64 used to be known as the
AMD Mach445.
6 The restricted version of VerilogEASY only allows 40 of these pins to be used.
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64 contains 128 units, known as macrocells. Each macrocell contains a single OR gate,
and a single optional flip flop. The output of the OR gate either feeds the flip flop or is
directly available to other macrocells or 1/0 pins as combinational logic. The macrocell's
OR gate receives its inputs from a series of AND gates. Put another way, a particular
macrocell, m, can either implement sequential logic:

reg m;

always (posedge sysclk)
m= tl & t_2 &t1_3 & ...

t2_1 & t2_2 & t2_3 & ...

or alternatively, that macrocell can implement combinational logic:

wire m = tll & tl12 & t1_3 &...
t2_1 & t2_2 & t2_3 &

where the (optionally complemented) terns ti1, t1_2, etc. are either input wires
from the I/O pins or are the outputs of macrocells. In a particular macrocell, the de-
signer does not have to use all the terms possible, but there are fairly complex internal
constraints on how many and which terms may be used in particular macrocells. Be-
cause of the internal complexity of the CPLD, it is necessary for the designer to use a
tool. This is true even if the designer were to create a netlist manually because theplace
and route tool must transform the original netlist into one that fits within the complex
constraints of the CPLD.

Each I/O pin of the M4-128/64 has an optional flip flop, which the synthesis tool may
choose to disconnect (for a combinational logic function of the input). Considering the
macrocells (64 bonded to 1/0 pins and 64 hidden) and the I/O pins, the total number of
flip flops that the M4-128/64 contains is 192. When all its macrocells are fully in use,
the M4-128/64 is the equivalent of about 5000 gates.

Vantis makes a printed circuit board, known as a demo board, that has one M4- 128/64
mounted on it together with additional hardware, such as a 1.8432MHz oscillator 7 that
produces the sysc 1k signal. Although many similar types of devices exists the reason

7 When the inputs to every macrocell only come from the internal flip flops, the M4-128/64 may be clocked
up to 125 MHz. When macrocells are cascaded together to form complex combinational logic, the maxi-
mum frequency is lower. The 1.8432 MHz is slow enough to be safe for most designs.
8Of which the Field Programmable Gate Array (FPGA) is perhaps the most common. The FPGA uses a table
rather than the AND/OR structure of a CPLD, but such details are seldom important to a designer using a
synthesis tool. In the 1990s, companies such as Xilinx and Altera were leading suppliers of FPGAs.
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for describing the M4-128/64 demo board here is that it is well suited for small synthe-
sis experiments. The M4-128/64 demo board connects to a personal computer via the
parallel (printer) port of that computer. This personal computer runs the synthesis tools
(such as PLSynthesizer and PLDesigner) and also the MACHPRO software, which
downloads the configuration of hardware determined by the synthesis tools into the
M4-128/64. The downloading process changes which terms are connected to which
macrocells. If a designer makes a mistake, it is a simple matter to download a corrected
version of the design because the internal technology of the CPLD is similar to an
EEPROM.

11.2 Verilog synthesis styles
Regardless of whether the designer wants programmable logic or custom integrated
circuits, and regardless of which vendors' tools are involved, there are five basic styles
of Verilog code used in synthesis: behavioral registers, behavioral combinational logic,
behavioral implicit style state machines, behavioral explicit style state machines and
structural instantiation. Often a particular design contains a combination of these styles.

11.2.1 Behavioral synthesis of registers
As described in sections 3.7.2.2 and 4.4.4, the synthesizable model for a register is an
instantaneous assignment statement inside a block with a single time control syntax,
suchas @ (posedge sysclk), (posedge sysclk or posedge reset)
or @ (posedge sysclk or negedge reset) time control. All synthesis ven-
dors support this Verilog construct. Registers synthesize to a group of flip flops, typi-
cally D-type flip flops. Often there is combinational logic associated with a register. An
example of synthesizing a register is given in section 11.3.

11.2.2 Behavioral synthesis of combinational logic
There are two ways to describe combinational logic using behavioral Verilog that all
synthesis tools accept: the continuous assign statement (section 7.2.1) and an al-
ways block with a sensitivity list composed of all the variables in the block that are
not on the left of any of the =s inside the block (section 3.7.2.1).9 All synthesis vendors
support both of these constructs. Combinational logic synthesizes to the primitive com-
binational units of the target hardware which are AND/OR gates for CPLDs, lookup
tables for FPGAs and ROMs and arbitrary combinational gates for custom logic. An
example of synthesizing combinational logic is given in section 11.4.

9 With the additional requirement that none of the variables on the left of the =s occur on the right of the =s.
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11.2.3 Behavioral synthesis of implicit style state machines
One of the main themes of this book is the advantage of solving problems at the highest
level possible. Implicit style state machines provide this high-level approach for de-
signing hardware. Most of the examples in this book only consider the "pure behav-
ioral ASM" (section 2.1.5.1) or its equivalent coding with implicit style Verilog (sec-
tion 3.8.2.3). Although, as noted in chapter 1, this high level of design has a history that
goes back for decades before the introduction of Verilog, the implicit style has only
recently begun to capture the attention of many Verilog designers. The reason that
designers have become interested in this style is that it allows them to produce correct
designs in less time. Unfortunately, not all synthesis vendors support this style, and
there are some restrictions on the support provided by those that do. The preprocessor
described in appendix F and chapter 7 allows a designer to use a reasonable subset of
the implicit style even when the synthesis tool does not support it. Synthesizable im-
plicit style consists of multiple @ (posedge sysclk) inside an always, with a
few additional syntax restrictions that were not considered in earlier chapters. Examples
are given in sections 11.5, 11.6 and 11.9.

11.2.4 Behavioral synthesis of explicit style state machines
In contrast to the implicit style, the explicit style requires the designer to specify the
present state register and next state combinational logic, as explained in section 4.3. All
synthesis vendors support this style. An example is given in section 11.7.

11.2.5 Structural synthesis
The most primitive form of synthesis, which all tools accept, involves structural in-
stances. If all modules being synthesized use only structural Verilog, the result of syn-
thesis is simply to flatten the netlists (section 2.5) and fit the design within the con-
straints of the chip. More typically, some of the modules being instantiated have some
of the kind(s) of behavioral code described above. In this case, the behavioral code is
synthesized appropriately before the netlist is flattened. An example is given in section
11.8.

11.3 Synthesizing enabledregister
As described in section D.6, the enabled register is one of the most important sequen-
tial building blocks used in computer design. Suppose we wish to synthesize a two-bit-
wide enabled register. The behavioral Verilog for this is identical to section 4.2.1.1,
except that we substitute the literal [ 1: 0 ] to indicate the two-bit width since many
synthesis tools do not work properly with parameters and do not work properly unless
the size is mentioned in the input and output declarations:

Synthesis 445



The above Verilog should work with any synthesis tool. If we synthesize the above
with PLSynthesizer targeting the Vantis M4-128/64 chip mentioned above, we get the
following preplacement structural Verilog netlist:

Verilog Digital Computer Design: Algorithms into Hardware

module enabled register(di,do,enable,clk);

input [1:0] di;

input enable,clk;

output [1:0] do;

reg [1:0] do;

wire [1:0] di;

wire enable, clk;

always (posedge clk)

begin

if (enable)

do = di;

end

endmodule

module LPMDFF_2_x(Ck,CkEn,D,Q);

input Clk,ClkEn,D; output Q;
wire netO, netl, net2, net3, net4;
NAN2 I_2_NAN2(.IO(netO),.Il(netl),.O(net2));

NAN2 I_3_NAN2(.IO(Q),.Il(net3),.O(netl));

NAN2 I_4_NAN2(.IO(ClkEn),.Il(D),.O(netO));

INV I_l_INV(.IO(ClkEn),.O(net3));

DFF IO(.CLK(Clk),.D(net2),.Q(Q),.QBAR(net4));

endmodule

module LPMDFFl x(Cik,CikEn,D,Q);

input Clk,ClkEn; input[l:O]D; output[l:O]Q;
LPM_DF_2_x IO(.Clk(Clk),.ClkEn(ClkEn),

.D(D[l]),.Q(Q[l]));
LPM_DFF_2_x Il(.Clk(Clk),.ClkEn(ClkEn),

.D(D[O]),.Q(Q[0]));

endmodule

module enabled register(di,do,enable,clk);

input [1:0] di; output [1:0] do;

input enable,clk;

LPM_DFF lx dox x(.Clk(clk),.ClkEn(enable),

.D(di), .Q(do));
endmodule
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11.3.1 Instantiation by name
There are two kinds of structural instantiation syntax that are legal in Verilog. The first
kind is instantiation by position, as described in section 3.10. Had instantiation by
position been used above, the Verilog shown in bold would have been written as:

LPMDFF-l-x dox x(clk,enable,dido);

There is no other way to write this with the positional syntax of section 3.10. The other
kind of syntax that is legal in Verilog is instantiation by name, which is illustrated
above in bold. Like many synthesis tools, PLSynthesizer uses this alternative syntax
because the modules generated by the tool may have lengthy portlists. The advantage
of instantiation by name is that the ports may be rearranged in any order and the mean-
ing is the same. For example, the following:

are among the twenty-four permutations that mean the same thing.

11.3.2 Modules supplied by PLSynthesizer
The modules in section 11.3.1 (such as NAN2, INV and DFF) could contain detailed
gate-level timing information, but this netlist has not yet been placed. After placement
inside the M4-128/64 CPLD, the netlist is likely to be considerably different than the
one in section 11.3.1. Rather, the netlist in section 11.3.1 is primarily of use to show the
logical correctness of the transformation carried out by the synthesis tool. To illustrate
this transformation, we will define idealized versions of the modules it instantiates:

re Synthesis

ize the above
ve, we get the

LPMDFF_1_x dox_x(.D(di), Q(do),
.Clk(clk),.ClkEn(enable));

LPMDFF_1_x dox_x(.Q(do), D(di),
.ClkEn(enable),.Clk(clk));

module NAN2(IO,Il,o);

input IO,Il;output O;nand gl(O,IO,Il);
endmodule

module INV(IO,O);
input IO;output O;not g2(0,IO);

endmodule

I
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Continued

11.3.3 Technology specific mapping with PLDesigner
In addition to structural Verilog, PLSynthesizer produces the same netlist in a propri-
etary form, known as DSL. The place and route tool, PLDesigner, uses the DSL to
generate a netlist that is fitted within the constraints of the M4-128/64 CPLD. The
output of PLDesigner includes the JEDEC netlist and an equivalent post-placement
Verilog netlist. Such post-placement structural Verilog more accurately reflects the re-
sult of place and route than the netlist produced by PLSynthesizer. For this example,
the resulting structural Verilog'" of the enabled register is:

10 This Verilog was edited slightly for brevity.
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always @
begin
do[1]<:
do[O]<:

end

module DFF(CLK,D,Q,QBAR);

input CLK,D;output Q,QBAR;

assign QBAR = -Q;

always @(posedge CLK)Q = D;

endmodule

//Model automatically generated by Modgen Version 3.8

'timescale lns/lOOps

enabledoOO(dolOr,dollr,dillr,enable,dilOr,clk);

output dolOr, dollr;

input dillr, enable, dilOr, lk; supplyO GND;

wire pin-8,pin-1l,pin_12,pin_13,pin_93,pin_94,tmpl2,

tmpl4,tmpl5,tmpl6,tmpl7,tmpl8,tmpl9,tmp2O,tmp2l,tmp22;

portin PIl(pin-8,dillr); portin PI2(pin ll,enable);

portin PI3(pin-12,dilOr); portin PI4(pin_13,clk);

portout Pl(dolOr,pin-93); portout P02(dollr,pin_94);

mbuf Bl(tmpl2,pin-13); and A(tmpl5,pin_12,pin_11);

not Il(tmpl7,pin_11); and A2(tmpl6,pin-93,tmpl7);

or 0l(tmpl4,tmpl5,tmpl6);
dffarap DFFl(pin_93, tmpl2, tmpl4, GND, GND);

mbuf B2(tmpl8,pin_13); and A3(tmp2O,pin_8,pinll);

not I2(tmp22,pin_11); and A4(tmp2l,pin-94,tmp22);

or 02(tmpl9,tmp2O,tmp2l);
dffarap DFF2(pin-94, tmpl8, tmpl9, GND, GND);

endmodule
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module enabledo(do, di, enable, lk);
output [1:0] do;
input [1:0] di;
input enable, clk;

enabledoOO Ul(.dol0r(do[O]), .dollr(do[l]),
.dillr(di[l]), .enable(enable),
.dil0r(di[O]), .clk(clk));

endmodule

Although much of the syntax used in the above code should be familiar from chapter 3,
there are a few features of Verilog used in the above code (shown in bold) that were not
mentioned previously. First is timescale which allows the simulator to attach the
proper meaning to $ time that corresponds to the actual physical hardware. Second is
the supplyO declaration, which is a shorthand for a continuous assignment (section
7.2.1) of the one-bit wire GND to 0, which models the connection to electrical ground
inside the M4-128/64. Third are some user-defined modules (portin, portout,
mbuf and dffarap) supplied by PLDesigner and explained in section 11.3.4 that
model hardware resources of the M4- 128/64. The name of the top level module gener-
ated by PLDesigner derives from the file name (enabledo. v) rather than the behav-
ioral module name (enabled-register), and the order of the ports of this module
may differ from that of the original behavioral Verilog which is why instantiation by
name is done.

In addition to the post-placement structural Verilog, PLDesigner produces a documen-
tation file (. doc) which summarizes the logic equations implemented by the netlist:

do[1].D=do[l]*/enable+di[l]*enable;

do[l].CLK=clk;

do[O].D=do[O]*/enable+di[O]*enable;

do[O].CLK=clk;

This is a much more primitive language than Verilog. The . D and . CLK notations
indicate the macrocells are being used as D-type flip flops. To put the above in the
more understandable Verilog form, the notation for Boolean operations ('*', '+', '/')
must be rewritten into the corresponding Verilog notation ('&', " '-'). The following
manual translation is the equivalent behavioral Verilog:

always @(posedge clk)
begin

do[l]<= #((di[l]&enable)l(-enable&do[l]));
do[0><= #((di[o]&enable)l(enable&do[OJ));
end

Synthesis 449
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The assignment statements must be non-blocking (with time control of #0) and must be
listed inside an always block with a single @ (posedge clk) as the time control.
This non-blocking assignment is somewhat different than the one used in earlier chap-
ters. It is used above so that the order in which the Verilog statements occur will not
effect the result. Since the non-blocking assignments use #0, the effect is almost the
same as plain =, except all of the right-hand values will be evaluated before any of the
left-hand values are changed. Because of the single @ (posedge clk) at the begin-
ning of the always block, do will only change at the rising edge of the clock. The
only reason to manually rewrite these logic equations back into Verilog is to describe
the meaning of the . doc file. This file explains the transformation that PLSynthesizer
has performed on the original behavioral Verilog more succinctly than the netlist.

11.3.4 Modules supplied by PLDesigner
Like most other place and route tools, PLDesigner allows for backannotation of timing
information in the netlist after the place and route phase. Such post-placement infor-
mation is more accurate than post-synthesis preplacement information because the place
and route tool knows how signals will be routed through the actual chip. The details of
how such information gets inserted into the structural Verilog output from a place and
route tool varies among different vendors. In the case of PLDesigner, the modules used
in section 11.3.3, such as portin, portout and mbuf, can contain detailed gate-
level timing information, such as specify blocks, to model the interconnect delays
that occur between macrocells in the M4-128/64. PLDesigner also generates an . sdf
file which includes actual min/typ/max timing information for the routed circuit. For
our purposes, we are not concerned about such detailed timing information but are
rather only interested in the logical correctness of the transformation carried out by the
place and route tool. To illustrate these transformations, we will define idealized ver-
sions of these modules. The first three of these are simply buffers that pass the input (i)
through unchanged as the output (o):

The reason PLDesigner uses all three of these is that, in the actual backannotated Verilog,
these might have different delays associated with them because they correspond to
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module portout(o,i);

input i; output ; buf b(o,i);
endmodule

module portin(o,i);

input i; output ; buf b(o,i);
endmodule

module mbuf(o,i);

input i; output ; buf b(o,i);
endmodule

450



and must be different hardware units within the M4-128/64. port in corresponds to routing a sig-
ime control. nal from an 1/0 pin used as an input on a wire that connects to an internal macrocell.
earlier chap- portout corresponds to taking the output of an internal macrocell and routing it to an
,cur will not 1/0 pin to be used an output. mbuf corresponds to an internal connection between
s almost the macrocells. Logically, all three of the above are equivalent. The only difference would
re any of the be timing, which we are ignoring in this example.

e clock. The Although Verilog provides built-in gates for combinational logic, such as and, or and
to describe not, Verilog does not provide built-in gates for sequential logic." Therefore a placeSynthesizer and route tool must supply modules for the sequential logic resources of the target

netlist. technology, in this case the M4-128/64. Recall that each macrocell contains a D-type
flip flop, which can be modeled as:

module dffarap(Q,CLK,D,AR,AP);

on of timing output Q;
ement infor- input CLK,D,ARAP;
use the place reg Q; -always (posedge CLK or'he details of posedge AP or posedge AR)

a place and begin
nodules used if (AP)
etailed gate- Q = 1;
nnect delays else if (AR)
Ltes an . sdf Q = 0; 
I circuit. For else
ation but are Q D;
ed out by the end

endmoduledealized ver-
the input (i) The above models a flip flop with an asynchronous reset (AR) and an asynchronous

preset (AP). Such asynchronous signals are typically only used to initialize a controller
when it is first powered up (see sections 4.4.4 and 7.1.6). In this example, these asyn-
chronous signals are not used, and so they are instantiated with a connection to GND.

11.3.5 The synthesized design
As explained in figure D-17, an enabled register can be described with a block diagram
consisting of a mux and a simple D-type register. Since figure D-17 is going to be
synthesized into a physical component, either the designer or the synthesis tool must

11 For a CPLD, there is no delay attributed to a particular AND or OR gate. Rather the delay is associatedtated Verilog, with the macrocell. For this reason, PLDesigner-XL uses built-in delayless and, or and not. Place and
:orrespond to route tools for FPGAs or custom logic may take a different approach.
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choose which signals will go in and out of the pins of the chip. In this instance, there are
four bits of information being input and two bits of information being output, as illus-
trated in figure 11-2.

die
2'

enableI

nlk 

| 4dO
"2* 

Figure 11-2. Physical pins of M4-128/64 usedfor two-bit enabled register.

The structural Verilog refers to the internal wires that connect to the 1/0 pins with the
prefix pin_. This could be a little confusing since, for example, pin13 is not actu-
ally the physical pin 13 but rather is the signal from that pin after it has been buffered
internally by the M4-128/64. In this design, pin_13 is logically the same as the clk
port, which presumably would connect to the global sysclk signal. The instance U1
of enabledoOO separates the individual one-bit nets from the multi-bit ports. There
are buses (which are oversimplified in this diagram) that connect the I/O pins to the
macrocells. The actual implementation of the synthesized design occurs in the
macrocells.

The synthesis tool has bit blasted the design into individual one-bit-wide bit slices,
each one of which fits into a single macrocell, as shown in figure 11-3.

The circuit in figure 11-3 is a literal transcription of the Verilog produced by the syn-
thesis tool. Notice how each bit slice of the mux has turned into an AND/OR gate
arrangement. When enable (pin_11) is asserted, the outputs of theA2 andA4AND
gates will be zero. Thus, di [0] (pin_12) and di [] (pin_8) will pass through
their respective OR gates (01 and 02) to become the new values of their respective flip
flops (DFFI and DFF2) at the next rising edge of clk (pin_ 13). When enable is
not asserted, the old values (pin_93 and pin_94) will be reloaded into their respec-
tive flip flops (DFFI and DFF2) at the next rising edge of clk.

Verilog Digital Computer Design: Algorithms into Hardware

pin-

pin-

pin.

Figure 11-:
slices.

11.3.6 Ma
The physical I
designer wish
For example,
ware soldered

The wires wl
Diodes (LEDs:
signals control
at the top and c
should be 1 to

------------------------------------------------------I .. .- I ------------------------------------------- I

I

l

452



ance, there are
Output, as illus-

ir dO
> 2

ilr

pins with the
3is not actu-
een buffered
eas the clk
instance U I
sports. There
O pins to the
-ccurs in the

ide bit slices,

Xd by the syn-
ND/OR gate
and A4 AND
pass through
respective flip
an enable is
their respec-

re

,ister

/O pins
_13 is
is been
iarne as
The ins
.-bit pI

- 1/0 pi

n occu

t-wide 
3.

luced b
Ln AND 

b A2 an(
will ps
eir resps
When e
into thi

Iware

,ister

(O pins with the
_13 is not actu-
is been buffered
iame as the c1k
The instance U1
-bit ports. There

1/0 pins to the
n occurs in the

t-wide bit slices,
3.

[uced by the syn-
in AND/OR gate
b A2 and A4 AND

will pass through
eir respective flip
When enable is
into their respec-

lware

pin_8-'

- pin_93

MACROCELL !
tm 2 I pin_94

tmnp22 tmpl8 DFF2
Ji ~ ~ r ~ ~ N p in 13 B

Figure 11-3. Macrocells in M4-128/64 implementing enabled register bit
slices.

11.3.6 Mapping to specific pins
The physical pin numbers shown in figure 11-2 were chosen by PLDesigner. Often a
designer wishes to override the choices automatically made by the place and route tool.
For example, on the M4-128/64 demoboard, certain pins are attached to other hard-
ware soldered on the board:

The wires whose names above begin with "a" through "g" are for Light Emitting
Diodes (LEDs) in seven-segment displays. For example, the active low al . . . gi
signals control the leftmost digit. These seven segments are labeled clockwise, with al
at the top and gl at the center; thus bl, cl, f 1 and gl should be 0 and al, dl and el
should be to display the digit "4." The 1.8432MHz clock is available as sysclk,
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al:93 a2: 5 a3:19 a4:31 sysclk:13
bl:94 b2: 6 b3:20 b4:32 reset: 4
c1:95 c2: 7 c3:21 c4:33 sw3:18
dl:96 d2: 8 d3:22 d4:34 sw2:54
el:97 e2: 9 e3:23 e4:35 swl:63
fl:98 f2:10 f3:24 f4:36 swO:68
gl:99 g2:11 g3:25 g4:37
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and a debounced push button provides the active low reset, which is also activated
when the demoboard is powered up. There are four input DIP switches (swO 0 sw3)
available on the demoboard.

These input pins can be named anything the designer wishes. For example, in the en-
abled register of section 11.3, it might be reasonable to take the enable from the
switch on pin 54, and the di bus from the switches on pins 63 and 68. The two do bits
might directly drive the al and bl LED segments' 2 on pins 93 and 94. Note that be-
cause of the active low nature of the LEDs, the light will not illuminate when the bit is
a one, but it will light up when the bit is a zero. The following file, whose name must be
similar to the name of the file that contains the module to be synthesized but with the
extension .pi, is required to indicate the pin numbers to PLDesigner:

11.4 Synthesizing a combinational adder
As described in section C.3, the adder is one of the most important combinational
building blocks used in computer design. There are many ways (sections 3.10.5 through
3.10.7) to code an adder in Verilog, both behaviorally and structurally. Of these, the
behavioral description is the easiest for the designer:

As in the last example, the input and output definitions need a size (four bits in
this case). When the above is synthesized similarly to the last example, PLDesigner
produces a . doc file that describes a series of logic equations for each bit of s. The
following is a manual translation of this back into Verilog:

12 Which just happen to be the same as the last example.
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module adz
output [3
wire [3:0
assign s[(
assign s[:

(a[ll&a[(
(-a [ ]&-E

assign c2
&b[21&b[1]

|(a[2]&a[1
assign s2
|(a[2]&-a[
(a[2]&-a[
(a[2]&a[1
(a[2]&a[0

|(-a[2]&a[
|(-a[2]&-a
|(a[2]&-a[
(-a[2]&a[

assign s[3

|(-a[3&-b
endmodule

Of course, the d
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11.4.1 Test
In any event, the
6.3.2) that does,

{MAXSYMBOLS 0,MAX-PTERMS ,POLARITYCONTROL TRUE,
MAXXORPTERMS ,XORPOLARITYCONTROL FALSE};
device target 'partnumber amd MACH445-12YC';
OUTPUT do[l]:93;OUTPUT do[0]:94;INPUT clk:13;
INPUT enable:54;INPUT di[l]:63;INPUT di[0]:68;

end device;

module addpar(s,a,b);
output [3:0 s;
input [3:0] a,b;

reg [3:0] s;

wire [3:0] a,b;

always @(a or b)

s = a + b;
endmodule
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Of course, the designer would probably use the backannotated output from PLDesigner.
This lengthy output, which is equivalent to the above assign statements, has been
omitted for brevity. In this output, the internal name for the one-bit carry wire varies
depending on how the module is synthesized. The name might be something like
LPMADDSUBl_x__nO02. Itmightalsobejustc[3] asshownabove.

This result from synthesis is quite a bit more complicated than one might expect when
solving the same problem manually using full-adders. The above is complex because
the place and route tool utilizes the wide AND/OR gates that exist in each macrocell of
the M4-128/64. In the classical ripple carry adder (section 2.5), there needs to be a
distinct carry signal input to each full-adder. Here the tool has eliminated the carry for
all but the most significant bit by merging the logic equations for several full-adders
together in a process known as node collapsing. This has the effect of lowering the
propagation delay.

11.4.1 Test code
In any event, the designer needs to test the adder. Here is test code (sections 3.10.5 and
6.3.2) that does an exhaustive test:

Synthesis

module addpar(s,a,b);
output [3:0] s; input [3:0] a,b;
wire [3:0] s,a,b; wire [3:3] c;
assign s[0] = ((a[0]&-b[0])j(-a[0]&b[0]));
assign s[l] = ((a[l]&-b[l]&-b[O])|(a[l]&-a[0]&-b[l])
l(a[l]&a[0]&b[l]&b[0 )1(-a[l]&a[0]&-b[l]&b[0])
1(-a[l]&-a[0]&b[l])1(-a[l]&b[l]&-b[0]));
assign c[3]=((a[l]&a[0]&b[2]&b[0])1(a[2]&b[2l)1(a[O]
&b[2]&b[l]&b[0])1(a[2]&a[1]&b[l]) (a[l]&b[2]&b[l]))
I(a[2&a[l]&a[0&b[0)1(a[2&a[0]&b[l]&b[0]);
assign s[2] = ((a[2]&-b[2]&-b[1&-b[0])
l(a[2]&-a[l]&-b[2]&-b[1])1(a[2]&-a[l]&-a[0]&-b[2])

l(a[2]&-a[l]&-b[2]&-b[0])1(-a[2]&-a[l]&b[2]&-b[l])

l(a[2]&a[l]&a[0]&b[2]&b[0])1(-a[2]&a[l]&-b[2]&b[l])

|(a[2]&a[0]&b[2]&b[l]&b[0])1(-a[2]&b[2]&-b[l]&-b[0])

1(-a[2]&a[l]&a[0]&-b[2]&b[0])1(a[2]&a[1l]&b[2]&b[])
1(-a[2]&-a[l]&-a[0]&b[2])1(-a[2]&-a[l]&b[2]&-b[0])

l(a[2]&-a[0]&-b[2]&-b[1])1(-a[2]&-a[0]&b[2]&-b[l])

(-a[2]&a[0]&-b[2]1&b[1]&b[0]));
assign s[3] = ((a[3]&-b[3]&-c[3])1(a[3]&b[31&c[3l)
1(-a[3]&-b[3]&c[3])1(-a[3]&b[3]&-c[3]));
endmodule
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s[1 ]

Figure 11-4. Macrocells in the M4-128/64 for low-order two-bit slices of adder
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module test;

integer ia,ib,numerr;

reg [3:0] a,b; wire [3:0] sum;

addpar al(sum,a,b);

initial

begin
numerr = 0;
for (ia=O; ia<=15; ia=ia+l)

for (ib=O; ib<=15; ib=ib+l)

begin

a=ia; b=ib;

#1 $display("%b %b %b",a,b,sum);

if ((ia+ib)%16 !== sum)

begin
$display( "error");numerr=numerr+l;

1
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Continued.

The original behavioral adder, the preplacement netlist and the post-placement netlist
all produce the correct results for the 256 combinations of inputs. If the width of the
inputs were much larger, such an exhaustive test would be impossible.

As in the last example, we are ignoring the back annotated delay by supplying delayless
modules for portin, portout and mbuf. If the backannotation capability were
used, the #1 would have to be changed to an appropriate delay longer than the longest
propagation delay of the synthesized design.

11.4.2 Alternate coding with case
An alternate way to describe this adder is to use behavioral statements that express the
mathematics behind the ripple carry approach:

Synthesis

ces

end

end

$display("numerr=",numerr);

end
endmodule

I

ces of adder

module addpar(s,a,b);
output [3:0] s;
input [3:0] a,b;

reg [3:0] s;
-j _ f t) i a,-

reg [3:0] c;

function car;
input a,b,c;

begin
case ({a,b,c})

3'bOOO: car = 0;
3'bOOl: car = 0;
3'bO10: car = 0;
3'bOll: car = 1;
3'blOO: car = 0;
3'bll: car = 1;
3'bllO: car = 1;
3'blli: car = 1;

endcase
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Continued

Here car is a function that models the carry required for the next higher bit position
when adding three bits, and sum is the corresponding result in the current bit position.
These functions may be coded several ways.

The case statement approach used above is a direct expression of the truth table for a
full-adder. For synthesis, we do not consider bx and bz values in the cases the way
that might be necessary for simulation. This is because the synthesis tool implements
the case statement using = = rather than ===, which is all that is physically possible in
hardware:
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endfunction

function sum;
input a,b,c;

begin

case ({a,b,c})

3'bOOO: sum = 0;
3'bOOl: sum = 1;
3'bOlO: sum = 1;
3'bOll: sum = 0;
3'blOO: sum = 1;
3'blOl: sum = 0;
3'bllO: sum = 0;
3'blll: sum = 1;

endcase

end

endfunction

always @(a or b)

begin

c[O] = 0;

s[0] = sum(a[0],b[O],c[O]);
c[l] = car(a[O],b[O],c[O]);

s[l] = sum(a[l],b[l],c[l]);
c[2] = car(a[l],b[l],c[l]);
s[2] = sum(a[2],b[2],c[2]);
c[3] = car(a[2],b[2],c[2]);

s[3] = sum(a[3],b[3],c[3]);

end

endmodule
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Either the case or the i f statement approach is acceptable because for the three bits
of input, all 2 possible cases are listed. Such a situation is known as a full case. The
problem is that without a default clause in the case or an equivalent else at the
end of the nested i fs, the synthesis tool will not synthesize combinational logic prop-
erly except for a full case. For example, the following case, which only lists the ones
of the function, is not full:

A case like this that is not full will synthesize to what is known as a latch, which is an
asynchronous sequential circuit, rather than the desired combinational logic. To make
the case fullrequires using default:sum=O; intheabove orusing a full case
synthesis directive. A synthesis directive is a comment which would be ignored by a
simulator, but which causes the synthesis tool to alter its operation. Use of synthesis
directives such as full case is common, but is dangerous because it may cause
synthesis to disagree with simulation. It is better to make the case statement be full by
supplying the appropriate default since that acts the same in both synthesis and
simulation. Another common but dangerous directive is parallel case, which
changes how synthesis interprets the case to be like ifs without elses.

An alternative approach to the case statement would have been to use logic equations
inside the functions, such as sum=a^b~c.

In any event, the combinational logic is defined using an always block having the
same sensitivity list as the example in the last section that invokes the functions. An-
other way this could have been defined is with eight separate continuous assignment
statements rather than the one always block:

Synthesis

if ({a,b,c}==3'bOOO) car = 0;
else if ({a,b,c}==3'bOOl) car = 0;
else if ({a,b,c}==3'bOlO) car = 0;
else if ({a,b,c}==3'bOll) car = 1;
else if ({a,b,c}==3'blOO) car = 0;
else if ({a,b,c}==3'blOl) car = 1;
else if ({a,b,c}==3'bllO) car = 1;
else if ({a,b,c}==3'blll) car = 1;

case ({a,b,cl)
3'bOO1: sum = ;
3'bOlO: sum = 1;
3'blOO: sum = 1;
3'blll: sum = 1;

endcase
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assign s[0] = sum(a[0],b[O],c[O]); cycle appro;
assign c[1] = car(a[0],b[O1,c[O]); proach take
assign s[1] = sum(a[l],b[1],c[1]); single-cycle
assign c[2] = car(a[l],b[1],c[1]);
assign s[2] = sum(a[2],b[2],c[2]); .1 F
assign c[3] = car(a[2],b[2],c[2]); .5.1 F
assign s[3] = sum(a[3],b[3],c[3]); In order for

easily, the sy
described in

Regardless of which of these variations we choose, the result is isomorphic to the origi- dsurt the i
nal. This is because the wire [3 :0] c is internal, and the synthesis tool can optimize le during a i
it away, just as it did when synthesizing directly from a+b. The only distinction is the man @ a o
name chosen for c [ 3] , but otherwise the result is an identical netlist. In this example, many @ (po
all the extra coding of the sum and car functions did not change the actual structure of chalgorith
the synthesized circuit. The details of the synthesized logic equations were dictated of the sum al
more by the capabilities of the CPLD exploited by the place and route tool than by the designer
anything that the designer codes. The main responsibility of the designer is to write always blo
correct Verilog. Usually, the designer should choose the modeling style which is easi-
est to understand (a+b in this example) and trust the synthesis tool to choose the logic
equations that fit into the target device.

11.5 Synthesizing an implicit style bit serial adder
Rather than worrying about gate-level details, the designer should consider algorith-
mic alternatives. Although addition of two binary numbers usually is implemented as
combinational logic, there are other approaches. The dependent sequence of calls to
the sum and car functions inside the module addpar of section 11.4.2 makes it clear
that the conventional ripple carry adder is the combinational logic required to imple-
ment one of the algorithmic variations explained in chapter 6: the single-cycle ap-
proach. Assuming we have a single register to load the sum at the next rising edge of
the clock, the ripple carry adder computes in a single clock cycle all the information
needed to form the next sum. In earlier chapters, we have assumed such a building
block whenever we need to add. This approach for the module addpar is sometimes
known as a bit parallel adder because all of the bits of the sum are available in parallel
by the end of a single clock cycle.

Chapter 6 also describes other algorithmic alternatives besides the single-cycle ap-
nrnnch. One f thee is the - --ti-cvele a Jrach in tIeI -I .-li-ryv ------ L., V-1LA1

step in the dependent sequence is scheduled to occur in a different clock cycle. It is
often possible to clock a multi-cycle machine faster than is possible with the single-

I Verilog Digital Computer Design: Algorithms into Hardware

I assign c[O] = 0; I
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cycle approach because less computation occurs per clock cycle. The multi-cycle ap-
proach takes several of these faster clock cycles to achieve the same result that the
single-cycle approach achieves in one slower clock cycle.

11.5.1 First attempt at a bit serial adder
In order for the designer to have the freedom to explore such algorithmic variations
easily, the synthesis tool should support the implicit style of Verilog. (The preprocessor
described in chapter 7 and appendix F is available for those synthesis tools that do not
support the implicit style.) With the implicit style, whether something occurs in paral-
lel during a single cycle or in series during multiple cycles is simply a question of how
many @ (posedge sysclk)s the designer uses. In the case of the bit parallel addi-
tion algorithm given in section 11.4.2, it is a trivial matter with implicit style Verilog to
change it to what is called a bit serial addition algorithm, which produces only one bit
of the sum at a time. To do this, the assigns become non-blocking assignments, and
the designer inserts @ (posedge sysclk) at appropriate places inside the implicit
always block:

ware
Synthesis

'define CLK (posedge sysclk)
'define ENS #1

always
begin

@(posedge sysclk) 'ENS;
C[O] <= 'CLK 0;

@(posedge sysclk) 'ENS;
s[O] <= 'CLK sum(a[O],b[O],c[O]);
c[lJ <= 'CLK car(a[O],b[O],c[O]);

@(posedge sysclk) 'ENS;
s[l] <= 'CLK sum(a[l],b[l],c[l]);
c[2] <= 'CLK car(a[l1,b[1],c[1]);

@(posedge sysclk) 'ENS;
s[2] <= 'CLK sum(a[2],b[2],c[2]);
c[3] <= 'CLK car(a[2],b[2],c[2]);

@(posedge sysclk) 'ENS;
s[3] <= 'CLK sum(a[3],b[3],c[3]);

end
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11.5.2 Macros needed for implicit style synthesis
In order for the implicit style to be practical, the result of simulation of implicit style
Verilog before synthesis must agree with the result of simulation after synthesis (and,
of course, the behavior of the physical hardware). Some synthesis tools are restricted
as to the use of time control, but as discussed in section 3.8.2.1, simulators need # time
control to simulate non-blocking assignment properly inside implicit style blocks. There-
fore, in order that simulation agree with synthesis, it is recommended that all of the
time control required for simulation be coded as macros. Only the time control needed
by the synthesis tool (the @ (posedge sysclk) that denotes a state boundary out-
side a non-blocking assignment) is written without a macro. The other two forms of
time control [the #1 and the @ (posedge sysclk) inside the non-blocking assign-
ment] are written using macros ( ENS and ' CLK). This way, they can simulate prop-
erly when the macros are defined as shown above, but they can be synthesized properly
when the macros are defined as empty.

11.5.3 Using a shift register approach
A disadvantage of the code in section 11.5.1 is that it performs similar computations on
different bits of the data. The synthesis tool will either have to duplicate the hardware
to implement the sum and car functions multiple times, or use muxes to allow re-
source sharing, in a way analogous to the central ALU approach. To avoid this prob-
lem, we can use a shift register approach:

Verilog Digital Computer Design: Algorithms into Hardware

A synthesis
earlier exar
r2[0], c
can now occ
bit wire fo
suffices here

With this sh:
cycle, r2 is
cycle, r2 [ 0
third clock c
cessed first,;
bit serial ted

The role of 
rl is reused
result. As a 14
become the 
such bits are
result bits wi

reg c;
reg [3:0] rl,r2;

~(posedge sysclk) 'ENS;
r2 <= 'CLK ; rl <= 'CLK x;
c <= 'CLK 0;
@(posedge sysclk) 'ENS;

rl <= CLK sum(r1[0],r2[03,c),r1[3:1]};
c <= CLK car(rl[O],r2[0],c);
r2 <= 'CLK r2 >> 1;
Q(posedge sysclk) 'ENS;
rl <= 'CLK {sum(rl[O],r2[0],c),rl[3:1]);
c <= CLK car(rl[O],r2[0],c);
r2 <= 'CLK r2 >> 1;
@(posedge sysclk) 'ENS;
rl <= 'CLK {sum(rl[O],r210],c),rl[3:1]};

c <= 'CLK car(rl[O],r2[0],c);
r2 <= 'CLK r2 >> 1;
@(posedge sysclk) 'ENS;
rl <= 'CLK {sum(rlC0],r2E0],c),rl[3:1]};
c <= CLK car(rl[O],r2[0],c);
r2 <= 'CLK r2 >> 1;
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A synthesis tool can produce a more efficient netlist from the above than from the
earlier example in section 11.5.1 because the same computations, sum (rl [01,
r2 [0], c) and car(rl [0], r2 [0], c), occurin each state. Resource sharing
can now occur at no added cost. Also, in the above code there is no need to use a four-
bit wire for c since a single-bit c can be reused in each state. A single-bit c variable
suffices here because we are going to discard the carries in the end, anyway.

With this shift register approach, r2 starts out with the value of y. During each clock
cycle, r2 is shifted over one position to the right. Therefore, during the first clock
cycle, r2 [0] is y[0]. During the second clock cycle, r2 [0] is y[1]. During the
third clock cycle, r2 [0] is y [2], etc. In other words, the least significant bit is pro-
cessed first, and greater significant bits are processed later. This order is essential to the
bit serial technique.

The role of rl is somewhat more complicated: rl starts out with the value of x, but
ri is reused not just for holding the original bits of x but also for holding bits of the
result. As a low-order bit of x shifts out of r2, the high-order bit of r2 is scheduled to
become the corresponding sum (rl [0] , r2 [0] , c) bit. Although in the beginning,
such bits are to the left of where they need to be, by the completion of the process, the
result bits will have been shifted over to the proper position.

11.5.4 Using a loop
There is still room to improve the code given in section 11.5.3 because it takes many
states (and therefore many flip flops in a one hot controller) to produce the answer.
Although the bit serial approach necessarily takes a number of clock cycles proportion-
ate to the number of bits in the word, the size of the controller should not also have to
be proportional to the word size.

Here is where the flexibility of the implicit style is useful. With the implicit style, the
designer can roll up the related computations that occur in separate states into one state
inside a while loop. (Rolling up identical computations into a loop is the opposite of
the loop unrolling explained in section 10.9.9.4 used by some optimizing compilers for
RISC machines.) Although rolling all of these states into a single-loop state does not
increase the speed of the machine, it usually will reduce the number of gates required
to implement the machine. There is however, an added complication. There needs to be
a loop counter that determines how many times the machine should repeat the loop
state.

In previous chapters, it would have been natural to use a binary counter. Instead, here
we will use a shift register (r3) to count in a unary code because with this it will be
easier to understand the resulting logic equations after synthesis:
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When the most significant bit of r3 becomes one, the loop stops. In other words, r3
contains the unary values 0001, 0010, 0100 and 1000 in successive clock cycles. The
effect is similar to what would happen by counting 0, 1, 2 and 3. Since the computation
only depends on the number of times the loop repeats, and not on the value of r3, the
above unary code is just as reasonable as a binary code. A binary code might produce a
somewhat smaller synthesized netlist, but the unary code will produce a synthesized
circuit that typically runs faster and is easier to understand.

The above Verilog includes the friendly user interface described in sections 2.2.1 and
7.4.2. The signal ready is asserted when the machine is able to accept inputs. The
user pulses pb for exactly one clock cycle to cause the machine to compute the sum,
which will be available in rl when the machine exits from the while loop.

11.5.5 Test code
The implicit style block of section 11.5.4 together with the function definitions from
section 11.4.2 can be placed inside the module to be synthesized:
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l: always
2: begin
3: ready <= CLK 1;
4: @(posedge sysclk) 'ENS; //ff_4
5: r2 <= 'CLK y;
6: r3 <= 'CL 1;
7: c <= 'CLK 0;
8: if (pb)
9: begin

10: ready <= @(posedge sysclk) 0;
11: @(posedge sysclk)'ENS; //ff 11
12: rl <= 'CLK x;
13: while (r3[3J)
14: begin
15: @(posedge sysclk) 'ENS; //ff-15
16: rl <= 'CLK{sum(rl[0],r2[0],c),rl[3:1};
17: c <= 'CLK car(rl[O],r2[0],c);
18: r2 <= CLK r2 >> 1;
19: r3 <= 'CLK r3 << 1;
20: end
21: end

22: end

module v
input

output

wire r(
wire [:

endmodulE

Prior to synt
test, we use t
the module ti
tion 11.4.1, tl
adapt to the 

nodule tor
reg [3:0]

wire reac
integer r

cl #5200C

vsyaddl s

initial

begin

numerr

#30 res
#210; @

for (x=
for (y

begin

@(po

@ (po

@ (pa

@ (p0

if(

$di
else

beg

x
end

end

$di spla

$finish

end
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Prior to synthesis, it is prudent to test whether the algorithm is correct. To do such a
test, we use the following test code in a different file. The test code has an instance of
the module to be synthesized. Unlike the test code for the combinational logic of sec-
tion 11.4.1, there needs to be a wai t statement (section 3.7.3) so that the test code can
adapt to the speed of the bit serial addition.

nodule top;
reg [3:0] x,y; wire [3:0] sum,r2;
wire ready,sysclk; reg reset,pb;
integer numerr; time tl,t2;
cl #52000 clock(sysclk);
vsyaddl slow add machine(pb,ready,

xy,sum,r2,reset,sysclk);
initial

-r words, r 3 ~~begin
r words, r3 numerr = 0; pb= 0; x = 0; y = 0; reset = 1;

cycles. The #30 reset = 0; #10 reset = 1;
computation #210; @(posedge sysclk);

iieofr3, the for (x=0; x<=7; x = x+l)
,ht produce a for (y=0; y<=7; y = y+l)

synthesized begin
@(poedge sysclk) pb = 1;
@(posedge sysclk) pb = 0; tl = $time;

)ns2.2.1 and @(posedge sysclk) wait(ready); t2 = $time;
t inputs. The @ (posedge sysclk);
)ute the sum, if (x + y === sum)

o $display(ok %d",t2-tl);
else
begin
$display("error x=%d y=%d x+y=%d sum=%b",

initions from x,y,x+y,sum); numerr = numerr + 1;
end

end
$display("number of errors=",numerr);
$finish;

end

Synthesis

module vsyaddl(pb,ready,x,y,rl,r2,reset,sysclk);

input [3:0] x,y; input pb,reset,sysclk;

output ready; output [3:0] rl,r2;

wire reset,sysclk,pb; reg ready,c;

wire [3:0] x,y; reg [3:0] rl,r2,r3;

endmodule
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Continued

always (posedge sysclk) #20
$display("%d rl=%d r2=%d pb=%b ready=%b",
$time, sum,r2, pb, ready);

andmodule

The active low reset signal is necessary for the VITO preprocessor described in
chapter 7 and appendix F. The test code detects no errors, so it is reasonable to synthe-
size vsyaddl.

11.5.6 Synthesizing
Since PLSynthesizer does not support the implicit style, the first step in synthesizing
vsyaddl is to use the VITO preprocessor.' 3 VITO passes through the module defini-
tions and functions unchanged, which allows use of these names in the code generated
by VITO. VITO generates a one hot controller using continuous assignment and one
bit regs according to the principles described in chapter 7. VITO uses the line number
in the names of the wires and regs generated. In this particular machine, the states
correspond to f f4, f _11 and f f_15. When the code generated by VITO is run
through PLSynthesizer, logic equations are formed that describe the inputs to these
macrocell flip flops. PLSynthesizer and PLDesigner will eliminate most of the redun-
dant wire names created by VITO. The following is the manual translation of the
.doc file into Verilog for the logic equations of the one hot controller:

13 The preprocessor is not necessary with synthesis tools, such as Synopsys, that support the implicit style.
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always (posedge sysclk or negedge reset)
begin
if (-reset)
{ff_999,ff_4,ffll,ffl5y = 0;

else
begin
ff_999 <= #0 1;
ff_4 <= #0(-ff_9991(-pb&fft4)

I(r3[31&ffl5)j(r3[3]&ffll));
ff_11 <= #0 (pb&ff_4);
ff_15 <= #0((-r3[3]&ff_11)1(-r3[3]&ff-15));

end
end
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If f f_999, f f-4, f f_11 and f f_15 are not listed in the portlist of VITO's output,
PLSynthesizer will choose cryptic names for them. The above logic equations describe
the conditions under which state transitions occur to the particular states. For example,
a transition to state f f_ 1 1 only occurs when the machine is in state f f ..4 and pb is
true. There are several ways in which a transition to state f f_4 occurs: when the
machine is powered up, when the machine loops back to state f f_4 because pb is
false, or when the most significant bit of r3 is one and the machine is in either state
f f_15 or state f f_11. The machine makes a transition to state f f_15 when the most
significant bit of r3 is zero and the machine is in either state f f_15 or state f f_11.
Transitioning to state f f_15 from state f f_11 corresponds to entering the while
loop for the first time. Transitioning to state f f_15 from state f f_15 corresponds to
remaining in the whi le loop for an additional cycle.

;or described in
nable to synthe-

in synthesizing
- module defini-
-code generated
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In addition to the one hot controller, the VITO preprocessor also generates an architec-
ture composed of combinational logic, muxes and simple D-type registers in the style
described in section 7.2.2. 1. For example, here is what VITO generates corresponding
to r2:

assign newr2 = s_5 ? y : s18 ? r2>>l : r2;
always (posedge sysclk) r2 = newr2;

Figure 11-5. Block diagramfor r2 portion of architecture.

The above Verilog is equivalent to figure 11-5, which is a kind of specialized shift
register that is loadable (in state f f_4 which includes statement s5) and only shifts
right (in state f f_15 which includes statement s1 8). Again, logic equations are
given in the . doc file that describe the inputs to each macrocell flip flop. The follow-
ing is the manually translated Verilog for the logic equations that correspond to r2:

ort the implicit style.
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always t(posedge syscik)

begin
r2[0] <= #0 ((r2[0]&-ff_15&-ff_4)

j(y[0]&ff_4)j(r2[1]&ff 15&-ff 4))
r2[1] <= #0 ((r2[1]&-ff15&-ff 4)

j(y[1]&ff_4)j(r2[2]&ff 15&-ff 4))
r2[2] <= #0 ((r2[2]&-ff15&-ff_4)

(y[2]&ff_4)j(r2[3]&ff 15&-ff 4))
r2[3] <= #0 ((r2[3]&-ff_15&-ff_4)|

end
(y[3]&ff_4));

Although it might have appeared from figure 11-5 that there would be two macrocells
of delay (for each mux), the synthesis tool merged the logic equations of the two muxes
together into a single macrocell per bit slice. Except for r2 [ 3 ] , each bit slice is similar
to the others. For example, there are three cases to consider for r2 [ 0 ] . First, when
ff_4 is active, two terms of the logic equation, r2 [0] &-ff_15&-ff_4 and
r2 [1] &ff_15&-ff_4, are guaranteed to be zero. This leaves only y[O] &ff_4,
which passes through the proper bit of y into the input of the r2 [ 0 ] flip flop. Second,
when f f_15 is active, we know (because of the nature of one hot controllers) that
f f_4 could not be active, but the synthesis tool did not know this. Therefore, the tool
generates r2 [ 1 ] & ff_15&-ff_4. The - ff_4 is not necessary considering the total
one hot system but is necessary to achieve the mux behavior shown in figure 11-5.
Because the other two terms of the logic equation, r2 [0] &-ff_15&-ff_4 and
y [0] &ff_4, are guaranteed to be zero in this case (ff_15 active and ff_4 inac-
tive), the remaining term, r2 [1] &ff_15&-ff_4, passes through the right-shifted
bit (r2 [ 1] ) into the input of the r2 [0 1 flip flop. Third, the last possibility is that
neither ff_4 nor ff_15 is active. In this case, r2 [0] &-ff _15&-ff_4 holds the
former value of the r2 [ 0 ] flip flop.

Of course, as mentioned earlier, it is tedious to have to manually translate the non-
standard . doc file back into Verilog. The designer would probably prefer to use the
structural Verilog automatically generated by PLDesigner. The instance and wire names
shown in figure 11-6 and in the following may vary slightly, depending on tool- spe-
cific details:

cII
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mbuf B5(tmp85,pin_13);and A17(tmp90,tmp91,tmp92,pin_12);
and A16(tmp87,ff-15,tmp88,pin-46);not I19(tmp88,ff_4);
not I20(tmp91,ff_15);and A18(tmp93,ff_4,pin_25);
not I21(tmp92,ff_4);or 05(tmp86,tmp87,tmp9O,tmp93);
dffarap DFF5(pin_12,tmp85,tmp86,GND,GND);
mbuf B6(tmp94,pin_13);and A20(tmp98,tmp99,tmplOO,pin_46);
and A19(tmp96,ff-15,tmp97,pin_44);not I22(tmp97,ff_4);
not I24(tmplOO,ff_4);and A21(tmplOl,ff_4,pin_23);
not I23(tmp99,ff_15);or 06(tmp95,tmp96,tmp98,tmplOi);
dffarap DFF6(pin 46,tmp94,tmp95,GND,GND);

,
_
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Figure 11-6. Macrocells implementing low-order bit slices of r2.

11.6 Switch debouncing and single pulsing
To have a useful machine, it is often necessary for the machine to receive information
from a person. In many situations, the most economical way to design such a machine
is to use mechanical switches and buttons. In previous chapters, we have assumed the
existence of ideal switches and buttons. For example, in section 2.2.1, we assumed a
push button would assert its output for exactly one clock cycle when it is pushed. The
problem is that mechanical switches and buttons are not perfect. They are neither syn-
chronous nor is their output reasonable for use with a machine being clocked millions
of times per second. This is because mechanical switches exhibit an undesirable prop-
erty, known as bounce.
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Ideally, when a person flips a switch on, we would hope that the output of the switch
would become and remain one until the person flips the switch off. Unfortunately, real
switches do not behave this way, as is illustrated by the following timing diagram:

i'ln.zl Iwtc I 

actual switch
irst tbounc
first bounce

s c n t b
second bounce

Figure 11-7. Ideal versus actual switch behavior shows needfor debouncing.

Happily, real switches bounce for less than a constant time t seconds. For example,
even the very awkward DIP switches'4 soldered onto the M4-128/64 demoboard bounce
for less than a quarter of a second.

One solution to the bounce problem is to design a debounce machine' whose input is
the actual switch, and whose output is the idealized pb signal needed by many of the
designs in this book. Most of the time, the actual switch is quiet; thus the debounce
machine continually reassigns 0 to pb. The debounce machine does something differ-
ent when the actual switch makes its first transition to a one. During this first t second
period when bounce occurs, we assume that the output of the actual switch will eventu-
ally stabilize to 1. Therefore, the number of clock cycles when the actual switch could
be zero during this first bounce period is less than t times the clock frequency. After
the first bounce period but before the second bounce period, the actual switch continu-
ally reads as a one. A second bounce period occurs when the switch is released.

The total number of clock cycles during which the actual switch reads as a zero from
the time of the first transition to one until the final transition to zero is less than twice t
times the clock frequency. The designer precomputes this constant, which will be loaded
into a counter when the machine first detects that the actual switch has become a one.
For example, with the M4-128/64, two times 0.25 seconds times 1.8432 MHz is ap-
proximately one million. Since 0.25 is an overestimation of t, the exact number of
clock cycles is not too important, as long it is near one million. A convenient number
around this size is 22- 1.

14 People often use pencils to move these tiny switches, which aggravates the bounce problem. The constant
t tends to be smaller for switches that are easier for people to manipulate, but the underlying cause of bounce
is always electrical.

15 The design here assumes that a single-pole single-throw switch is used and that the debounce machine
must be completely digital. Much more economical solutions are possible that either use a few analog
components, such as a capacitor and a resistor, or that use a single-pole double-throw switch. In the case of
the M4-128/64 demoboard, neither alternative is possible without external components.
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In addition to debouncing the switch, we need to make sure that the pb output of the
debounce machine lasts for exactly one clock cycle. Otherwise, it would be as though
the user is making millions of requests for computation, when in fact the user makes
just one request. The following implicit style module solves both the debouncing and
single pulsing aspects of this problem:

Assuming cnt is zero and the actual switch, sw3, is zero, the machine leaves cnt
alone and therefore does not enter the while loop. The first time the machine detects
that sw3 is one, the machine assigns the constant to cnt. Eventually, sw3 becomes
zero again during the first bounce period. Since cnt now contains the constant, the
machine enters the while loop. Inside the while loop, cnt is decremented only
when sw3 is zero. The while loop exits when all bits of cnt other than the least
significant are zero (i.e., cnt is 1). During this last clock cycle in the while loop,
cnt might or might not be decremented one last time (hence the reason for ignoring
the least signifcant bit). In that same clock cycle, pb is scheduled to become one for a
single cycle. (pb will be scheduled to return to zero in the next clock cycle when the
machine returns to the top state.) Therefore, the above code allows us to use the rather
primitive DIP switch, sw3, as an ideal push button, pb.

Pare Synthesis

module debounce(sw3,pb,cnt,sysclk,reset);

input sw3,sysclk,reset;

output pb;
output [19:0] cnt;
wire sw3,sysclk,reset;
reg pb;

reg [19:0] cnt;
always

begin

@(posedge sysclk) 'ENS;
pb <= 'CLK 0;
if (sw3 == 1)
cnt <= 'CLK 20'hfffff;

else

while (cnt[19:1] != 0)
begin

@(posedge sysclk) 'ENS;
if (sw3 == 0)
cnt <= 'CLK nt - 1;

if (cnt[19:1] == 0)
pb <= 'CLK 1;

end

end

endmodule
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11.7 Explicit style switch debouncer
As explained in chapter 4, a pure behavioral design can be broken down manually into
an architecture and a controller. For example, the controller can be written in the ex-
plicit style, where each state transition must be given explictly, using a case state-
ment:

'define TOP 0
'define BOT 1
module deboun control(sw3,cnteqO-1,clrpb,

ldpb,ldcnt,deccnt,sysclk,reset);

input sw3,cnteqO_l,sysclk,reset;
output clrpb,ldpb,ldcnt,deccnt;
wire sw3,cnteqO-l,sysclk,reset;

reg clrpb,ldpb,ldcnt,deccnt,ps,ns;

always @(posedge sysclk or negedge reset)
begin

if (-reset)

Ps = 0;
else
ps = ns;

end
always @(ps or sw3 or cnteqO_l)
begin

clrpb = ;ldcnt = ;deccnt = O;ldpb = 0;
case (ps)

'TOP: begin

clrpb = 1;

if (sw3 == 1)

begin

ldcnt = 1;

ns = 'TOP;

end

else

if (cnteqO_l)

ns = 'TOP;

else

ns = 'BOT;

end
'BOT: begin

if (sw3 == 0)

deccnt = 1;

if (cnteqO_l)

begin

ldpb = 1;

ns = 'TOP;
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end

else

ns = 'BOT;
end

endcase
end

endmodule

The above code corresponds to what was called the pure structural stage in chapter 4,
but for brevity, the above uses only behavioral statements. (The present state register
and next state logic are not given in separate modules as was done in chapter 4.) Al-
though similar in operation to the implicit style design given in section 11.6, the ex-
plicit style design is much more tedious to understand. Also, the designer must give a
Verilog architecture (not shown) consisting of a counter (controlled by ldcnt and
deccnt) and an enabled register (controlled by ldpb and clrpb). Finally, the de-
signer must instantiate the controller and architecture to make a module that is identi-
cal to section 11.6:

In this case, the binary encoding makes only a slight savings in macrocells (3%) com-
pared to the one hot encoding used by VITO. As in many other designs, the majority of
the macrocells are devoted to the architecture. Those macrocells must be present, re-
gardless of whether the original Verilog was implicit or explicit style. All of the extra
manual coding required for the explicit style was not worth the effort.

v ir 

S y t e i
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module debounce(sw3,pb,cnt,sysclk,reset);
input sw3,sysclk,reset;

output pb;
output [19:0] cnt;
wire sw3,sysclk,reset;

wire [19:0] nt;
wire pb,cnteqO_l,clrpb,ldpb,ldcnt,deccnt;
deboun arch architec(pb,cnteqO_1,cnt,

clrpb,ldpb,ldcnt,deccnt,sysclk);

debouncontrol controller(sw3,cnteq0_1,
clrpb,ldpb,ldcnt,deccnt,sysclk,reset);

endmodule
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11.8 Putting it all together: structural synthesis
A typical design often uses a combination of the above techniques. For example, con-
sider a machine activated by the debounced sw3 DIP switch that takes a three bit
binary number from the other DIP switches (sw2, swi, swO }) and does bit serial
addition of this to a four-bit accumulator, rl, whose output is displayed in hexadeci-
mal on the LEDs al .. gl. In order to reuse the code given above, the designer needs
structural instances of vsyaddl and debounce:

The vsyaddl and debounce module definitions are given in the same file as the
above module. In the above, y is simply another name for { sw2, swl, swO }. Note
that rI connects both to the vI. rl output as well as the v . x input for the instance
of vsyaddl. In other words, rl plus y will eventually replace the old value of rl.

The function sevenseg (whose case statement definition is not shown) takes a
four-bit binary input, i, and outputs the seven bits required to drive one LED digit in
hexadecimal. This combinational logic output is complemented to accommodate the
active low requirements of the LEDs.

The pi file must be defined using the pin numbers given in section 11.3.6. When
synthesized and downloaded to the M4- 128/64 demoboard, the above design will oper-
ate properly.
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module mach445(sw3,sw2,swl,swO,sysclk,reset,

al,bl,cl,dl,el,fl,gl);
input sw3,sw2,swl,swO,sysclk,reset;

output al,bl,cl,dl,el,fl,gl;
wire sw3,sw2,swl,swO,sysclk,reset;

reg a,bl,cl,dl,el,fi,gl;

function [7:0] sevenseg;
input [3:0] i;

endfunction

wire pb,ready;
wire [3:0] rl,r2;
reg [3:0] y;
wire [19:0] cnt;
vsyaddl vl(pb,ready,rl,y,rl,r2,reset,sysclk);
debounce debl(sw3,pb,cnt,sysclk,reset);

always (sw2 or swl or swO)
y = {sw2,swl,swO};

always @(rl)
{al,bl,cl,dl,el,fl,gl} = sevenseg(rl);

endmodule

I
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11.9 A bit serial PDP-8
All the designs in chapters 8 through 10 use bit parallel arithmetic to illustrate concepts
about general-purpose computers. In contrast, many early general-purpose computers,
including the Manchester Mark I, used bit serial arithmetic because it required less
hardware. Most modem general-purpose computers are designed with bit parallel arith-
metic because it is faster and easier. As a concluding synthesis example, however, let
us build a bit serial PDP-8. This allows the CPU to fit within one M4-128/64 chip, and
it simplifies the connections to an external memory chip, which must be wired manu-
ally to the demoboard.

The PDP-8 subset chosen for this example is the same as section 9.6 (CLA, TAD,
DCA, HLT, MP, SPA, SMA and CIA), with the addition of the SNA, SZA, CMA and
JAC instructions described in appendix B. The link as well as additional instructions
are not implemented in this example. This subset is sufficient for the childish division
program given in section 9.7. Bit serial arithmetic is necessarily a multi-cycle approach,
and so the multi-cycle PDP-8 ASM of section 8.3.1.3 is a good starting point for the
design, but there are several algorithmic variations required for the CPU to fit into the
M4- 128/64.

First, bit serial addition loops are used for incrementing pc (the user interface and
states F3A and EIASKIP), incrementing ac (state EOIAC) and adding to ac (state
EOTAD). Second, bit parallel comparisons, such as ir==12 o7200 for CLA, need
to be replaced with comparisons of only the appropriate bits, such as ir [1 9]== 7
& ir 8] ==0 & ir [7] ==1 for CLA. Third, like the original PDP-8
(but unlike chapters 8 and 9), combined instructions (e.g., CMA and IAC to form CIA)
are allowed at no extra cost because the bits of the instruction register are tested indi-
vidually. Fourth, memory accesses occur one bit at a time with a one-bit-wide mb reg-
ister wired to the data in pin of the memory chip and a one-bit-wide membus wired to
the data out pin of the memory chip. Fifth, like section 8.3.2.4 and figure 8-11, memory
must be a separate actor so that it can be physically wired to the M4-128/64. Sixth, the
write signal is active low for the memory chip used here, which is the opposite of
figure 8-11. Seventh, since the number of bits in a memory chip is a power of two but
the number of bits in the PDP-8's memory is a multiple of twelve, the simplest ap-
proach is to disregard four out of every sixteen bits from the one-bit-wide memory
chip. In other words, bitmem [0] through bitmem [11] form the twelve- bit m [0],
and bitmem[16] through bitmem[27] form m[1]. Eighth, in addition to the memory
address register, ma, the bit serial approach needs a bit address register, a, which
provides the low-order four bits of the address going to the memory chip. At any time,
the bit from the memory chip currently being processed by the CPU is
bi tmem [ { ma, ha]I. Ninth, ha also serves as a binary counter for bit serial arith-
metic loops, rather than the unary r3 counter described in section 11.5.4. Tenth, be-
cause this subset only implements the direct page zero addressing mode (and not the
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full set of addressing modes described in appendix B), the memory address register
only needs to be seven bits wide (a reduction which saves several macrocells). Elev-
enth, the user interface of chapter 8 (but_DEP, but_PC, but MA, cont and the
twelve-bit switch register) has been replaced with a simpler but workable scheme us-
ing four undebounced switches and a push button, cont, that must be externally
debounced. Twelfth, swin, which is the concatenation of the four switches, deter-
mines the user interface action taken when cant is pressed:

where advancing {pc, ba} means incrementing just ba, except in the case when
ba==4'blOll. In that special case, pc is incremented and ba becomes zero.

11.9.1 Verilog for the bit serial CPU
In the following implicit style Verilog, the comments indicate names of states similar
(but not identical) to those of figure 8-11. Many of the states, especially those for the
user interface, have no direct correspondence to figure 8-11 :
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swin action

0000 ba - 0
001- ba - 0; pc <- {swin[0],pc[ll:ll}

010- bitmem[{pc,ba}] -- swin[O]; Advance {pc,ba}

011- Advance {pc,ba}

1000 Execute

r
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en(
end

else

begii
@ (p(

wh:

be

er

always

begin
@(posedge sysclk) 'ENS; //INIT

halt <= 'CLK 1; write <= 'CLK 1;

forever

begin

@(posedge sysclk) 'ENS; /Fl
ma <= CLK pc; ba <= 'CLK 0;
c <= 'CLK 1;
if (halt)

begin

while ((cont&swin[3]))

begin

@(posedge sysclk) 'ENS; //IDLE
halt <= 'CLK 0; ma <= 'CLK c;

mb <= 'CLK swin[0]; c <= 'CLK 1;
if (cont&(swin[3:2] == 2'bOO))
begin

@(posedge sysclk) 'ENS;
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ba <= 'CLK 0;
if (swin[l])

begin

@(posedge sysclk) 'ENS;
pc <= 'CLK {swin[O],pc[ll:l]};

end

end
else if (cont&(swin[3:2] == 2'bOl))
begin

@(posedge sysclk) 'ENS;
write <= 'CLK swin[l];
@(posedge sysclk) 'ENS;
write <= 'CLK 1;
@(posedge sysclk) 'ENS;
ba <= 'CLK ba + 1;
if (ba == 11)

begin

@(posedge sysclk) 'ENS;
ba <= 'CLK 0;
while (ba 11)

begin

@(posedge sysclk) 'ENS;
pc <= 'CLK

{sum(pc[O],0,c),pc[ll:l]};

c <= 'CLK car(pc[O],O,c);
ba <= 'CLK ba + 1;

end

@(posedge sysclk) 'ENS;
ba <= 'CLK 0;

end

end
end

end

else

begin

@(posedge sysclk) 'ENS; //F2
while (ba != 11)
begin

@(posedge sysclk) 'ENS; //F3A
ir <= 'CLK {membus,ir[ll:l]};

pc <= 'CLK {sum(pc[O],O,c),pc[ll:l]};
c <= 'CLK car(pc[O],O,c);

ba <= 'CLK ba + 1;
end
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Continued

@(posedge sysclk) 'ENS; //F3B

ma <= 'CLK ea(ir); ba <= 'CLK 0;

mb <= 'CLK ac[O]; c <= 'CLK ir[11];
if (ir[11:9] == 1)

begin

while (ba != 11)

begin

@(posedge sysclk) 'ENS; //EOTAD

ac <= 'CLK {sum(ac[O],membus,c),ac[ll:1]};

c <= 'CLK car(ac[O],membus,c);

ba <= 'CLK ba + 1;

end

end

else if (ir[11:9] == 3)

begin

while (ba = 11)

begin
@(posedge sysclk) 'ENS;//EODCA

ac <= 'CLK {l'bO,ac[ll:l]};

write <= 'CLK 0;

@(posedge sysclk) 'ENS;//ElADCA

write <= 'CLK 1;

@(posedge sysclk) 'ENS;//ElBDCA

ba <= 'CLK ba + 1; mb <='CLK ac[O];

end

end

else if (ir[11:9] == 5)

begin

@(posedge sysclk) 'ENS; //EOJMP
pc <= 'CLK ma;

end
else if (ir[11:9] == 7)

begin

if (ir[8])

begin

if (ir[1])

begin
@(posedge sysclk) 'ENS; //EOHLT

halt <= 'CLK 1;

end

if (ir[3]^(ir[6]&ac[ll]ir[5]&(ac==O)))

begin //SPA,SZA,SMA,SNA

while (ba != 11)

begin
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end

end
end
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@(posedge sysclk) 'ENS; //EOASKIP
PC <= 'CLK {sum(pc[O],O,c),pc[ll:l]1;
c <= 'CLK car(pc[O],O,c);
ba <= 'CLK ba + 1;

end
end

end
else
begin
if (ir[7])
begin
@(posedge sysclk)
ac <= CLK 0;

end
if (ir[5])
begin
@(posedge sysclk)
ac <= 'CLK -ac;

'ENS; //EOCLA

'ENS; //EOCMA

end
if (ir[O])
begin
while (ba != 11)
begin
@(posedge sysclk) 'ENS; //EOIAC
ac <= 'CLK {sum(ac[O],O,c),ac[ll:1]y;
c <= 'CLK car(ac[O],O,c);
ba <= 'CLK ba + 1;

end
end

end
end

end

11.9.2 Test code
For a design as complicated as this, it is important to simulate before synthesis. Even a
tiny bug could prevent the fabricated hardware from operating at all and give no trace
as to the cause. In order to simulate the above, we need a non-synthesizable model of
the memory chip that will be connected to the fabricated CPU:
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The above models memory as twelve-bit words but interfaces to the CPU one bit at a
time. An attempt to access one of the four unused bits will result in 1 'bx because of
the way Verilog treats bit selects that are out of bounds. The above must be instantiated
together with the CPU:

Assuming pdp8_system is instantiated as pdp8_machine, the test code can ini-
tialize a memory location using a twelve-bit word refered to with hierarchical refer-
ence to the array pdp8_ machine.memory.m[ ... ]. In order to simulate the
pushing of cont, a task is helpful:
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7taskps

input I

begin

swin

#100

case

0:
1:
2, -

endcE
#300;

end

endtask
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module mem(mabus,babus,mbbus,membus,write);

input mabus,babusmbbus,write;
output membus;

wire [11:0] mabus;

wire [3:0] babus;

wire mbbus, write;
reg membus;

reg [11:0] m[0:127];

reg [11:0] temp;

always @(mabus or babus)

begin

temp = m[mabus]; membus = temp[babus];

end

always @(negedge write)

begin

#50 membus = mbbus; temp = m[mabus];

temp[babus] = membus; m[mabus] = temp;

end

endmodule

module pdp8-system(swin,cont,halt,sysclk,reset);

input swin,cont,sysclk,reset;

output halt;

wire cont,sysclk,reset,halt,mb, membus, write;
wire [3:0] swin,ba;

wire [11:0] ma;

pdp8_cpu cpu(swin,write,membus,cont,

ba,ma,mb,halt,reset,sysclk);
mem memory(ma,ba,mb,membus,write);

endmodule

480



PU one bit at a
bx because of
be instantiated

it code can ini-
rarchical refer-
to simulate the

The time control in the task depends upon what swin selection was requested. For
example, for the test code to set the program counter to 12 ' o 010 0 and then execute a
program, the task waits 200 units of $ time for each bit shifted into the program counter
and then waits until the CPU halts:

11.9.3 Our old friend: division
In running this simulation with the childish division program of section 9.7, we ob-
serve that this bit serial implementation takes 558 cycles when 1 is the quotient, 827
cycles when 2 is the quotient and 1096 cycles when 3 is the quotient. Let us put this in
perspective with running the childish division software on the other PDP-8 implemen-
tations discussed earlier:

section kind arithmetic clock cycles
11.9.1 multi serial 2 8 9+269*quotient
8.3.2.1 multi parallel 5 5+55*quotient
9.6 pipe parallel 12+10*quotient

Synthesis

task push;

input [3:0] sw;
begin

swin = sw; #200 cont = 1;
#100 cont = 0; #300;
case (swin[3:2])

0: #200;
1: #2000;
2,3: #100 wait(halt);

endcase

#300;

end
endtask

push(4'bOOlO);push(4'bOOlO);push(4'bOO10);//O

push(4'bOOlO);push(4'bOOlO);push(4'bOO10);//O

push(4'bOOll);push(4'bOOlO);push(4'bOO10);//l

push(4'bOOlO);push(4'bOOlO);push(4'bOOlO);//0

push(4'blOOO);//Execute until HLT

I I

PU one bit at a
bx because of
be instantiated

PU one bit at 
bx because l
be instantiated

it code can ini-
rarchical refer-
to simulate the

it code can ini-
rarchical refer-
to simulate the
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Assuming the same clock period, the bit serial approach is about five times slower than
the multi-cycle bit parallel approach of chapter 8, which in turn is about five times
slower than the pipelined bit parallel approach of chapter 9. To execute one instruction,
it takes on average about one cycle for the pipelined bit parallel machine of section 9.6,
five cycles for the multi-cycle bit parallel machine of section 8.3.2.1 and twenty-seven
cycles for the multi-cycle bit serial machine of section 11.9.1. In the latter case, it takes
twelve cycles to fetch the instruction, twelve cycles to fetch the data and three cycles
for the other typical states (i.e., Fl, F2 and F3B).

11.9.4 Synthesizing and fabricating the PDP-8
This design will occupy the majority of the macrocells in the M4-128/64. After synthe-
sis with VITO and PLSynthesizer, it is necessary to let PLDesigner choose the pins
where the signals are routed. If the designer provides complete . pi information at
first, it is likely that PLDesigner would be unable to fit this design into a single M4-
128/64. Instead, the designer should only constrain critical pins. This design does not
make use of any of the hardware on the demoboard, other than sysclk and reset.
The only other critical pins are 18, 54, 63 and 68, which should not be used since these
are tied to the DIP switches. Instead, swin will come from external switches. Once the
design does get placed in a single chip, the pins selected by PLDesigner should be put
in a . pi file so that future minor modifications of the design will not require physical
rewiring of the memory chip to the demoboard:

Each 1/0 pin of the M4-128/64 is attached to a pin on one of two headers (JP4 or JP5)
soldered to the demoboard. A small, low-cost static memory chip that can be used is the
2102, which is arranged as 1 x 1024 bits. Using wirewrap wire and a sixteen-pin dual
in-line wirewrap socket, the memory can be attached to the demoboard as follows:
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membus:10 sysclk:13 contin:19 ma[5]:22
ma[4]:23 ma[6]:24 swin[l]:37 swin[3]:38
mb:43 reset:4 ba[3]:56 ba[2]:58
ba[1]:59 ba[0]:60 ma[O]:62 swin[0]:70
swin[2]:73 halt:74 write:84 ma[3]:93
ma[1]:96 ma[2]:98
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It is desirable that the ma and ba signals also be attached to external LEDs to provide
feedback to the user. (The onboard LEDs cannot be used because of the place and route
limitations of the M4-128/64.) The five-volt power supply (Vcc) to the memory chip
must be soldered on the demoboard power connection. In addition, the following exter-
nal switches mustbe connected: contin (externally debounced) toJP4-34, swin [1]
toJP4-6,swin[3] toJP4-4,swin[0] toJP5-32andswin[2] toJP5-26.

11.10 Conclusions
Five kinds of synthesizable Verilog were considered in this chapter: behavioral regis-
ters, behavioral combinational logic, behavioral implicit style state machines, behav-
ioral explicit style state machines and structural instantiation. Of these, the implicit
style is the best choice because it has such a close relationship to the behavioral ASMs
discussed in earlier chapters. Often a designer must use some of the other kinds of
Verilog, such as combinational logic, to create a complete design, but implicit style
should be the first choice for synthesizing hardware.

This chapter has used the M4- 128/64 CPLD with VITO, PLSynthesizer and PLDesigner.
Although the details of performing synthesis using chips and software from different
vendors may vary somewhat from those described here, the design flow for Verilog
synthesis is similar. Simulation is a critical part of this design flow. Even though simu-
lation takes some effort by the designer, in most cases, a bug discovered during simu-
lation will be much less expensive than one that remains hidden until after the hard-
ware is fabricated. Synthesis as well as place and route tools output structural Verilog
netlists, which can be used with test code to verify the operation of the synthesized
design.

Synthesis

PDP-8 M4 2102 PDP-8 M4 2102
signal header pin signal header pin
ba[0] JP5-27 1 GND JP4-2 9
ba[l] JP5-25 2 Vcc solder 10
write JP5-12 3 mb JP5-1 11
ba[2] JP5-23 4 membus JP4-27 12
ba[3] JP5-19 5 GND JP4-2 13
ma[0] JP5-31 6 ma[3] JP4-1 14
ma[l] JP4-7 7 ma[41 JP4-26 15
ma[2] JP4-11 8 ma[5] JP4-28 16

�M
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11.11 Further reading
PALNITKAR, S., Verilog HDL: A Guide to Digital Design and Synthesis, Prentice Hall
PTR,Upper Saddle River, NJ, 1996. Chapter 14.

11.12 Exercises
11-1. Give the synthesizable sevenseg function used in section 11.8.

11-2. Synthesize a 3-bit childish division machine based on the Verilog given in section
7.4.2 that will work with the hardware resources of the M4-128/64 demoboard. The
code should be modified so that x is a register (rather than a bus) that is loaded with
y= (sw2, swi, swO } when the debounced sw3 generates the first pb pulse. The sec-
ond pb pulse starts the computation of x/y, which will be displayed in hexadecimal on
the seven-segment display. Use the debounce module of section 11.6 and a top-level
module similar to section 11.8 with the function from problem 11-1. Use test code that
verifies the design after each step in the design flow.

11-3. Synthesize a factorial machine based on problem 2-4 that will work with the
hardware resources of the M4-128/64 demoboard. { sw2, swl, swO } is the 3-bit value
of n which is used when the debounced sw3 generates the pb pulse. The 13-bit facto-
rial of n will be displayed in hexadecimal on the LEDs. Use the debounce module of
section 11.6 and a top-level module similar to section 11.8 with the function from
problem 11-1. Use test code that verifies the design after each step in the design flow.

11-4. Modify the design of section 11.9 to include the link and the CLL, CML, RAR
and RAL instructions (appendix B) in a way that allows the design to fit in the M4- 128/
64. Make appropriate changes to other instructions. Use test code based on the ma-
chine language program in section 8.3.2.5.3. Hint: because of the restrictions on <= in
VITO, you need to define a 13-bit lac register, rather than separate link and ac
registers.

11-5. Modify the design of section 11.9 to include the ISZ instruction (appendix B) in
a way that allows the design to fit in a single M4-128/64. Use appropriate test code,
such as the machine language code from problem 9-2.

11-6. Give Verilog for the architecture of the debounce module in section 11.7.
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A. MACHINE AND
ASSEMBLY LANGUAGE'

Most people use programs written in high-level languages. High-level languages are
hardware-independent, complex languages that are relatively easy to use. Hardware
independent means that programs written in high-level languages will run on nearly
any general-purpose computer. Examples of high-level languages include Pascal, Verilog
and C.

In contrast, low-level languages are simple in form and closer to how computers actu-
ally operate. This makes them harder for the programmer to use. Low-level languages
are hardware dependent and have one statement per machine operation. Hardware de-
pendent means that low-level languages are designed for a specific computer's hard-
ware. Each statement is called a mnemonic. Mnemonics are easily memorized symbols
that represent each fundamental computer operation in a textual form for the
programmer's use. An instruction is a binary word that represents these fundamental
operations in a form the computer can process.

Low level languages include machine language and assembly language. Assembly lan-
guage is made up of instructions represented by mnemonics. Machine language con-
sists of the instructions represented in binary. Assembly language has four major parts:

1. labels - symbolic names for places in memory (where variables are stored).
2. mnemonics - indications of what the computer will do.
3. operand - the data operated on by the instruction.
4. comments - a guide to the program that are ignored by the computer.

One statement in a high-level language program often corresponds to many assembly
language and machine language instructions. For example, the machine language file
of a program written in C and the machine language file of the same program written in
assembly language are basically equivalent. But, the assembly language version is much
longer than the C program. Consider the following very simple program:

/* Total tuition for three classes*/
int tuit,engl=74,cosc=106,math=148;

maino{tuit = engl + cosc + math;}

l This appendix was written by Susan Taylor McClendon and Mark G. Arnold.
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This is equivalent to the following assembly language program written for the PDP-8,
a simple general-purpose computer used as an example in chapters 8, 9 and 11:

label mnemonic

*0100

CLA
TAD
TAD
TAD
DCA
HLT

ENGL, 0112
COSC, 0152

MATH, 0224
TUIT, 0000

operand comment

/starting addr

/put zero in AC

ENGL /add ENGL to 0

COSC /add COSC to ENGL

MATH /add MATH to COSC+ENGL

TUIT /store in TUIT, clear AC

/halt
/74 dollars

/106 dollars

/148 dollars

The *0100 indicates the starting address of the program in octal. The mnemonics indi-
cate what each instruction does. The operand refers to a label defined later in the pro-
gram. The following shows this example program translated to PDP-8 machine lan-
guage code:

The four digits on the right of the "" indicate a memory address in octal. The four
digits on the left indicate the contents which show the octal values of the bit patterns
representing the machine language equivalent of each mnemonic. Starting at address
01068 the contents are data values, not instructions.

TAD performs a Two's complement ADdition of the operand to the contents held in the
AC. DCA, Deposit and Clear the AC, deposits the value held in the AC into memory
and then clears the AC. CLA and HLT are non-memory reference instructions. The CLA
instruction CLears the AC and the HLT instruction causes the fetch/execute algorithm
to stop. The machine language code for CLA is 72008 and for HLT is 74028. More
details about these and other instructions of the PDP-8 are given in appendix B.
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B. PDP-8 COMMANDS'
The commands listed below are the Memory Reference Instructions (MRI) and the
non-memory reference instructions of the PDP-8. The bits referred to below are given
in little endian notation.

Memory reference instructions
1. TAD (xxx,) - Two's complement ADd contents of memory address xxx8 to the

link and ac.

2. DCA (3xxx5) - Deposit contents of ac at memory address xxx8 and then Clear
ac.

3. AND (Oxxx 8) - Logical AND of ac with contents of memory address xxx8 .

4. JMP (5xxx8 ) - JuMP to memory address xxx8 so that the fetch/execute cycle will
process the instruction stored there instead of the next sequential instruction.
The PC is simply loaded with xxx .

5. ISZ (2xxx8 ) - Increment (add 00018) to contents of memory address xxx8 and
Skip next instruction if contents become Zero.

6. JMS (4xxx5 ) - JuMp to Subroutine located at memory address xxx . The JMS
instruction saves the return address at memory addess xxx8 and then the PC
becomes xxx8 + 0001 . (The return address is the value of the PC indicating
which instruction would have otherwise executed next.)

The "xxx," in the MRI instructions indicates a memory address used by the instruction.
There are four addressing modes of the PDP-8: direct page zero, indirect page zero,
direct current page and indirect current page. There is also a variation of the indirect
addressing mode known as autoincrement.

Why do we need other addressing modes? One reason lies in the number of addresses
we can represent using the page addressing bits. The page addressing bits are bits 6-0
of the ir. Only 2 or 12810 addresses (starting at address 0,o) can be represented by
these seven bits. To represent the other 39680 memory locations possible with the 12-
bit address bus, the PDP-8 subdivides the 409610 memory locations into 3210 pages
(starting at page zero) of 12810 memory locations (409610 DIV 12810 = 321). To access
a particular page, the PDP-8 uses two types of addressing modes: direct and indirect.
Bit eight indicates either direct or indirect addressing mode and bit seven indicates

l This appendix was written by Susan T. McClendon and Mark G. Arnold.
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either page zero or current page. Page zero is normally used for global variables and
constants and the current page (018-378) is normally used for local data and corre-
sponding code. The following lists the combinations of bits seven and eight for each
possible addressing mode:

ir[8] ir[7] Addressing Mode Effective Address

o O Direct Page Zero ir[6:0]

o 1 Direct Current Page {pc[11:7],ir[6:0]J

1 0 Indirect Page Zero m[ir[6:0]]
1 1 Indirect Current Page m[{pc[11:71,ir[6:0]}]

Direct page zero computes the Effective Address (EA) as simply the low-order seven
bits of the instruction register. This is the only addressing mode used in appendix A.
Direct current page computes EA as the high-order five bits of the program counter
concatenated to the low-order seven bits of the instruction register. This is useful for
programs that do not fit in the 128 words of page zero. Indirect page zero computes EA
as the contents of memory pointed to by the low-order seven bits of the instruction
register. Similarly, indirect current page computes EA as the contents of memory pointed
to by the concatenation of the high-order five bits of the program counter and low-
order seven bits of the instruction register. These indirect addressing modes are useful
when the address of data varies during runtime, and also in conjunction with the JMP
instruction to return from a subroutine (called by a JMS instruction) or from an inter-
rupt service routine.

The indirect addressing modes are slower, but more powerful, than the direct address-
ing modes since the EA comes from memory. First, the machine obtains the address of
the EA from the instruction register (and possibly the program counter). Next, it ac-
cesses memory to obtain the EA. Finally, it accesses memory to obtain the data.

Autoincrement occurs on the PDP-8 with indirect addressing when the address of the
EA (not the EA itself) is between 00108 and 0017 In these eight cases, the EA in
memory is incremented prior to execution of the instruction. For example, the instruc-
tion 14178 increments the word atm[0017 8 ], and then adds m[m[0017 8 ] to the
accumulator.
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Non-memory reference instructions

Group 1 microinstructions

1. CLA (72008) - CLear the Accumulator, bit 7 on. This instruction sets the ac to
00008.

2. CLL (71008) - CLear the link, bit 6 on. This instruction sets the link to 0.

3. CMA (70408) - CoMplement the Accumulator, bit 5 on. This instruction comple-
ments (sets all l's to 0's and 0's to l's) the ac.

4. CML (70208) - CoMplement the link, bit 4 on. This instruction complements
the link.

5. RAR (70108) - Rotate the Accumulator and 1 ink Right, bit 3 on. This instruc-
tion shifts bit 11 through bit 0 one position to the right. The link shifts to bit 11
and bit 0 shifts to the link. All other bits shift one position to the right.

6. RTR - (70128) - Rotate the accumulator and link Twice Right, bit 3 and 1 on.
Bit 0 shifts to bit 11, the link shifts to bit 10 and bit I shifts to the link. All
other bits shift two positions to the right.

7. RAL (70048) - Rotate the Accumulator and 1 ink Left, bit 2 on. This instruction
shifts bit 10 through 0 one position to the left. The 1 ink shifts to bit 0 and bit 11
shifts to the l ink. All other bits shift one position to the left.

8. RTL (70068) - Rotate the accumulator and link Twice Left, bit 2 and 1 on. Bit
11 shifts to bit 0, the 1 ink shifts to bit 1 and bit 10 shifts to the 1 ink. All other
bits shift two positions to the left.

9. IAC - (70018) - Increment the ACcumulator, bit 0 on. Adds 1 to the contents of
the ac. If the ac is 77778 the link will be complemented (as in the CML
instruction). This allows the link and ac to act together as a 13- bit counter
register.

10. NOP (70008) - No OPeration, bits 0-7 off.

The Group 1 Microinstructions can be combined together. For example CLA CLL is
73008.
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Group 2 microinstructions

1. SMA (75008) - Skip on Minus Accumulator, bit 6 is 12 and bit 3 is 02- Normally
used with signed data. Skips the next instruction if the value in the ac is nega-
tive.

2. SPA (75108) - Skip on Positive Accumulator, bit 6 is 12 and bit 3 is 12. Normally
used with signed data. Skips the next instruction if the value in the ac is posi-
tive.

3. SZA (74408) - Skip on Zero Accumulator, bit 5 is 12 and bit 3 is 02. Skips the next
instruction if the value in the ac is equal to zero.

4. SNA (74508) - Skip on Non-zero Accumulator, bit 5 is 18 and bit 3 is 12. Skips the
next instruction if the value in the ac is not equal to zero.

5. SZL (74308) - Skip on Zero link, bit 4 is 12 and bit 3 is 12 Skips the next
instruction if the link is 02.

6. SNL (74208) - Skip on Non-zero link, bit 4 is 12 and bit 3 is 02. Skips the next
instruction if the 1 ink is not equal to zero.

7. SKP (74108) - SKiP unconditionally, bit 3 is 12. Skips the next instruction.

8. HLT (74028) - HaLTs the computer. Implemented by setting the HALT bit.

9. OSR (74048) - Inclusive Or of the Switch Register with the ac. The result is left
in the ac and the original content of the ac is destroyed.

Note that all the memory reference instructions begin with 08 to 58 and that all the non-
memory reference instructions (group 1 and group 2 microinstructions) begin with 78
The I/O (Input/Output) instructions are not given here, but they all begin with 68.

Interrupts are external signals that cause temporary suspension of the fetch/execute
cycle. On the PDP-8, there are two instructions, ION (60018) and IOF (60028) that
control whether interrupts are ignored. ION sets the interrupt enable flag, and IOF
clears it. On the PDP-8, an interrupt is ignored unless the last instruction was not 60018
and interrupt enable flag is 1. If these conditions are met, the interrupt causes the same
action as executing the instruction 40008 without fetching such a machine code from
memory. The interrupt also causes the interrupt enable flag to become 0. At that point,
the fetch/execute cycle resumes. At the end of the interrupt service routine, the pro-
grammer must put an ION instruction followed by a JMP indirect instruction.
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C. COMBINATIONAL LOGIC
BUILDING BLOCKS

Combinational logic (also known as combinatorial logic) is the term used to describe
the kind of digital hardware whose output depends only on its inputs. Combinational
logic is critical to the operation of all computers; however, by itself, combinational
logic has no memory. Because of this inability for combinational logic to "remember"
previous results, combinational logic, by itself, is insufficient to implement non-trivial
algorithms. Combinational logic needs to be combined with sequential logic (see ap-
pendix D) to implement such algorithms. The early chapters of this book explain the
design process by which an algorithm is transformed into a structure composed of a
mixture of combinational and sequential logic. This appendix provides a review of the
combinational logic building blocks used throughout this book, and the notations used
to describe them.

This appendix does not focus on circuit diagrams or netlists. Instead it describes things
at a higher level, known as block diagrams. As described in section 2.5, hierarchical
design (the relationship between circuit diagrams and block diagrams) allows us to
look at a design at several levels of detail. Designers should work at the highest pos-
sible level, which means the notation used should conceal as much of the detail as
possible. Lower levels of detail (such as the gate level, circuit diagram or netlist levels)
must be dealt with at some point. Modem approaches, such as Verilog synthesis tools,
have largely eliminated the need for designers to manipulate these lower level details
manually. The bottom-up skills traditionally taught in an introductory digital design
course (dealing with optimization of gates) are precisely those manipulations that nowa-
days are carried out automatically. This appendix assumes the reader has had enough
exposure to such details previously to believe that they can be carried out automati-
cally. Instead, sections C.2 through C. 11 focus on a top-down approach, based on com-
binational logic building blocks. First, section C. 1 discusses how detailed we might
want to be when describing these devices.

C.1 Models of reality
All scientific and engineering disciplines use simplified and idealized models of reality
that are easier to describe with mathematics than the reality itself. The role of the com-
puter scientist or engineer is to create a useful product and get it to market rapidly. Such
a designer does this by applying a model of reality to a practical problem. By using a
model of reality that is too complicated, the designer will be burdened with unneces-
sary details, and the product will be late to market. The designer needs to choose a
model of reality that is appropriate, as illustrated by the following planetary analogy. A
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planetary model that says that the sun orbits around the earth in a perfect circle every
twenty-four hours is an acceptable model of reality for everyday problems. The math-
ematical simplicity of a circle is compelling, but there are problems where the highly
simplified model is insufficient. A more accurate model would say that the earth orbits
the sun in an elliptical path as the earth itself rotates. Although not as simple as a circle,
an ellipse is still fairly straightforward to describe with simple mathematics. For some
problems the elliptical model would also be insufficient, and a very complex model,
considering lunar interaction, etc., might be required.'

C.1.1 Ideal combinational logic model
Speed and cost are not the first concerns of the designer. Producing a design that imple-
ments a correct algorithm is the top priority. For this reason, it will be convenient to
think of combinational logic as being instantaneous. Such idealized combinational logic
cannot exist in the physical world and is analogous to saying the sun orbits around the
earth. Although an idealized model may seem too simple, it is the proper model for
automatic Verilog synthesis, which helps ensure that the designer gets the product to
market on time. Most of this book (with the primary exception of chapter 6) assumes
idealized combinational logic.

C.1.2 Worst case delay model
Just as in the planetary analogy, sometimes the problem will demand something more
accurate. As illustrated in chapter 6, there are problems where the computer designer
must meet certain speed and cost constraints. Rather than jumping from no detail to
every detail, it would be nice to have a simple, but reasonably accurate, model, analo-
gous to the elliptical model of planetary motion. In computer design, the worst case
propagation delay model satisfies this need. Worst case propagation indicates the maxi-
mum number of gates through which a signal change must pass in the worst case. An
assumption commonly used in this model is that each gate has a delay of one unit of
$ time in a Verilog simulation.

C.1.3 Actual gate-level delay model
The delay in a combinational logic device depends on the values being processed by
that device. Sometimes, the delay may be shorter than predicted by the worst case
model. As described in chapter 6, it is difficult to consider all the possible paths through

l In fact, such complex planetary models are only practical because of electronic computers that can simulate
these complex interactions.
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the gates that compose the device. A Verilog simulator is a tool that allows the designer
to try out many combinations of values to see how long it takes for the simulated
combinational device to process the information under different circumstances.

C.1.4 Physical delay model
The most accurate but cumbersome model considers all the physical and geometric
factors that compose the machine. Such a model considers physical laws that govern
analog electronics, including factors such as the speed of light, capacitance, induc-
tance, etc. Although there are times when computer designers must confront these harsh
realities, the goal of a good top-down technique is to insulate the designer from physi-
cal reality to as great an extent as possible. This book never considers this level of
detail.

C.2 Bus
The fundamental building block of all combinational logic is the bus. A bus is a device
that transmits information from a source to a destination. The symbol for a bus is a line
with a slash drawn through it. Next to the slash is a number, which indicates the num-
ber of bits that the bus transmits at any instant.

C.2.1 Unidirectional
A bus is either unidirectional or bidirectional. Most of the buses used in this book are
unidirectional. A unidirectional bus is drawn as a line with an arrow pointing in one
direction. The arrow indicates the direction in which information flows through the
bus. For example, the following is a four-bit unidirectional bus:

I~~~~

4

Figure C-l. Symbolfor a four-bit unidirectional bus.

Being four bits wide, this bus can only transmit numbers that range from 0 to 15.

All but a few experimental computers have been built with electronics. Although other
technologies besides electronics (such as the relatively new field of photonics) can
implement these abstractions, modern synthesis tools and the entire computer industry
are oriented toward the following electronic approach. In this electronic approach, the
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abstraction of an n-bit-wide bus is physically implemented as n "wires" running con-
ceptually in parallel to each other. For example, the above four-bit bus would actually
be four "wires":

- milte
-L-J I

a[2] I

a[1] >

a[O]

Figure C-2. Implementation of a four-bit bus.

Each "wire" transmits one bit of binary information from the source. For example, to
send the number a=1 5 from the source to the destination, all four transmit a one:

1 

1 

1 

Figure C-3. Transmitting 15 on a four-bit bus.

On the other hand, to send the number a=7, the most significant "wire" instead trans-
mits a zero:

0

1 

1 

1 

Figure C-4. Transmitting 7 on a four-bit bus.

C.2.2 Place and route
Whether or not the physical implementations of these four "wires" (composed perhaps
of a connection between insulated wire dangling in the air, copper plating on a circuit
board and traces within an integrated circuit) actually run geometrically parallel to
each other is irrelevant. For example the following:
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Figure C-S. One possible routing of a four-bit bus.

is equivalent to figure C-4. Such geometric details need not concern us because tools
(known as place and route) determine this automatically.

C.2.3 Active high versus active low
At any instant, each "wire" will be at one of two voltages, known as high and low. The
physical values of these voltages seldom concern the designer.'

Voltage by itself is not information. The goal of this book is to describe how to design
machines that process binary information. Additional abstractions are necessary to re-
late physical voltages to the binary information being processed by an algorithm. On
each wire, one of two possible abstractions is chosen (perhaps by the synthesis tool
rather than the human designer) to forever describe how a voltage on that wire trans-
lates into binary information. These two abstractions are active high and active low.

In the active high abstraction, the high voltage means 1 and the low voltage means 0. In
the active low abstraction, the opposite holds.3 The easiest approach is to assume all
wires are active high, which is the approach used in this book in order to avoid confu-
sion. Beware that with actual physical chips it is common that some wires will be

2 The numeric values of these voltages vary depending on the technology used. Typically, the lower the
voltage, the faster the machine. For the rugged TTL logic families commonly used in educational labs, high
is five volts, and low is zero volts. Faster, more modem but less rugged chips based on CMOS use lower
voltages, such as 3.3 volts. Slow vacuum tube machines of the 950s used around +50 volts and -25 volts.

3When all the signals are active high, the system is know as positive logic. When all the signals are active
low, the system is known as negative logic. When the system is a mixture of both, it is known as mixed logic
(not to be confused with the very different concept in Verilog of mixed behavioral structural design, as
described in chapter 4).

Appendix Care 495

I



active low while other are active high. If you use test equipment to observe the opera-
tion of an actual physical chip, you must understand the active low abstraction; how-
ever, during the design process, you can ignore this confusing issue.

C.2.4 Speed and cost
In this book, we assume an ideal bus, even if other combinational devices in the design
are not ideal. Such an ideal bus, which would transmit a signal change from the source
to the destination in zero seconds, cannot exist in the physical world.

Unlike the other devices described later in this appendix, the speed of a unidirectional
hus dne not din-nd on naitP-1pvel nrrnnqaqtr, (1A Th.r-f-r in the w I - A- P - -- A-

the speed of a bus is also instantaneous. As described in chapter 6, Verilog allows a
designer to simulate propagation delay on other devices, but buses in Verilog typically
have no delay.

The physical speed of a unidirectional bus can be determined by dividing its geometric
length by a constant which describes how fast a change in a signal travels along the
bus. For most electronic buses, this constant is approximately the speed of light, which
is roughly one third of a meter (one foot) per nanosecond.

The reason unidirectional buses have been preferred is that they are extremely cheap
and fast compared to the other combinational devices described later that are built out
of gates. Bidirectional buses (appendix E) have gate-level propagation delay, like any
other combinational device.

Cost is usually related to how much area a device takes on a chip. The area of a bus is
at least the width of a wire times its geometric length times the number of bits in the
bus. The area of a bus may be larger when problems occur in place and route.

As technology has improved, the relative speed and cost advantage of buses have di-
minished. In modem "deep submicron" silicon fabrication, interconnection delay, par-
ticularly between chips, is a significant factor.

C.2.5 Broadcasting with a bus
Another advantage of unidirectional buses is that they allow broadcasting of informa-
tion from a single source to a reasonably large number of destinations4 at little addi-
tional cost. It is a common misconception among novice hardware designers that to
send the same information to two places in a design requires some special device:

4How many destinations is determined by the fanout of the logic family.
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Figure C-6. Unnecessary device.

This misconception is understandable since to make b and c synonymous with a in
software requires two explicit (and possibly expensive) steps:

Accomplishing the same thing in hardware is essentially free. You simply run the bus
two different places, and refer to the same physical bus by different names at these newlocations:

1__ _ _ _ _ _ 2 ba
2

C2
Figure C-7. Transmitting on one bus to multiple destinationsforfree.

One of many geometric arrangements of "wires" that can accomplish this is:

a[1] I

-rn1
C[Uj

b[1]

b[0]

10 0 C[0]

Figure C-8. Implementation offigure C-7.
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Note there is no connection between a [ 1 ] and a [0 , although there are connections
between a[O, b[0] and c [O] and between a[1], b[1] and c [1]. Within the
time it takes light to travel the physical distance of the bus, the voltages at b [ 1 ] and
c [ 1] will be the same as a [ 1], which means that bit of information has been trans-
mitted to those two locations.

It is common for a designer to use different names for the same bus, but doing so can be
confusing. It would be better whenever possible to use the same name at both the
source and destinations:

a
2

a
2

oa
2

Figure C-9. Using the same name at every node.

since this more accurately reflects physical reality. Nevertheless, there will be times
when it is advantageous to re-label the same bus with different names. A rose by any
other name is just as sweet, and a bus by any other name is just as cheap.

C.2.6 Subbus
There are certain operations in the binary number system that are trivial to implement.
For example, unsigned division by two, b=a/2 (also known as shift right, b=a>>1)
appears to require some special device:

a G o d - b
4 3

Figure C-10. Combinational device to divide by two (three-bit output).

but in fact can be implemented at no cost simply by rearranging how a subset of the
wires of the bus a is connected to b:

498 Verilog Digital Computer Design: Algorithms into Hardware

a[3]

a[2]

a[1]

a[O]

Figure C-

This subset t
to form a sul
which separa
the bus b car
tinuous groul
bit select, thz

If the destina

Figure C--

b [ 3 ] would

Figure C-J

In concatena
{O,a[3:1]

5 In correct Veri



onnections a[3]
Within the
b[l] and a[2] b[2]

been trans- a[1] b[ ]

a[O] - no I b[O]
ig so can be connection
at both the Figure C-li. Implementation offigure C-10.

This subset bus is known as a subbus. A designer can select any bits of the source bus
to form a subbus. The notation we use for this is the concatenation syntax of Verilog,
which separates the name of the individual wires with commas inside { . For example,
the bus b can be described as { a [ 3 , a [2] a [ 1 }. Since subbuses that take a con-
tinuous group of bits from the source are common, there is another notation, known as
bit select, that can be used: a [ 3: 1 ] means the same as {a [ 3 ]a [ 2 ,a[1] }.

ill be times If the destination was also supposed to be four bits:

rose by any
a >>1 b

4 4

implement. Figure C-12. Combinational device to divide by two (four-bit output).
.t, b=a>>l)

b [3 ] would have to be tied to a constant 0:

a[3] 0 b[3]

a[2] b[2]

a[1] | > b[1]

ubset of the a[O] - no b[O]
connection

Figure C-13. Implementation offigure C-12.

In concatenation notation, this5 would be { 0, a [ 3 , a [ 2 , a [1]} or simply
{0,a[3:1] }

In correct Verilog notation, the constant 0 would have to be described as 1 bO.
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C.3 Adder
Many algorithms, even those that are not primarily mathematical, often need to do
addition of binary numbers. One way to accomplish this is to provide a combinational
logic unit that performs this computation:

a

b

sum

Figure C-14. Combinational device to add two n-bit values (n+1 bit output).

The block diagram symbol for an adder is simply a rectangle with a "+" or the word
"adder" inside it. The number of bits in the output bus is one more than the number of
bits in the larger of the input buses to allow for the largest possible sum. Note that a, b
and sum are typically unsigned. (The low-order n bits of sum are also valid when they
are signed twos complement; however there are complications with signed values be-
yond the scope of the discussion here.)

C.3.1 Carry out
It is common for the extra bit in the sum to be broken into a separate carry out (cout)
signal, with wordsum being a subbus:

a

b

Figure C-15. Treating the high-order bit as carry out.

where sum= cout, wordsum}. The above is often drawn as:
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Figure C-16. Alternate symbolforfigure C-15.

where the n-bit wordsum is a valid result that fits within the same sized word as a and
b only when cout is 0. When cout is 1, an overflow error is said to have occurred.
The physical implementation of this approach is identical to the earlier view of the
adder. The advantage of this view is that all buses are the same width, which often
simplifies the design of a larger system. The disadvantage is that cout must be ob-
served while the system is in operation to detect the possibility of an error. Sometimes,
however, the designer has a priori knowledge that wordsum is small, and so cout can
be ignored.

a

b

wordsum

Figure C-17. Adder without carry out.

C.3.2 Speed and cost
There are many ways that adders can be implemented physically. One of the most
common techniques is the ripple carry approach, which requires a circuit composed of
about 3 * n OR gates (each having two inputs) and 6 n AND gates (each having two
inputs). Another way to state this is that it requires n full-adder modules (as described
in sections 2.5 and 3.10.6). The worst case propagation delay for a ripple carry adder is
proportional to n (as illustrated in section 6.3).

Faster techniques exist that require more gates. Some commonly used techniques in-
clude carry lookahead and carry skip.
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C.4 Multiplexer
The multiplexer (commonly referred to as a mux) is the most important combinational
logic building block next to the bus. Its purpose is to select one of its inputs to be its
output and to ignore its other inputs. This "out of many, choose one" behavior is sym-
bolized in this book as a triangle, whose tip is the one chosen output:

ioi / 
n

ii i / 
n

n

imax - -
n

1

2 out

k

slk

select

Figure C-18. Symbolfor multiplexer

Some people draw muxes as a rectangle with the word "mux" written inside. The mux
has a select input, which is k bits wide. The mux also has (at most) 2 other buses that
are data inputs (i 0, i 1, i 2, . . . imax), each n bits wide. The mux has one data
output which is n bits wide. If any input bus has fewer bits, assume zeros are concat-
enated on the left.

C.4.1 Speed and cost
There are several ways a mux can be implemented physically. In the most common
approach, the mux shown above would be implemented using n OR gates (each hav-
ing 2k inputs), n*2kAND gates (each having k inputs) and k inverters. This approach
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needs only three stages of propagation delay. Sometimes it is possible to reduce this
down to two stages (by eliminating the need for the inverters') and so muxes imple-
mented this way are quite fast.

C.5 Other arithmetic units
Although addition is the arithmetic operation for which we typically use a combina-
tional building block, other operations can be implemented similarly. This section de-
scribes several arithmetic operations for which it is reasonable to fabricate specialized
combinational logic.

C.5.1 Incrementor
One of the most common operations is adding one to a number:

a +1 a+1
n n

Figure C-19. Symbol for incrementor

Although conceptually this could be implemented as:

a
a+1

1

Figure C-20. Inefficient implementation of incrementor

it is better to specify an incrementor if that is all the problem needs. Using a general
adder is inefficient both in terms of speed and cost.

6 The need for inverters can be eliminated in so-called dual rail designs, where every signal is provided in
both active high and active low form. The reason the inverters are not needed is because certain devices,
such as flip flops, naturally provide both active high and active low versions of the same signal at no extra
cost.
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C.5.1.1 Speed and cost
Although ripple carry addition of two arbitrary numbers requires n stages of worst case
propagation delay, incrementation can be done in only two stages of propagation delay
using n-1 OR gates (each with two inputs), 2 *n-2 AND gates (each with two in-
puts), n- 1 AND gates (of various sizes) and some inverters.

C.5.2 Ones complementor
The ones complement, -a-1 (also known as bitwise not, -a):

a o -a-1
n n

Figure C-21. Symbolfor ones complementor.

is often part of a larger computation.

C.5.2.1 Speed and cost
The ones complement only takes n inverters, and one unit of propagation delay.

C.5.3 Twos complementor
Forming the negative of a signed number is necessary in many algorithms:

a - -a
n n

Figure C-22. Symbol for twos complementor.

This can be implemented as

a - +1 -a
n n n

Figure C-23. Possible implementation of twos complementor
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C.5.4 Subtractor
The building block for a combinational logic subtractor is analogous to addition.

a

b
n+1

n

Figure C-24. Symbol for subtractor

Although a and b are unsigned, di f f erence is a signed twos complement value.
The additional bit in the output indicates whether the difference is positive or negative.
One approach to implement a subtractor would be to use an adder and a twos
complementor. A more efficient but less common approach would be to derive special-
ized logic for subtraction ("full subtractors").

C.5.5 Shifters
Multiplication and division by constant powers of two can be accomplished at essen-
tially no cost through subbusing and concatenation. For example, multiplication by 4
(shifting left two places):

a <2 4*a
12 14

Figure C-25. Symbol for shifter.

simply concatenates a to two bits that are zero on the right. The reason this does not
cost anything is because the power of two is a constant.

Sometimes the shifter has another input, known as the shift in (si), that allows the
designer to specify what the least significant bits are:

a

Si

4*a+si

Figure C-26. Symbolfor shifter with shift input.
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Again, such a device is essentially free because it is implemented as the concatenation
of a to si.

A barrel shifter allows a variable number of places for the shift. The number of places
to shift is given by a k-bit shift count (sc) bus:

a
n

n+2k1

Sc

Figure C-27. Symbol for barrel shifter with shift count input.

This can be implemented in two (or three) levels of worst case propagation delay as
constant shifters and a mux:

a

.a*2sc

Sc

Figure C-28. Possible implementation of barrel shifter

An alternative implementation which is slower but less costly uses k muxes, each with
two inputs.

A similar right shifter can be implemented for division by variable powers of two.
Barrel shifters can be arranged to allow for both multiplication or division by arbitrary
powers of two, and to allow for arbitrary shift input (rather than concatenation with
zeros).
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C.5.6 Multiplier
The left barrel shifter in the last section only allows multiplication by a power of two.
Many algorithms need multiplication by variables that are not powers of two. The
multiplier is a fairly costly hardware device that allows two arbitrary numbers to be
multiplied:

a

b

product

Figure C-29. Symbolfor multiplier

Note that the product has twice as many bits as the input buses. We will normally
assume that a, b and product are unsigned. It takes a physically different device to
multiply signed numbers.

C.5.6.1 Speed and cost
There are many ways to do multiplication; however the most commonly used tech-
niques require on the order of n gates, and at least twice the worst case propagation
delay of addition. Because the cost and speed of a combinational multiplier is so high
compared to the devices discussed in this appendix, a slower but cheaper approach
involving sequential logic (appendix D) and ASM charts (chapter 2) is often used to
generate a product.

C.5.7 Division
Division (by non-powers of two) is even more costly than multiplication when imple-
mented as a combinational logic building block. Division is seldom implemented as
combinational logic. Most of this book uses an example of one simple way that divi-
sion can be implemented using sequential logic and ASM charts.

C.6 Arithmetic logic unit
In many problems, the same building block needs to compute different mathematical
functions under different circumstances. A single unit that can handle most of the func-
tions needed for a system is known as an Arithmetic Logic Unit (ALU). A designer can

ware
507Appendix C



choose to put whatever functionality in an ALU as is appropriate for a particular prob-
lem, however it may be convenient7 to use an ALU that has already been designed,
such as the 74xx1 81.

Regardless of what details are inside the ALU that a designer chooses, the basic prin-
ciple of how a combinational logic ALU operates is the same. There is a k-bit bus,
aluctrl, that customizes the ALU for the particular function that needs to be com-
puted.

a

b
n

d

k

aluctrl

Figure C-30. SymbolforArithmetic Logic Unit (ALU).

Conceptually, an ALU could be implemented as a mux which selects from the various
combinational functions which that particular ALU is capable of performing:

n

Figure C-31. Possible implementation of ALU.

7Especially in an educational lab setting.
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Note that ALUs typically allow the passing through of a or b unmodified, and so an
ALU can also serve the role of a mux. In physical reality, the implementation of an
ALU might be quite different than a mux, but conceptually an ALU is equivalent to the
above.

C.6.1 Logical operations
As its name implies, an ALU can perform both arithmetic and logical operations. Logi-
cal operations are those in which each bit of f depends only on the corresponding bit in
a and also possibly on the corresponding bit in b. For example, consider the operation
of a four-bit ALU doing the bitwise 'AND operation, f =a&b:

Inotherwords, f [3]=a[3]&b[3], f [2]=a[2]&b[2], f [1]=a[1]&b[1]
and f [ 0 ] =a [ 0 ] &b [ ] . These bitwise operations are the only dependencies in com-
puting 'AND. For example, in computing f [ 1 ], there is no dependence on a [ 0 ] or
b [ 0] . Breaking a bitwise operation such as a&b apart into separate single-bit logic
equations as shown above is known as bit blasting.' Bit blasting is one of the many
trivial but tedious details of hardware design that designers seldom need be concerned
with because Verilog synthesis tools do such things automatically. Of course, the de-
signer needs to understand that an n-bit-wide operation like a&b eventually becomes n
separate AND gates operating independently. From this knowledge, it is easy to under-
stand the worst case propagation delay of a&b is only one unit of gate delay, regardless
of how many bits are in a and b.

Mathematically, there are only sixteen primitive bitwise logical operations involving
no more than two variables. All other formulas involving no more than two variables
and involving only combinations of these sixteen primitive operations can be simpli-
fied by the laws of Boolean algebra to one of these sixteen operations. The following is
a table of the sixteen primitive logical operations:

8 This quite descriptive term was coined by Synopsys, the pioneering vendor of Verilog synthesis tools in the
early 1990s.
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alternative

mnemonic aluctrl aluctrl operation

'NOT 000010 f = -a;

'NOR 000110 f = -(alb);

'ANDNA 001010 f = (-a)&b;
'ZERO 001110 f = 0;

'NAND 010010 f = -(a&b);

'NOTB 010110 f = -b;

'XOR 011010 f = a'b;
'ANDNB 011110 f = a&(-b);
'ORNA 100010 f = (-a)Ib;

'EQU 100110 f = -(a^b);
'PASSB 101010 f = b;
'AND 101110 101101 f = a&b;
'ONES 110010 f = -1;

'ORNB 110110 f = a|(-b);
'OR 111010 000100 f = ajb;

'PASS 111110 000000 f = a;

The mnemonic column gives arbitrary names to these sixteen operations which will be
used throughout this book.

When designing an ALU for a particular problem, it may not be necessary to include all
of the sixteen mathematically possible operations inside the ALU. Omitting some of
these operations may economize the total area required for the ALU and also may
reduce the number of bits required for aluctri.

The 74xx 181 is an ALU that implements all sixteen of the possible logical operations.
Since it also implements many arithmetic operations, it needs a six-bit aluctrl. In
the above table, the aluctrl and alternative aluctrl columns indicate the six-bit
pattern that must be input to the 74xx181 in order to perform the desired operation. For
certain operations, such as 'AND, 'OR and 'PASS, more than one bit pattern can be
used to produce the desired result.

C.6.2 Arithmetic operations
In contrast to logical operations, arithmetic operations are those where a change in one
bit position of a or b potentially affects several bit positions of f. For example, con-
sider addition ('PLUS) with the same ALU as the last example using the same values
for a and b:
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The fact that a [ 0 ] and b [ 0 ] are both one in this example ultimately affects f [ 0 ],
f [ 1 ] and f [ 2 . This ripple effect is why addition has a worst case propagation delay
proportional to n.

The following table shows some of the most useful arithmetic operations available in
the 74xx181 ALU:

Because the 74xx 181 is a low-cost ALU which is readily available for educational
laboratory experiments, it does not implement multiplication or division. Section 2.3.1
shows how to use one of these ALUs to implement division using a slow but simple
algorithm.

C.6.3 Status
An ALU commonly outputs extra information besides just the n-bit-wide result, f . For
example, the 74xx 181 has two status outputs that provide information about the com-
putation currently being performed by the ALU. The first of these, cout, comes from
the ALU's internal adder. It may be used to detect overflow (a+b>=2n) when 'PLUS
is being performed, and to detect a<b when 'DIFFERENCE is being performed.

The second status output, zero, detects whether f==0. It may be used to detect whether
a==b when 'DIFFERENCE is being performed.

C.7 Comparator
There are six mathematical relational operators (==, =, <, >, <= and >=). The
vast majority of useful algorithms use one or more of these to make decisions that
determine how the algorithm proceeds. Although the status outputs of an ALU may be

(ware

'INCREMENT 000001 f = a+1

'DECREMENT 111100 f = a-l

'PLUS 100100 f = a+b

'DIFFERENCE 011001 f = a-b

'DOUB 110000 f = 2*a

'DOUBINCR 110001 f = 2*a+1

r
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able to answer such questions, it is often not efficient to use an ALU to do so. Instead,
a specialized combinational building block, known as a comparator, is used instead. A
comparator has two n-bit-wide input buses, a and b. At most, a comparator has three
bits of output:

a

b

altb

aeqb

agtb

Figure C-32. Symbol for comparator

From these three outputs, the other three conditions can be derived, for example
ageb=agtb aeqb. Many problems only need an equality test:

a

b

aeqb

Figure C-33. Symbol for equality comparator

C.7.1 Speed and cost
A comparator that only provides the equality output is much cheaper than one that also
provides inequalities, such as atb. Such an equality only comparator needs 2 n
inverters, 2 n AND gates (each having two inputs), n OR gates (each having two
inputs) and one AND gate (having n inputs). The propagation delay for an equality
only comparator is four units of gate delay under these assumptions. The cost is even
lower when one input is a constant.

A comparator that also provides inequality outputs will have a worst case propagation
delay proportional to n. It will also use considerably more area than an equality only
comparator.
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r C.8 Demux
The demultiplexor (demux) is a specialized combinational building block which is notused in the early chapters of this book. It plays an important role in implementingconcepts found in later chapters.

As the name implies, the demux is the opposite of a mux. The symbol used in this bookfor a demux reflects this. It is a triangle where the only input to the demux is connectedto the tip of the triangle. The many outputs of the demux are drawn on the oppositeside:

outo

outl

out2

outmax

n

Figure C-34. Symbolfor demux.

Like the mux, the demux has a k-bit input bus known as select. Some people maydraw the demux as a box. All but one of the n-bit output buses will be zero. The se-lected output bus will pass through unchanged the value on the input bus.

C.8.1 Speed and cost
Demuxes are simply a large collection of AND gates that operate independently. Thedemux shown above requires n * 2 k AND gates (each having k+ 1 inputs) and k invert-ers. Such an implementation would have a worst case propagation delay of only twogates. Sometimes, the inverters can be eliminated, in which case the propagation delayis only one gate.
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C.8.2 Misuse of demuxes
Novice hardware designers often use demuxes where they are unnecessary. For ex-
ample, suppose part of the time a machine needs to increment a number, a, and part of
the time the machine needs to multiply it by two, but the machine never needs to incre-
ment and double the number at the same time. Novice designers often put a demux in
such a design:

a

1

result

_ ~ ~~~~ results

select

Figure C-35. Misuse of demux.

In the above, resultO is a+1 if select==O but is 0 otherwise. Also, resultl is
a* 2 if select==1 but is 0 otherwise. Since it was assumed that a+1 and 2 *a do
not need to be simultaneously available, the above might work, but it would be consid-
ered a bad design for three reasons. First, the demux is an unnecessary and expensive
(both in terms of speed and cost). Second, if the problem changes so that resultl is
supposed to be 2 *a simultaneously with resultO being a+1, the above design would
be completely wrong. Third, even if 2 *a and a+ 1 are never needed simultaneously,
the designer is burdened with providing the proper select.

It is understandable that novice designers make this mistake. In software, the program-
mer only specifies the operation required (either a+ 1 or 2 * a) based on select. But
in hardware, as was discussed in section C.2.5, it is easier to route a bus to every place
where it is needed. The cost of doing this is usually quite low, and certainly less than
using a demux:

a

Figure C-36. Proper design omits demux.
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There is no harm in result being 2 *a simultaneously with resultO being a+l.
In hardware, it is often more economical to compute everything you might need
and ignore those results that are not pertinent under particular circumstances.

Therefore, demuxes are not needed in the early chapters of this book. Demuxes are
important in more advanced design topics. Demuxes are important in the design of
memory systems (section 8.2.2.3.1) and in the implementation of one-hot controllers
(chapter 7).

C.9 Decoders
A decoder is a specialized combinational device that converts from a binary code to
some other code. The most common decoder converts from binary to what is called a
unary code. The following table lists these codes for the numbers between 0 and 7

value binary unary out

0 000 00000001
1 001 00000010
2 010 00000100
3 011 00001000
4 100 00010000
5 101 00100000
6 110 01000000
7 111 10000000

Such a decoder can be thought of in two ways. First, it can be thought of as a building
block that simply takes k bits of binary input, and produces 2 bits of unary output:

binary dr unary

2

Figure C-37. Symbolfor binary to unary decoder

Second, a binary to unary decoder can be thought of as a building block composed of
2 k comparators. The output of each comparator provides one of the bits of the unary
code. The second input of each comparator is connected to a binary constant. Each
comparator is comparing against a different k-bit binary constant (from 0 to 2 k- 1):
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k

== / s unary[O]

- cMP== 0 unary[1]
1 1

k

c2 _ unary[2]
2 t 1

k

j n,-l 
kk 1 ]unary[2K 1]

Figure C-38. Possible implementation of decoder

Finally, an alternative way of looking at a binary to unary decoder is as a demux whose
one-bit-wide input bus is tied to 1:

1

1 ~~~~2

unary[o]

unary[1]

unary[2 -1 ]

1
/ i

, 

1

binary

Figure C-39. Alternate implementation of decoder.
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C.9.1 Speed and cost
The speed and cost of a binary to unary decoder is similar to a demux.

C.9.2 Other kinds of decoders
Decoders exist that involve other codes besides unary, such as those for seven segment
displays. Such decoders are more specialized, and not widely used in computer design.

C.10 Encoders
Sometimes, a designer needs to convert from a unary code to binary. A combinational
building block that performs this conversion is known as an encoder. If the designer
could be sure the input were always a proper unary code (with exactly one bit that isone), the encoder could be implemented simply with k OR gates. But there are only 2 k
valid unary codes out of the very large number (two raised to the k) of bit patterns that
might appear on the input.

Instead, designers use a priority encoder.

possibly / -
unary .k

priority
encoder

-4-- binary

2"1

Figure C-40. Symbol for priority encoder

It outputs the binary code corresponding to the bit position of the least significant
leading zero.
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The priority encoder is useful for counting how many leading bits of a number are zero.
This is a computation that is necessary to implement floating-point arithmetic. Priority
encoders are also often used so that a general -purpose computer can select which one
of several external interrupts has the highest priority.

C.11 Programmable devices
Almost any imaginable mathematical function can be realized as a combinational build-
ing block if it involves a small enough number of bits of input. With Verilog synthesis
tools available since the mid 1990s, functions involving around sixteen or fewer bits of
input are routinely converted into combinational logic without the designer having to
worry about their technological or gate-level implementation. The synthesis tool pro-
duces a file that can be downloaded into one of many kinds of programmable devices.
The process of transferring the design into a programmable device is known as pro-
gramming it. Such programming is a mechanical process, which does not require hu-
man intervention or creativity. The term burning is sometimes used to mean the same
thing as programming. This use of the term programming should not be confused with
its use in software (chapter 8), where the term programming means the same thing as
design, which, of course, requires lots of creativity.

There are many kinds of programmable devices available, including Programmable
Logic Arrays (PLAs), simple and Complex Programmable Logic Devices (CPLDs),
Field Programmable Gate Arrays (FPGAs) and Read Only Memories (ROMs). CPLDs
and FPGAs also have provision for sequential logic (see appendix D), but ROMs are
pure combinational logic. The combinational logic implemented by all ROMs and by
many FPGAs are based on truth tables without the need for expressing logic equations.
In contrast, PLAs and CPLDs are based on logic equations (sum of products) rather
than truth tables. Synthesis tools automatically produce truth tables or logic equations,
depending on the target technology the designer selects.

C.11.1 Read only memory
Automatic synthesis of combinational logic for functions involving more than about
sixteen bits depends on the complexity of the function. A simple function like addition
can be implemented for an arbitrarily large number of input bits with combinational
logic because the function decomposes into smaller combinational logic units, e.g., full
adders in the case of addition. The synthesis tool is well aware of the properties of
commonly used functions like addition. The decomposition of more complicated func-
tions (whose properties are not built into the synthesis tool) is often less obvious. Syn-
thesis tools explore many possible implementations for the combinational logic re-
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quested by the designer, however; as the number of input bits increases, the number of
design alternatives grows exponentially. It becomes difficult for the synthesis tool to
derive the logic equations needed for technologies such as CPLDs. ROMs tend to be
the most practical approach for complex functions as the number of input bits grow.
This is because with ROMs, all the designer has to do is tabulate the desired behavior,
rather than find logic equations that produce that behavior. This avoids using a synthe-
sis tool that has to explore exponential possibilities.

There are several ways of describing a ROM. The usual viewpoint of the designer is
that the ROM is a black box, specialized for computing some particular function:

address R contents
k n

Figure C-41. Symbolfor a Read Only Memory (ROM).

The number of input bits, k, and output bits, n, need not be the same, although often
k==n. The input bus to the ROM is known as the address. The output bus of the ROM
is known as the contents. This address and contents terminology is borrowed from
memory systems (section 8.2.2.3.1). However, such a ROM is not truly a "memory"
because once a value is burned into a ROM, it cannot be changed.'

Normally, the designer will indicate more than just the word "ROM" inside the box,
since the ROM could be programmed to implement any function. For instance, the
designer might need a "square root ROM," or something like that. The designer is then
responsible for providing a table of the contents that need to be burned into that par-
ticular ROM.

Another viewpoint of the ROM is to describe it in terms of the combinational logic that
it implements. A ROM is simply a mux whose data inputs are connected internally to
the constants (cO, c , c2, . . cmax) that the designer has burned into the
ROM.

9 So-called Electrically Erasable Programmable ROMs (EEPROMs) are not truly ROMs when the system in
which they are used controls their erasure, such as when they are used as memory in general-purpose com-
puters. In the terminology of chapter 8, such EEPROMs are non-volatile memory with slow access time.
EEPROMs are however truly ROMs when their erasure is activated only by a separate development system
under the control of the designer and not the hardware being designed. Put another way, if the designer does
not use an EEPROM's erasure property in the design of the system itself, then the EEPROM is acting like a
ROM, which is to say, the EEPROM implements some combinational logic function.
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** contents

Figure C-42. Possible implementation of a ROM.

C.11.2 Complex PLDs
An alternative to using a ROM is to use a CPLD. The internal structure of a CPLD is
too complex to describe here. A designer is seldom concerned with such details. In-
stead, a synthesis tool takes care of the details for the logic equations required inside
the CPLD.

C.12 Conclusions
Combinational logic is an important building block for computer design. The distin-
guishing characteristic of combinational logic is that it lacks memory: its output is a
function of its input. Common combinational building blocks include muxes, demuxes,
incrementors, shifters, adders, ALUs, comparators, encoders and decoders. Some de-
vices, such as buses and fixed position shifters, can be implemented at zero cost. Oth-
ers, such as multipliers, are quite expensive. Ideally, we model combinational logic as
a pure mathematical function having no propagation delay, but in reality, different
approaches to implementing combinational building blocks have different propagation
delays and costs.
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Read Only Memories (ROMs) are not actually memory because they do not have the
ability to forget. ROMs are simply a different, more convenient, approach for imple-
menting combinational logic. The use of ROMs as well as the use of programmable
logic with Verilog synthesis tools has made the design of specialized combinational
logic relatively easy.

C.13 Further reading
GAJSKI, DANIEL D., Principles of Digital Design, Prentice Hall, Upper Saddle River,
NJ, 1997. Chapter 5.

PROSSER, FRANKLIN P. and DAVID E. WINKEL, The Art of Digital Design: An Introduction
to Top Down Design, 2nd ed., Prentice Hall PTR, Englewood Cliffs, NJ, 1987. Chapter
3.

C.14 Exercises
Using the combinational logic building block devices listed in each of the following
problems, give a block diagram that implements the more complex combinational build-
ing block described by the data output(s). The buses in these problems should be inter-
preted as unsigned binary integers.

C-1. Control Inputs: CTRL (3 bits)
Data Inputs: A (32 bits), B (32 bits), C (32 bits), D (32 bits), E (32 bits)
Data Output: F (32 bits)
Devices: one 32-bit adder, one 32-bit 2-input mux, one 32-bit 4 input mux

Appendix C

CTRL Data outputs

000 F=A

001 F=B

010 F=C

011 F=D

100 F=A+E

101 F=B+E

110 F=C+E

111 F=D+E
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C-2. Control Inputs: CTRL (3 bits)
Data Inputs: A (32 bits), B (32 bits), C (32 bits), D (32 bits), E (32 bits)

Data Output: F (32 bits)
Devices: one 32-bit adder, four 32-bit 2-input muxes

CTRL Data outputs

000 F=A

001 F=B

011 F=D
100 F=A+E

101 F=B+E

110 F=C+E

111 F=D+E

C-3. Control Inputs: CTRL (3 bits)
Data Inputs: A (32 bits), B (32 bits), C (32 bits), D (32 bits), E (32 bits)

Data Output: F (32 bits)
Devices: one 32-bit 8 input mux, four 32-bit incrementors.

CTRL Data outouts
000 F=A

001 F=B

010 F=C

011 F=D

100 F=A+1

101 F=B+1

110 F=C+1

111 F=D+1

C-4. Control Inputs: none
Data Inputs: A (8 bits), B (8 bits), C (8 bits)
Data Output: A+B+C+2 (10 bits)
Devices: one 8-bit adder, one 9-bit adder

C-5. Control Inputs: none
Data Inputs: A (32 bits), B (32 bits)
Data Output: max(A,B), min(A,B)
Devices: one 32-bit comparator, two 32-bit 2-input muxes

C-6. Control Inputs: none
Data Inputs: array of four unsorted 32-bit integers
Data Output: same integers in sorted order
Devices: five of the devices from problem C-5

Verilog Digital Computer Design: Algorithms into Hardware
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Hint: This is hierarchical design. Do not draw any muxes or comparators.
C-7. Control Inputs: CTRL (3 bits)

Data Inputs: A (32 bits), B (32 bits), C (32 bits)
Data Outputs: D (32 bits), E (32 bits)
Devices: three 32-bit adders, one 32-bit 2 input mux, one 32-bit 8-input mux

CTRL Data outputs
000 D=A; E=A
001 D=B; E=B
010 D=C; E=O
011 D=C; E=o
100 D=A+C; E=A+C
101 D=B+C; E=B+C
110 D=A+B; E=o
111 D=A+B; E=0

C-8. Control Inputs: ALUCTRL (6 bits), CTRL(1 bit),
Data Inputs: H (8 bits), L (8 bits), M(8 bits)
Data Outputs: F (8 bits), G (8 bits)
Devices: two 8-bit integer ALUs (74LS 181),

one 8-bit 2 input mux

ALUCTRL CTRL Data output
100100 0 F=H+L; G=H+2*L
100100 1 F=H+M; G=H+L+M
101101 0 F=H&L; G=H&L
101101 1 F=H&M; G=H&L&M
000100 0 F=HIL; G=HIL
000100 1 F=HIM; G=HILIM

Hint: It is a theorem of Boolean algebra that L&L==L.

C-9. Control Inputs: CTRL(2 bits)
Data Inputs: X (4 bits), Y (4 bits), Z (8 bits),
Data Output: W (9 bits)
Devices: one 8-bit adder, one 4-bit multiplier, any number of 8-bit 2-input

muxes

CTRL Data output
00 w=x

01 W=X+Z

10 W=X*Y

11 w=x*Y+z
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C-10. Control Inputs: CTRL(2 bits)
Data Inputs: X (4 bits), Y (4 bits), Z (8 bits)
Data Output: W (9 bits) Same as in problem C-9.
Devices: any number of adders of any width (specify), any number of shifters,
any number of 2-input muxes of any width (specify)

Hint: With these building blocks, you need to implement the 4-bit multiplier
using the shift and add algorithm for multiplication, which is analogous to the
pencil and paper algorithm for decimal multiplication:

six times thirteen

0110
* 1101 1

0110 do (1) 

don't (0) 
011000 do (1) 

+ 0110000 do (1) 

01001110 product is

select 6

select 18=12+6, instead pass 6
select 30=24+6

select 78=48+30

78
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D. SEQUENTIAL LOGIC
BUILDING BLOCKS

Although combinational logic (appendix C) is useful for implementing mathematical
functions in hardware, combinational logic has no memory of values that were com-
puted previously. Most practical algorithms make use of old values to compute new
ones. Therefore, combinational logic by itself is insufficient to implement interesting
algorithms. In addition to combinational logic building blocks, interesting machines
must include sequential logic building blocks, commonly referred to as registers, that
allow the hardware to remember old values. This appendix reviews several important
synchronous sequential logic building blocks.

D.1 System clock
The term synchronous means that all of the sequential building blocks are connected to
a single signal, known as the system clock or sysclk for short. The place where the
system clock is connected is shown as a wedge in the lower-left corner of each syn-
chronous building block:

synchronous synchronous
sequential sequential

v device 1 r device 2

sysclk 

Figure D-l. Universal connection to system clock signal shown.

This connection need not be drawn because it is understood that all synchronous se-
quential devices connect to this same signal. For example, the following is understood
to mean the same as the above:

synchronous
sequential
device 1

synchronous
sequential
device 2

Figure D-2. Universal connection to system clock signal assumed.
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D.2 Timing Diagrams
To describe the behavior of sequential logic, it is often helpful to use timing diagrams.
A timing diagram plots values against time. For single-bit signals, like sysclk, this
plot appears similar to some kind of graph you might have drawn in an algebra class.

The concept of a timing diagram originated with the display produced by an oscillo-
scope. Computers operate at speeds too fast to be observed by the unaided eye. When
testing (or repairing) an actual physical computer, a computer designer needs some
kind of test equipment to observe signals inside the computer down to a time resolution
of about a nanosecond. The oscilloscope is a kind of test equipment that plots voltage
versus time on a phosphor screen. The earliest electronic computer designers half a
century ago used primitive oscilloscopes, and modem versions of oscilloscopes are
still used by computer designers today.1 For example, if you were to connect an oscil-
loscope to the sysclk signal, you might see:

Figure D-3. An analog waveform for the system clock signal.

which shows how the analog voltage (vertical axis) on the sysclk wire varies with
time (horizontal axis). Physical properties, like capacitance and inductance, affect the
ragged shape of the analog voltage shown on the oscilloscope. Computer designers are
not concerned with analog voltages, and so this rather messy physical reality is ab-
stracted to an idealized square wave:

sys

Figure D-4. A digital abstraction of the system clock signal.

Such a square wave is not physically possible; however, as explained in section C. 1. 1,
computer designers often use models of reality that are physically unrealistic because
such simplified models emphasize only those things which are algorithmically impor-
tant.

l Computer designers now often use more sophisticated kinds of test equipment.
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In the case of the sysclk signal, the only thing that is important is that it subdivides
time into equal-sized intervals, known as clock periods or clock cycles:

syscfk

I 4 - first clock cycle second clock cycle -

Figure D-5. The system clock divides time into cycles.

Each clock period begins and ends on the rising edge of sysclk. (Some kinds of
sequential logic use the falling edge; however in this book all synchronous sequential
building blocks use the rising edge.)

D.3 Synchronous Logic

Synchronous logic is a restriction on physical reality where changes in the values shown
in a timing diagram occur only at the exact instant of the rising edge of sysclk. For
example, in the following timing diagram, one bit of data is being manipulated by an
algorithm:

data

sysclk

Figure D-6. An ideal synchronous timing diagram.

The above is a valid synchronous timing diagram because the changes in data occur
only at the rising edge of sysc 1k. In physical reality, the changes in data occur slightly
later than the actual instant of the rising edge due to propagation delay of the circuits
used to generate the data signal:
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data

sysclk
Figure D-7. A realistic synchronous timing diagram with propagation delay.

but as discussed in section C. 1. 1, we normally ignore propagation delay. At the begin-
ning of the design process, the primary concern of the designer is getting the algorithm
right. Worrying about physical reality is a distraction from the designer's most impor-
tant mission-ensuring that the algorithm is correct.

The following diagram is not synchronous. It is known as asynchronous because the
data pulse might occur at any time with respect to syscik:

data

sysclk
Figure D-8. An asynchronous timing diagram.

With only one exception that happens when a machine is first turned on (described in
sections 4.4.5 and 7.1.6), we will not use such asynchronous logic.

Synchronous design is safe and easy. Asynchronous design is hard and dangerous.
Commercial synthesis tools concentrate on synchronous design. Therefore, synchro-
nous design is widely used in industry.

D.4 Bus timing diagrams
Digital computers represent values other than zero and one using a group of bits on a
bus with the binary number system. The physical reality is that each wire in a bus
represents a separate bit of information. But from an algorithmic viewpoint, the de-
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signer wants to look at the bus as containing a single binary value. Suppose the value of
a variable, v, goes through the sequence 0, 1, 2, 3, 0, 1, 2, 3, 0 .... This could be shown
on a timing diagram as two separate bits that change synchronously with sysclk:

v[1 ] 

v[O]

sysclk

Figure D-9. Timing diagram showing individual bits of a bus.

However dealing with separate bits is quite tedious. Instead timing diagrams usually
show the numeric value of the complete bus during each clock cycle:

V

sysclk 

Figure D-10. Timing diagram showing numeric values on a bus in decimal.

In timing diagrams, the notation shown in figure D- 11:

Figure D-1J. Notation usedfor bus timing diagrams.

shows the instant in time (a particular rising edge of syscik) when the numeric value
of the bus changes. It is only necessary for one bit of the bus to change for the numeric
value of the bus to be completely different.

D.5 The D-type register
The simplest sequential building block is the D-type (or delay type) register:

din D dout
n register fl

Figure D-12. Symbol for D-type register.
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Some people refer to din as the D input and dout as the Q output. When n=l, this
device is referred to as a D-flip flop. In fact, an n-bit D-type register is usually built
from n D-type flip flops.

In the D-type register, dout is simply a delayed version of din. Put another way,
dout in the present clock cycle is the same as din in the previous clock cycle. Sup-
pose that din just happens to be going through the binary sequence:

din

dout

sysclk 

Figure D-13. Example timing diagram for D-type register.

dout will also go through the same sequence, but it will lag by one clock cycle. In the
above, x means unknown (see section 3.5.3 for details on how bx is used in Verilog
simulation), because there is not enough information to predict what is in the register at
the beginning.

As another example, consider what happens when din is somewhat more random:

din

dout

sysclk

Figure D-14. Another timing diagram for D-type register.

I ne D-type register is not used by itself in computer design very often. The two most
common uses of the D-type register are synchronizers and the present state register for
controllers (see sections 2.4.1 and 7.1.1).

All of the more useful registers described below can be constructed from a simple D-
type register combined with combinational logic, but it is often not helpful to think of
things that way. It is usually better to think in terms of one of the more sophisticated
building blocks described below. On the other hand, D-type registers together with
specialized logic are often included in designs created by synthesis tools (see section
D.11).
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The reason the D-type register by itself is often inadequate for many problems is that
the D-type register only remembers the old value for one clock cycle. Most algorithms
have variables that must remain unchanged for multiple clock cycles. This requires a
more sophisticated kind of register, discussed in the next section.

D.6 Enabled D-type register
Algorithms are the starting point for the hardware design approach described through-
out this book. Algorithms are composed of steps that manipulate variables at certain
moments in time. The rising clock edge determines when those moments occur. The
vast majority of algorithms manipulate their variables in complicated ways, so that the
variables do not change at every rising clock edge. For this reason, we need a kind of
register building block that can hold its former contents for multiple clock cycles as
well as being able to load itself with new contents. The building block that has such a
capability is known as an enabled D-type register, or just simply an enabled register.
In order to allow the designer to choose between these two different actions, the en-
abled register has a command input. This command input is sometimes known as the
load signal or the enable signal. In this book, this command input is typically abbrevi-
ated with a name like d.

Id

enabled
din 1 0 register clp dout

n > n

Figure D-15. Symbolfor enabled D-type register

The following action table describes what the enabled register does based on the d
input:

An action table is not a truth table, because unlike a truth table, an action table includes
the concept of time.
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For example, suppose the following din and ld signals are provided to an enabled
register:

din 3 2 0

la [ JII

dout ( == ° )(3=
sysclk n

Figure D-16. Example timing diagram for enabled D-type register

In this example, d happens to be 0 at certain times when dout happens to be 3. This
means in the clock cycle after ld is 0, dout will continue to hold the value 3, regard-
less of what din happens to be. On the other hand, when id is 1, the enabled register
acts just like a simple D-type register.

The enabled register can be implemented as a mux connected to a simple D-type regis-
ter:

dout

din

Id

Figure D-l 7. Implementation of enabled D-type register using simple D-type
and mux.

When ld is 0, the mux passes through the old value of dout to be reloaded into the
simple D-type register. When ld is 1, the mux passes through the new din value to be
loaded into the simple D-type register.

Other arrangements of hardware not based on the simple D-type register can also imple-
ment an enabled register. Therefore, in the top-down approach, designers typically
specify an enabled (or loadable) register without concern for how it is implemented.
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In the TTL logic family, the 74xx377 (for n=8) and 74xx378 (for n=6) chips imple-
ment the same actions as the above.'

D.7 Up counter register
When combined with combinational logic, the enabled D-type register is sufficient to
implement any algorithm, however, certain register operations occur so frequently that
these operations deserve special implementation as sequential building blocks in their
own right. The distinguishing characteristic of these operations is that the register has
within itself all the information necessary to perform the operation.

Perhaps the most important of these special operations is counting. Most algorithms
include steps that involve counting. In fact, the very first practical machine ever built
with digital electronics (by Wynn-Williams in 1932) was a counter used to count alpha
particles for a physics experiment conducted by Lord Rutherford. Since that time, bil-
lions of counters have been fabricated.

There are many variations on how to build a counter. In this book, we will concentrate
only on the two most important kinds of counters: the synchronous loadable binary up
counter (described in this section), and the synchronous loadable binary up/down counter
(described in section D.8). We will refer to these more simply as the up counter and the
up/down counter, respectively. When the word counter is used by itself in this book, it
means the synchronous loadable binary up counter.

The up counter has three command inputs. The d command signal is the same as it is
in an enabled register. The e r command signal causes the counter to become zero at
the next rising edge of the clock. The count command signal (sometimes referred to
as the inc command signal) causes the counter to increment at the next rising edge of
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Figure D-18. Symbol for up counter register.

2 Except ld is active low, which has the apparent effect of reversing the 0 and I inside the mux of the TTL
chip.
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The behavior of the up counter is summarized by the following action table:

ld lr count action

o 0 0 hold
o o 1 increment
o 1 0 clear
o 1 1 clear
1 0 0 load
1 0 1 load
1 1 0 load
1 1 1 load

Note that the d signal has a higher priority than cr and count. Also cr has a
higher priority than count. An up counter can be constructed from a simple D-type
register, three muxes and an incrementor:

dout

Figure D-19. Implementation of up counter register using simple D-type
register and combinational logic.

Recall that the combinational logic incrementor (section C.5. 1) is considerably faster
than an adder. Even so, there are other more efficient ways of constructing a counter
than the technique shown above. For example, in the TTL logic family, the 74xx163
chip provides for n=4 the same actions3 as the above using fewer gates and less propa-
gation delay.

3Except that cr and ld are active low.
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D.8 Up/down counter
Some algorithms involve both incrementing and decrementing the same variable. For
such algorithms, the use of an up/down counter may be appropriate. The up/down counter
has three command inputs. The ld command signal is the same as in the earlier regis-
ters. The count command signal causes the counter to increment or decrement at the
next rising edge of the clock, depending on the up command signal. If up is 1 when
count is 1, the counter increments. If up is 0 when count is 1, the counter decre-
ments.

count
Id up

up/down
din / > counter dout

n >n

Figure D-20. Symbolfor up/down counter register

The behavior of the up/down counter is summarized by the following action table:

An up/down counter can be constructed from a simple D-type register, two muxes, a
combinational logic incrementor and a combinational logic decrementor:
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o 0 0 hold
o 0 1 hold
o 1 0 decrement
o 1 1 increment
1 0 0 load
1 0 1 load
1 1 0 load
1 1 1 load
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E dout

Figure D-21. Implementation of up/down counter register

There are other ways of constructing this than the technique shown above. For ex-
ample, in the TTL logic family, the 74xx669 chip provides for n=4 the same actions as
the above using fewer gates and less propagation delay.

D.9 Shift register
Like counting, multiplication and division by two, as well as the related operations of
rotation, can be implemented within a specialized device. Shift registers are sequential
building blocks that implement these operations internally. There are many kinds of
shift registers. The kind used in this book is a synchronous parallel loadable left/right
shift register, with left and right shift (serial) inputs. This device is referred to simply as
a shift register in this book.

The shift register has a ci r signal (similar to the up counter) and a two-bit shi f tctrl
signal. The action table for this shift register is:
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cr shiftctrl action
o 00 hold
o 01 right
o 10 left
o 11 load
1 00 zero
1 01 zero
1 10 zero
1 11 zero
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In addition to the n-bit-wide din bus that all synchronous registers have, the shift
register has two inputs, rs i and 1s i, each one bit wide, that only play a role when the
shift register is shifting:

rsi
Isi

din dout

Figure D-22. Symbol for shift register

The one-bit input rsi is ignored except when the register is shifting right
(shi f tctrl=01), in which case rs i determines the value of the most significant bit
of dout for the next clock cycle. Similarly, 1si is ignored except when the register is
shifting left (shiftctrl=10), in which case si determines the value of the least
significant bit of dout for the next clock cycle.

This can be implemented using two combinational logic shifters, two muxes and a
simple D-type register.

dout

Figure D-23. Implementation of shift register
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Recall that the combinational logic shifters do not cost anything. There are other ways
of constructing this than the technique shown above. For example, in the TTL logic
family, the 74xx194 chip provides for n=4 the same actions4 as the above using fewer
gates and less propagation delay.

D.10 Unused inputs
Sometimes a designer needs more capability than an enabled register, but not as much
as is offered by one of the other register building blocks described above. For example,
a designer may need a register that omits any one of the three command inputs of an up
counter:

Id
cir

enable
din clear dout

n register n

count
Id

non-
din clear dout

n counter n

count
cIr

non-
load -**dout
counter n

Figure D-24. Symbols for other registers.

The register on the left omits the count signal and is therefore not truly a counter. The
register on the left is known as a enabled clearable register. The register in the middle is
a counter that does not ever need to be cleared but that instead is loaded with din. The
register on the right is a counter that never has to be loaded and therefore does not need
a din bus.

All three of these are specializations of the up counter described in section D.7. They
can be implemented by tying one of the three command inputs of an up counter to 0:

0 count count
dr Id | m Id i cir

up up up
din g c e dout din- f& counter fdout no cue clout

n > n n n connection n

Figure D-25. Implementations for these registers using a loadable clearable
up counter.

4 Except that cdr is active low.
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It is important to understand the distinction between a block diagram and a circuit
diagram. A circuit diagram is a detailed description used by people (or more likely
automated manufacturing equipment) that put together a machine with no understand-
ing of how the machine was designed. A block diagram is an abstract description used
by designers as they think through various design alternatives.

The guiding philosophy for drawing block diagrams is how well the diagram describes
the thoughts of the designer. A block diagram should be as simple as possible. Even if
the circuit diagram will eventually use a counter with one of its command inputs tied to
zero, it is easier for designers to communicate with each other by simply omitting that
detail. Designers understand that one way of implementing the following:

count
Id

non-
din clear dout

n count n

Figure D-26. Symbolfor a non-clearable up counter

is as:

din dout

Figure D-27. Possible implementation using a clearable up counter

although there is probably a more efficient way. Rather than overspecifying a block
diagram with details, the designer only shows what is essential to the problem being
solved. This is the same philosophical reason why we omit drawing the connection to
sysclk, ground and Vcc: we know they have to be there,5 and so why clutter the
block diagram with a detail that adds nothing to our understanding?

In a similar way, it is common to use a shift register that never needs to be cleared:

5 Vcc and ground supply power to a chip. The chip will not operate without these connections. Likewise,
synchronous devices will not operate without a connection to sysclk.
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rsi

Isi

din dout

Figure D-28. Symbol for a non-clearable shift register

This can be implemented as:

rsi

Isi

din dout

Figure D-29. Possible implementation using a clearable shift register

D.11 Highly specialized registers
The registers shown above are but a small sample of the ones that are theoretically
possible. A designer can create a specialized building block just for a particular prob-
lem if the value of dout in the next clock cycle can usually be computed as a combi-
national function of the current dout. As with the registers shown above, such special-
ized building blocks are typically implemented with a simple D-type register com-
bined with muxes and other combinational logic. With the introduction of Verilog syn-
thesis tools in the mid 1990s, designers may start conceptualizing a problem in terms of
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the building blocks given in earlier sections, only to have the synthesis tool convert
those building blocks into some more efficient specialized one which is specific to
their particular algorithm.

From a theoretical viewpoint, every computer can be thought of as a single very big
register, whose value is meaningless to the human mind. In essence, this theoretical
approach treats this one register as the concatenation of every piece of information the
computer needs to remember. Mathematicians like to conceptualize things this way,
but such an approach is an oversimplification that does not help a practical designer.

The building blocks given earlier are at the right level of abstraction for practical use.
They are available as isolated chips (74xx377, 74xx378, 74xx163, 74xx669 and
74xx194) suitable for laboratory experiments which build the confidence of novice
designers. They are commonly used by synthesis tools, even though synthesis tools
may sometimes do something more sophisticated. In order to understand the more
sophisticated things that synthesis tools do, one must already be familiar with the building
blocks given in the earlier sections of this appendix.

D.12 Further Reading
GAJSKI, DANIEL D., Principles of Digital Design, Prentice Hall, Upper Saddle River,
NJ, 1997. Chapter 6.

PROSSER, FRANKLIN P. and DAVID E. WINKEL, The Art of Digital Design: An Introduction
to Top Down Design, 2nd ed., Prentice Hall PTR, Englewood Cliffs, NJ, 1987. Chapter
4.

D.13 Exercises
D-1. Complete the following timing diagram to show dout, given an enabled
register with a 4-bit din, and a control input d:

sysclk

Id

din 5 3 1
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D-2. Complete the following timing diagram to show dout, given a shift register
with a 4-bit din, a 2-bit control input shf and inputs cir, rsi and isi:

sysclk

cir m

shf[O]

shf[1]

rsi

Isi

din 7 5 3 A2 

D-3. Complete the following timing diagram to show dout, given an up counter
register with a 4-bit din, and control inputs cir, ld and inc:

sysclk

clr

Id

inc

din (7 X X 3 . I
D-4. Complete the following timing diagram to show dout, given an up/down
counter register with a 4-bit din, and control inputs count, ld and up:

sysclk

Id

count

up

din 75 7 3
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E. TRI-STATE DEVICES
A tri-state device is a special kind of combinational building block that has the ability
to disconnect its output logically from the bus to which that output is physically con-
nected. For simplicity, the combinational devices defined in appendix C and used
throughout most of this book do not have tri-state capabilities, although many actual
chips do. This appendix describes what tri-state devices are, and shows two common
uses for them.

E.1 Switches
As explained in section C.2. 1, a bus is composed of several wires that run in parallel to
each other. The bit transmitted on each wire of the bus originates at the output of some
gate (such as an AND gate), and is received at the input(s) of other gate(s). Although
computer designers normally prefer to abstract away the electronic details of how a
gate operates, some understanding of how a non-tri-state device operates is necessary
to understand the extra feature provided by a tri-state device.

Each non-tri-state gate is actually composed of several simpler switching devices, such
as transistors. Although the details in the operation of these switching devices depend
upon the technology family used (CMOS, TTL, etc.), the effect they have on the gate's
output is partly analogous to the effect that a wall switch has on the voltage across the
filament of a light bulb. When the wall switch is open, the light is turned off because
the voltage at point a is independent of the voltage at point b:

a b /

Figure E-1. An open switch causes a light to be off.

Saying that the switch is open is the same as saying a is disconnected from b. Since the
filament of an ordinary light bulb is really just a wire that is a poor conductor (a resis-
tor), the voltage at b will be the same as at c. For this reason, the filament is cool, and
the light does not shine. On the other hand, when the switch is closed, the light is turned
on because the voltage at a is identical to the voltage at b.
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Figure E-2. A closed switch causes the light to be on.

Saying that the switch is closed is the same as saying a is connected to b.

E.1.1 Use of switches in non-tri-state gates
Non-tri-state gates are more complicated than light switches in two ways. First, the
gate has to compute the desired output bit (which may require switching devices not
described here). Second, the gate has to connect the output wire to the proper voltage.

In most technologies, connecting the output wire to the proper voltage requires two
switches: the top switch connects the output wire to the voltage' for the bit 1, and the
bottom switch connects the output wire to the voltage2 for the bit 0. For example,
suppose the gate needs to output the bit 0. To do this, the "1," switch is open and the "O"
switch is closed:

1 

Figure E-3. A gate producing 0 as output.

The only other possibility for a non-tri-state gate is that the gate needs to output the bit
1. To do this, the "1" switch is closed and the "" switch is open:

i E A 1

Figure E-4. A gate producing I as output.

' For active high 1TL, volts.
2 For active high TIL, 0 volts.
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A non-tri-state gate is always in one of these two configuration ("1" switch open and
"O" switch closed or vice versa).

E.1.2 Use of switches in tri-state gates
The electronic distinction between a non-tri-state gate and a tri-state gate is that a tri-
state gate allows a third configuration' (both the "1" switch and the "" switch open):

0

Figure E-5. A gate producing z as output.

The output wire is logically disconnected from the part of the gate the computes an
answer. The voltage on the output wire will not be determined by this gate (but could
be determined by some other gate). To denote this situation symbolically, we say that
the output bit is z (1 bz in proper Verilog notation), which stands for high impedance.

E.2 Single bit tri-state gate in structural Verilog
A tri-state gate has two inputs, enable and in, and one output, out:

out

enable

Figure E-6. A tri-state gate.

The behavior of this gate can be described by the following truth table:

enable in out
0 0 z
0 1 z
1 0 0
1 1 11 1~~~~~~~

3 Hence the name tri-state.
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In other words, the tri-state driver gate is really nothing more than an electronically
controlled switch. When enable is 1, the switch is closed:

Figure E-7. Effect of tri-state gate when enable is 1.

When enable is 0, the switch is open:

in 4h

Figure E-8. Effect of tri-state gate when enabl e is 0.

There is a Verilog built-in gate, known as bu f if 1, that implements this. For example,
the following instance:

wire out,in,enable;
bufifl bl(out,in,enable);

is equivalent to the single-bit tri-state gate shown above.

As described in section 6.3.4, Verilog allows you to indicate the propagation delay of a
built-in gate, such as the bu f if 1:

wire out,in,enable;
bufifl #10 bl(out,in,enable);

Also, Verilog allows you to indicate different delays for the (rising) time required to
change to a one and the (falling) time required to change to a zero. For built-in gates
such as bu f i f 1, there is a third separate time that may be of interest in some designs,
the turn off delay, which is how long it takes when the output changes to 1 bz. For
example:

wire out,in,enable;
bufifl #(10,20,30) bl(out,in,enable);
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Also Verilog provides other forms of tri-state gates, such as bu f if 0, which has an
active low enable signal. For example, the following:

is functionally identical to the above, as explained by the following:

E.3 Bus drivers
It is the computer designer's job to avoid details such as the ones given above. In order
to work with tri-state devices without having to get down to the gate level, we need a
more abstract model of what a tri-state device does. Such an abstract model will allow
us to use bus-width tri-state devices without having to be concerned with how the tri-
state gates switch on and off for each individual bit. This abstract model describes the
actions of the tri-state device in terms of a non-tri-state device connected to a special
device, known as a tri-state bus driver:

non-tri-state device

Figure E-9. Tri-state bus driver

enabln
enable

Appendix E

wire out,in,enable,enablelow;
not il(enablelow,enable);

bufifO #(10,20,30) bl(out,in,enable-low);

enable low in out
o 0 0
0 1 1
1 0 z
1 1 z
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The symbol for a tri-state bus driver looks like a mux, except there is only one input
bus (which is n bits wide). Since a mux always has at least two input busses, there
should be no reason to confuse these two devices, both of which are symbolically
represented as triangles.

Physically, the tri-state bus driver is composed of n independent tri-state driver gates,
each one of which is physically a bu f if 1 instance. Like all other gate-level features
of Verilog, working with buf if 1 gates is not easy, and so it is better to think of an n-
bit-wide tri-state bus driver like any other bus-width building block device, using the
combinational logic modeling technique described in section 3.7.2. 1:

The bz provides as many 1 ' bz values as is required by SIZE.

E.4 Uses of tri-state
There are two main uses of tri-state devices: replacement for muxes and bidirectional
buses.

E.4.1 Tri-state buffers as a mux replacement
The first primary use of tri-state bus drivers is to create a structure that is a replacement
for a mux. For example, the following:

Verilog Digital Computer Design: Algorithms into Hardware

module tristate buffer(out,in,en);

parameter SIZE=1;

output out;

input in,en;

reg [SIZE-l:O] out;

wire [SIZE-l:O] in;

wire en;

always @(in or en)

begin

if (en 1)

out = in;
else if (en === 0)

out = 'bz;

else

out = 'bx;

end

endmodule
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Figure E-10. Using tri-state bus drivers to form a mux.

serves the same role as a two-input mux. The above can be described in Verilog by
using two instances of the tristate_buffer defined in the last section:

E.4.1.1 How Verilog processes four-valued logic
Section 3.5.3 describes the four-valued logic (O, 1, 1 bz, 1 'bx) used for each bit
of Verilog wires and regs. The need for the binary values 0 and 1 is obvious. The
value 1 bx is often the result of a misconnection of gates. In this appendix, the reason
for the fourth value, 1 'bz, should now become clear.

If it were not for the high-impedance value, 1 bz, it would never make sense for the
outputs of two devices to be tied together, such as shown above in the diagram of
section E.4. 1. Because of 1 'bz, smoke does not come out of the chip when the two tri-
state buffers are wired together.
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module sillymux(out,iO,il,sel);

parameter SIZE=1;

output out;

input iO, il, sel;

wire [SIZE-l:0] out,iO,il;

wire sel;

wire nsel;

not n(nsel, sel);

tristatebuffer #SIZE bl(out, iO, nsel);

tristatebuffer #SIZE b2(out, il, sel);

endmodule
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There is an algorithm built into Verilog that models the physical behavior of a wire,
based upon the output port(s) of instantiated modules to which that wire is con-
nected. When there is only one output port connected to awire, the value of the wire
in question reflects the value of that single-output port. When that single-output port
changes, the wire connected to it is instantaneously and automatically changed. This
is the situation that occurs throughout most of the structural examples this book.

The situation is more complicated when there are two or more output ports con-
nected to the same wire. In this example, the output ports of bi and b2 both drive
the same wire. In hierarchical naming (section 3.10.8) the output ports are bl. out
and b2. out, and the wire they both drive is simply out. The following table de-
scribes what Verilog computes automatically as a particular bit of the wire out, given
the corresponding bits of bl. out and b2. out:

If we guarantee either that every bit of either bl . out is 1 bz or that every bit of
b2. out is 1 'bz, we can be certain that no bit of out will be 1 hbx (see bold above).
This is precisely what the two tri-state drivers do for us. When sel is 1, every bit of
bl. out is tri-stated, but when sel is 0, every bit of b2 . out is tri-stated.

E.4.1.2 The tri declaration
Verilog provides an alternative to declaring a wire when tri-state drivers are in use,
known as tri. The following would also have been legal inside the declaration of
silly-mux:

wire [SIZE-1:O] iO,il;

tri [SIZE-1:0] out;

The wire and tri declarations do the same thing, and so which one to use is a matter
of personal taste.
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E.4.2 Bidirectional buses
Although most of this book assumes that a wire is essentially free in the fabricated
hardware, in fact a wire does cost something. The cost is fairly reasonable when the
wire remains hidden inside a physical chip, but the cost is quite high when that wire
must be routed outside the chip.

Each bit of a Verilog wire that must be routed outside a chip requires a physical pin.
One of the most severe limitations in hardware design is the number of pins available
for a chip. Therefore, hardware designers often wish to make maximum utilization of
the pins that are available. A bidirectional bus is one which sends information both
ways:

chip
SIZE

Figure E-11. One bidirectional bus.

Routing a bidirectional bus off chip requires half the number of pins that routing two
unidirectional buses requires:

chip SIZE

SIZE

Figure E-12. Two unidirectional buses.

Bidirectional buses are especially important in the design of memory systems (section
8.2.2.1).

E.4.2.1 The inout declaration
In order for a Verilog module to use a bidirectional bus, the port for the bidirectional
bus must be declared as inout. An inout port must be declared as a wire (or tri).
Therefore, an inout port cannot be directly given its value by the behavioral code of
the module in which it is declared. The inout port means the wire connecting the
instantiated and instantiating modules is physically tied together, without an interven-
ing buffer.4

4 Although it is not necessary, an input port could have an intervening buffer into the chip, and an output
port could have an intervening buffer out of the chip.

Appendix E

r of a wire,
rire is con-
ofthewire
~-output port
hanged. This
s book.

t ports con-
2 both drive
are bi . out
ng table de-
out, given

every bit of
bold above).
every bit of
d.

s are in use,
-claration of

;e is a matter

I

r of a wire
rire is con
of the wi rE
�_output por
ranged. TU
s book.

t ports con
2 both driv(
are bl out
ng table de
out, giver

every bit o�
bold above)
every bit :

4.

-s are in use
-claration o�

;e is a matter

551



The algorithm Verilog uses to determine the value on an inout port combines the
value outside the module together with the value inside the module, according to the
table given in section E.4. 1.1 (except the names will be at a different point in the hier-
archy than bl . out and b2 . out). The distinction between an input port and an
inout port is not visible within the instantiated module (containing the inout decla-
ration). This distinction is only visible within some other instantiating module (which
instantiates the module having the inout port).

E.4.2.2 A read/write register
To illustrate how a bidirectional bus can reduce the number of pins on a chip, consider
a register whose values can be read and written using a single bidirectional bus:

wr rd

read / write b

register SIZE bus

Figure E-13. A read/write register with a bidirectional bus.

If this device were fabricated on a single chip, it would require 5+SIZE pins (including
the clock and power). In comparison, the enabled register using unidirectional buses
(described in sections D.6 and 4.2.1.1) would require 4+2*SIZE pins, which is almost
twice as many.

In order for the bidirectional bus to do double duty, there must be two command inputs:
rd and wr. When rd is one, this device drives the bus (provides output) to show the
current contents of the register. When wr is one, this device leaves the bus alone ('bz)
and instead the bus provides the input which the register will load at the next rising
edge of the clock. Here is the internal structure of this register:

Figure E-14. Implementation offigure E-13.
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and here is how this can be described in Verilog:

Here is an example of using two instances of the read/write register defined above:

rl wr r rd
I I

r1

r2wr r2rd
I I

reg rlrd,rlwr,r2rd,r2wr;

wire [3:0] busl;

rw-register #4 rl(busl, rrd, rlwr, sysclk);
rw-register #4 r2(busl, r2rd, r2wr, sysclk);

1' , ,SZ
SIZE

SIZE 1

Figure E-15. Instantiation of two read/write registers.

Unlike the s i 1 ly mux example, there is nothing in the above to guarantee that bus 1
will avoid becoming bx. Instead, it is the responsibility of the designer to ensure that
rlrd and r2rd are never simultaneously one.

For example, to implement the register transfer rl <- r2 requires generating the
commands:
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module rw-register(bus,rd,wr,clk);

parameter SIZE = 1;
inout bus;

input rd,wr,clk;

wire [SIZE-l:0] bus;
wire [SIZE-l:0] do;
wire rd,wr;

enabled register #SIZE rl(bus,do,wr,clk);
tristatebuffer #SIZE bl(bus,do,rd);

endmodule
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E.5 Further Reading
PALNITKAR, S., Verilog HDL: A Guide to Digital Design and Synthesis, Prentice Hall

PTR, Upper Saddle River, NJ, 1996. Chapter 5.

E.6 Exercises
E-1. Revise the architecture of the two-state division machine (whose Verilog code is
given in section 4.2.3) so as to eliminate the instance of mux2 and instead use two
instances of the tri-statebuffer defined in section E.3. Use the test code given
in section 4.1.1.1.

E-2. Define a behavioral Verilog module (binmem) for an asynchronous bidirectional
memory (section 8.2.2.1) consisting of 4096 words, each 12-bits wide. The ports are a
12-bit addr bus, a 12-bit data bus and the commands write and enable. The
following table describes the actions of this memory:

enable write action
0 - data = 12'bz

1 0 data = m[addr]

1 1 m[addr] - data

E-3. Show how the ASM of section 8.4.6 and the architecture of section 8.4.4 need to
be modified to work with the memory defined in problem E-2.

E-4. Define the Verilog corresponding to problem E-3.

E-5. One of the reasons why the tri-state approach is attractive for memory system
design is that it allows multiple memory modules to be connected together to form a
larger memory without the need for a mux. Using eight instances of the memory de-
fined in problem E-2 together with a decoder having a 3-bit input, give a block diagram
that implements a memory of 32,768 12-bit words.

E-6. Give the structural Verilog for problem E-5.
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E-7. Pins are so limited in many memory packaging technologies that industry has
resorted to several contorted techniques to minimize pin count. One common approach
with dynamic memories is to transmit the address in two parts: the row address and the
column address. Internally, this makes for a square geometric arrangement consisting
of rows and columns of identical memory cells. Externally, this cuts the number of
address pins in half by (approximately) doubling the time to access a word. To distin-
guish the use of the half-size addr bus, there are two input signals: ras and cas. If
ras is asserted when cas is not, the addr bus indicates the row. When both are
asserted, the addr bus indicates the column. For simplicity, assume ras and cas
signals are synchronous to the sysclk input which is provided to this chip. (Often
such chips are asynchronous with much stricter timing constraints than are shown be-
low). The following timing diagram illustrates reading a word from such a memory:

ras I

cas I I

addr bx row Col

data 'bz m[{rowcol}] \

Writing to such a memory is similar, except a write sign
content is provided to the chip on the data bus during the e
tural Verilog module for a memory containing 16 twelve-t
stances of the rwregister defined in section E.4.2.2 tog
binational logic.
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X 'bz
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F. TOOLS AND RESOURCES
There are several Verilog example files used in this book. There are also several design
automation software packages (tools) used with these files. In addition, there are sev-
eral information resources that may be helpful on the Internet. This appendix briefly
describes how to obtain and use these tools and resources. The details are subject to
change, and the respective Web sites should contain the most up-to-date information.

F.1 Prentice Hall
Selected Verilog examples can be downloaded from the Prentice Hall Web site,
www.phptr.com.

F.2 VeriWell Simulator
Most of the examples in this book have been tested using the Verilog simulator from
Wellspring Solutions, Inc, known as VeriWell. At the time of this writing, this excellent
software package is available at no charge by downloading it from
www.wellspring.com. The downloaded version has limits on the size of Verilog
source files that it accepts and does not provide graphical (timing diagram) output. The
downloaded version is available for MSDOS (command-line), Windows 95/NT (GUI),
Macintosh (GUI) and several UNIX (command-line) dialects. For the command-line
versions, simply type:

veriwell filel.v file2.v ...

which will produce the output of $display commands both on the screen and in a
file known as veriwell. log. For the GUI versions, you need to create a "project
file" by selecting Project (Alt P) New (Alt N) and choose a name ( . prj) for the project
file. Then select Project (Alt P) Add file (Alt F) to specify the . v file name(s). To run
the simulator, select Project (Alt P) rUn (Alt U).

Most of the designs in this book are able to simulate on the free version. Wellspring
Solutions sells a hardware key that removes the limitations of the free version and also
sells a separate package for graphical output:
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F.3 M4-128/64 demoboard
Documentation for the M4-128/64 CPLD chip used in chapter 11 can be downloaded
from www. vant is .com. The demoboard, power supply, download cable and
MACHPRO software can be obtained from:

Vantis
Box 3755
Sunnyvale, CA 94088

F.4 Wirewrap supplies
To build the CPU described in chapter 11 requires wirewrap wire, a wirewrap tool
(such as an "all in one" tool that strips, wraps and unwraps) and a wirewrap socket. It
also requires a memory ("RAM") chip, such as the 2102. Some of these may be avail-
able at local electronics stores, but there are several mail-order companies, such as
Jamesco (www. j amesco .com), that carry a complete selection of such supplies.

F.5 VerilogEASY
The synthesis package used in chapter 11, known as VerilogEASY, is sold by MINC,
Inc. (www .minc. com). VerilogEASY comes in several versions, each targeting dif-
ferent vendors' programmable logic. A limited version of VerilogEASY that targets the
M4- 128/64, but that is restricted on the number of inputs and outputs, will be available
to readers of this book in the last quarter of 1998. There is no charge for downloading
this limited version, but MINC requires that people downloading their software regis-
ter at their Web site. VerilogEASY accepts the common synthesizable subset of Verilog
other than implicit style. VerilogEASY produces two output files: . s rc (in the propri-
etary DSL language) and .v (structural Verilog netlist). To fabricate working hardware
requires other tools, described in sections F.3 and F.6. MINC also sells a full version of
VerilogEASY and an even more powerful synthesis tool, known as PLSynthesizer:
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MINC, Inc.
6755 Earl Drive
Colorado Springs, CO 80918-1039
(719) 590-1155
info~minc .com

F.6 PLDesigner
The place and route tool used in this book for CPLDs, such as the Vantis M4-128/64, is
known as PLDesigner. It runs on Windows 95/NT. It is not possible to fabricate a
design for the M4-128/64 without using this tool. PLDesigner can be purchased from
MINC. The following directions apply to PLDesigner: At the PLDesigner menu, choose
File (Alt F) Open (Alt O), and enter the name of the . src file created by VerilogEASY
Do a File (Alt F) eXit (Alt X). Select Device (Alt D) Parameters (P) and choose the
M4-128/64 (MACH445) and say OK. Select Settings (Alt ) Options (Alt 0) and be
sure Timing Models are set only to generic Verilog. Select Project (alt P) Build all (Alt
B) to create the JEDEC file (. j 1). To create the back annotated Verilog, select Project
(Alt P) Generate Timing Model (Alt T), which will put the . v file in a model
subdirectory (since a similarly named .v file (the input to VerilogEASY) will already
exist).

F.7 VITO
The Verilog Implicit To One hot (VITO) preprocessor is a freely available synthesis
preprocessor written by James D. Shuler and Mark G. Arnold. It may be down-
loaded from the Prenticite Hall Web site. It can also be downloaded from
www. cs .brockport .edu/-jshulerorplum.uwyo . edu/-vito.UNIXand
MSDOS versions are available at those Web sites. The theory of how this tool operates
is discussed in chapter 7. It is a command-line program, and the following is a typical
use:

I I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I vito -t implicit.v >explicit.v

where implicit . v is the name of a file consisting of one or more modules that have
implicit style state machines. The - t option generates comments that explain the trans-
formation. The output of VITO is redirected to another file (explicit v), which
would then be used as the input to VerilogEASY (or another synthesis tool). The de-
signer is free to choose other file names.
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Each module must include a sysclk and reset port. The names of these are also
given in a special file known as vito. rc. For the M4-128/64 (with its active low
reset), the vito. rc file should contain:

The other names in this file are the prefixes of wire names that VITO will generate, and
the temporary files VITO uses. This file is based on position, and so extra blank lines
are not allowed.

F.8 Open Verilog International (OVI)
The independent organization that developed the Verilog standard (IEEE 1364) is known
as Open Verilog International (www. ovi .org). OVI is co-sponsor of the Interna-
tional Verilog Conference (www. hdlcon. org) held each spring at the Santa Clara
Convention Center. OVI sells a language reference manual, which is the authoritative
source for questions of Verilog syntax and semantics:

Open Verilog International
15466 Los Gatos Blvd.
Suite 109-071
Los Gatos, CA 95032
(408) 353-8899
ovi@netcom.com
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F.9 Other Verilog and programmable logic vendors
Here is a partial list of other Verilog and vendors' Web sites: www. altera.com,
www.avanticorp.com,www.cadence.com,www.fintronic.com,
www.sunburst-design.com,www.synopsys.com,www.simucad.com,
www.synplicity.com,www.veribest.com,www.xilinx.com and
www.eg.bucknell.edu/-cs320/1995-fall/verilog-manual.html.

F.10 PDP-8
Additional resources relating to the PDP-8 can be found at strawberry. uwyo. edu,
www. in.net/-bstern/PDP8/pdp8.html,www. faqs.org/faqs/dec-fac
and www. cs. uiowa.edu/-jones/pdp8. A portion of this information is also
available at the Prentice Hall website.

F.11 ARM
Additional resources relating to the ARM can be found at www. arm. com.
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G. ARM INSTRUCTIONS'

1. Efficient instruction set
The foundation of all processor architectures is the instruction set. When designing it
there are two contradictory aims: high code density and easy instruction decoding.
The ARM instruction set strikes an optimal balance between these. The instructions
are powerful so programs in ARM are short, saving memory and speeding execution
because of reduced bus bandwidth requirements. Yet because the instructions decode
so easily the ARM processor is small and cheap, consumes very little power and runs at
high speed.

In general RISC processors code less densely than CISCs because of their very
nature - yet ARM code is generally as dense as code for 32-bit CISC processors, which
is significantly better than other 32-bit RISC processors. With the 16-bit Thumb exten-
sion, ARM code density is the best in the business.

Features of the ARM fundamental to easy decoding include:

* A small number of highly flexible instruction types
* Consistent instruction data formats

Features implemented for high code density include:

* Barrel shifter to perform arbitrary shifts within the same cycle, at no speed
penalty

* Conditional execution on every instruction to eliminate many branches
* Load and store multiple instructions for rapid context switching and memory

transfer

2. Instruction set summary
The ARM instruction set is a good target for compilers of many different high-level
languages. Where required, though, assembly code programming in ARM is straight-
forward and enjoyable. The instructions are flexible and orthogonal, the memory model
is flat and there are no complicated instruction interdependencies as there are for some
RISC processors. Because a whole line of C code can often be performed within one or
two instructions, the instructions correspond closely to natural program steps. See the
ARM Code Examples which demonstrate the true power and magic of ARM machine
code.

ARM documentation is copyright 1997 Advanced RISC Machines, Ltd. and is reprinted by permission.
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The ARM7 instruction set comprises 10 basic instruction types

* Two of these make use of the on-chip arithmetic logic unit, barrel shifter and
multiplier to perform high-speed operations on the data in the 16 visible 32-bit
registers.

* three classes of instruction control the transfer of data between main memory
and the register bank, one optimized for flexibility of addressing, another for
rapid context switching and the third for managing semaphores.

* two instructions control the flow and privilege level of execution.
* three types of instruction are dedicated to the control of external coprocessors

which allow the functionality of the instruction set to be extended in an open
and uniform way.

The ARM7 instruction set is summarised in the table below:

I nstructi Instruction bit format, 31 ... 0
IData Processing I J Ojpcode R [d Operand 2 ]
Multiply R1 |
Single Data Swa con l FT6gPFR 10FRdI | Rm I

[Single Data Transfer co ] jm PEEj[Rd K Offset 
[Undefined Icon 11 11 Xxxx IN
[Block Data Transfer con E Register List
[Branch co §j loff set l
Copro Data Transfer con R O Offset
Copro Data Operation |Ip 3jEjIRjR P 0 cP 3 OP IC-R-m
Co ro Regester Transfer EEMj-JN CP POPj Oml
[Software Interrupt ||EN NM Ignored by processor

Register Model
The processor has a total of 37 registers made up of 31 general 32 bit registers and 6
status registers. At any one time 16 general registers (RO to R5) and one or two status
registers are visible to the programmer. The visible registers depend on the processor
mode and the other registers (the banked registers) are switched in to support rapid
interrupt response and context switching.

Below is a list of the visible registers for each of the processor modes. The banked
registers are in italics.
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More complete documentation can be found at www. arm. com.
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H. ANOTHER VIEW ON
NON-BLOCKING

ASSIGNMENT
There are other forms of the non-blocking assignment besides the RTN form (<=
@ (posedge syscik)) used earlier in this book:

var <= expression;

var <= #delay expression;

The semantics of <= and <=#del ay are more subtle than the extra always analogy
explained in section 3.8.2, which only applies to <= @ (posedge syscik) . In gen-
eral, non-blocking expressions are evaluated immediately and put into a simulator queue
to be stored after all blocking assignments at the $time given by the specified #de-
lay. Clifford Cummings of Sunburst Design, Inc. (www. sunburst - design. com)
gave a very informative presentation on the use of such non-blocking assignment state-
ments at the 1998 International Verilog Conference. He suggested that the blocking
assignment, =, should be primarily limited to modeling combinational logic, as in:

always (a or b)

sum = a + b;

H.1 Sequential logic
According to Cumming's guidelines, sequential logic, such as a simple D type register,
should use the non-blocking assignment:

always (posedge sysclk)

dout <= din;
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The <= without time control above has the same meaning as <= #0 (sections 11.3.3
and 11.5.6). It causes the simulator to put the assignment into a special "non-blocking
event queue" that stores a new value after all = and =#O have finished but before
$time advances. The <= without time control is useful for situations where an ex-
plicit style module uses the same regs on opposite sides (example in bold) of differ-
ent assignments that model distinct sequential devices, as in:

Assuming rl and r2 were initialized (not shown), the above exchanges rl and r2,
regardless of the order in which the simulator schedules the two always blocks. Us-
ing = instead of <= above would have the incorrect effect of duplicating the value of
one of the registers (seemingly chosen at random) into both of them. To use = in this
situation requires intervening combinational logic:

always (posedge sysclk)

r2 = new_rl;

always (rl)

new_rl = rl; //identity

with similar code for r2, which is hard for designers to remember when the combina-
tional logic is simply the identity function. This problem does not occur when the
interacting always blocks are in separate modules because the port(s) act like the
intervening combinational logic.

Most existing explicit style designs, including examples in this book (sections 3.7.2.2,
7.2.2.1, 11.3 and 11.7), use = properly (with intervening combinational logic or ports)
rather than <= . Probably many designers stumble onto correct sequential logic using =
without understanding why it is correct. Even more alarming, some incorrect sequen-
tial logic using = may appear to be correct because of the arbitrary order in which the
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Verilog simulator schedules the assignments. Cummings suggested designers use only
<= for sequential logic to guarantee correct operation without making the designer
remember the intervening combinational logic or ports.

H.2 $strobe
Cummings also suggested using the strokee system task, which works like $dis-
play, but shows the result of non-blocking assignment at the same $ time the assign-
ment is made. For example, instead of the $display code with delay used in many
examples in this book, as typified by section 3.8.2.3.2:

Cummings would recommend:

which has the advantage that the values that will take effect during a particular clock
cycle will be displayed at the actual $ time of the rising edge. With $di splay, there
must be at least #1 delay (#20 in this example) beyond @ (posedge sysclk) to
view the values changed by non-blocking assignments.

H.3 Inertial versus transport delay
An interesting contrast between blocking and non-blocking assignment that Cummings
illustrated is the difference between transport delay, which retains all the values s ig-
nal has, regardless of how briefly they exist:

always (signal)

dela <= #3 signal;
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and inertial delay, which filters out certain values of signal when values change
more rapidly than a specified amount of $ time (3 in this example):

Of course, transport delay is more realistic of how physical signals behave.

H.4 Sequence preservation
Because of their queued implementation, non-blocking assignments at the same $ time
occur in the sequence the <=s executed. For example, a<=l followed by a<=2 stores
2 into a. As emphasized in section 9.6, hardware registers (described in implicit style
code with <= (posedge sysclk)) cannot store multiple values during a single
clock cycle. Even though Verilog allows it, it is inappropriate for implicit style code to
have more than one <= (posedge sysclk) to a given reg during a particular
clock cycle. On the other hand, Cummings pointed out that it is useful in explicit style
code for a plain <= to give a default values to the output of a state machine, which a
later <= can modify at the same $ time.

H.5 Further reading
CUMMINGS, CLIFFORD E., "Verilog Nonblocking Assignments Demystified", 7th Inter-
national Verilog HDL Conference, Santa Clara, CA, Mar 16-19, 1998, pp. 67-69.
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always @(signal)

delb = #3 signal;

always @(signal)

#3 delc = signal;

$time 0 1 2 3 4 5 6 7 8 9

signal 1 1 1 1 2 3 3 3 3 3 ...

dela x x x 1 1 1 1 2 3 3 ...

delb x x x 1 1 1 1 2 2 2 ...

delc x x x 1 1 1 1 3 3 3 ...



I. GLOSSARY
The following include terms used in computer design. Terms marked with * are unique
to this book. Synonyms for terms not used in this book are also given. In addition, the
following includes Verilog features (courier font), some of which are not described
elsewhere in this book. See the references given at the end of chapter 3 for details
about Verilog features not described in this book.

Access time: The propagation delay of a memory.

Active high: Apin of a physical chip where I is represented as a high voltage.

Active low: A pin of a physical chip where I is represented as a low voltage.

*Actor: A machine or person that interacts with the machine being designed.

Address bus: A bus used to indicate which word of a memory is selected.

Algorithmic State Machine, see ASM

Architecture: 1. The hardware of a machine that manipulates data, as opposed to the
controller. Is present in mixed(l) and pure structural designs. Also known as a
datapath. 2. The programmer's model and instruction set of a general-purpose com-
puter. See also computer architecture. 3. A feature of VHDL that provides greater
abstraction of instantiation than Verilog does.

ALU (Arithmetic Logic Unit): Combinational logic capable of computing several
different functions of its input based on a command signal. Typically, the functions
include arithmetic operations, such as addition, and bitwise (logical) operations, such
as AND.

ASM (Algorithmic State Machine): A graphic notation for finite state machines con-
sisting of rectangles(l), diamonds (or equivalently hexagons), and possibly (for
Mealy machines) ovals. A pure behavioral ASM is equivalent to implicit style Verilog
with non-blocking assignment. Moore mixed(1) ASMs can be implemented as im-
plicit style Mealy Verilog.

Asynchronous: Logic which has memory but which does not use the system clock.

Backannotation: Recording the propagation delay in a netlist after synthesis.

Behavioral: Code which describes what a machine does, rather than how to build it.
see also pure behavioral.
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Big endian notation: The most significant bit (byte, word, etc.) is labeled as 0.

Blocking procedural assignment: A Verilog statement (=) that evaluates an expres-
sion now, causes the process to delay for a specified time and then stores the result.

Bottom testing loop: A loop that is guaranteed to execute at least once. Such loops are
difficult to code in implicit style Verilog. For simulation, use enternewstate
task with !== to the bottom state. For synthesis, use disable inside forever.

Bus: A groups of wires that transmit information.

Bus driver: A tri-state device that passes through its input when it is enabled, but
outputs bz when it is not.

Cache: A memory that allows faster access to words used most frequently.

casex: A variation of case that treats 1 'bz or 1 'bx as a don't care. For example, the
13 bits of output for the truth table given in section 2.4.1 could be coded as:

always (ps or pb or rlgey)
begin

casex ({pspb,rlgey})
3'bOOx: t=13'bOllOOO1010101;
3'bOlx: t=13'blllOOO1010101;
3'blOO: t=13'bOlOlllO110010;
3'bllO: t=13'bllOlllOllOO10;
3'blxl: t=13'bllOlllOllOO10;

endcase
{nsldrl,clrr2,incr2,ldr3,muxctrl,aluctrl,ready}=t;

end

casez: Like casex, except it only uses 1 bz.

*Central ALU: An architecture(1) that uses a single ALU for all computation. The
associated pure behavioral ASM is usually restricted to one register transfer (RTN or
non-blocking assignment) per state, and so algorithms designed for a central ALU
architecture are usually slower than those designed for methodical architectures.

Central Processing Unit: see CPU.

CPU (Central Processing Unit): The main element of a general-purpose computer,
besides memory.

Combinational: Logic which has no memory. In Verilog, ideal combinational logic
(including a bus or tri-state device) is modeled with @ followed by a sensitivity list
or by a continuous assignment.
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Combinatorial: see Combinational

Command signal: 1. An internal signal output from a controller that tells the architec-
ture(l) what to do. Found only at the mixed(l) and pure structural stages. 2. An
external signal output from a controller to another actor.

Computer architecture: 1. see Programmer's model and instruction set architecture.
2. A generic term for a field of study that encompasses the computer design topics in
this book along with more abstract modeling concerns not discussed here, such as
networked general-purpose computers, disk drives and associated software operat-
ing system issues.

Concatenation: The joining together of bits, indicated by { } in Verilog.

Conditional: Non-blocking assignments (RTN) and/or command signals that occur in
a particular state only under certain conditions. See Mealy and oval.

Continuous assignment: A shorthand for instantiating a hidden module that defines
behavioral combinational logic. Allows assignment to a Verilog wire. Eliminates
the need to declare ports and sensitivity lists.

Controller: The hardware of a machine that keeps track of what step of the algorithm
is currently active. Described as an ASM at the mixed(1) stage, but as a present state
and next state logic at the pure structural stage.

CPLD (Complex Programmable Logic Device): A fixed set of AND/OR gates op-
tionally attached to flip flops with a programmable interconnection network allow-
ing the downloading of arbitrary netlists.

Data bus: A bus used to transmit words to and from a memory.

Datapath, see architecture(])

defparam: An alternative way of instantiating a different constant for a param-
eter.

Dependent: Two or more computations where the evaluation of some parts depends
on the result of other parts. It is hard to design pipeline and superscalar computers
when computations are dependent.

Diamond: The ASM symbol for a decision, usually equivalent to an i f or while in
implicit style Verilog.

Digital: Pertaining to discrete information, e.g., bits. See also special-purpose com-
puter.

$dumpf ile: System task, whose argument is a quoted file name, for VCD. For a
complete dump, also need $dumpvars and $dumpon. Other tasks exist for more
limited dumps.
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Enabled register: A synchronous register that has the ability to hold as well as load
data.

*External status: Information from outside the machine used to make decisions.

enternewstate: A user defined task only for simulation at the pure behavioral
and mixed(l) stages. Establishes default command signals. Helps with Mealy ma-
chines and bottom testing loops.

Explicit style: A finite state machine described in terms of next state transitions. Does
not have multiple @ (posedge sysclk) s inside the always. Roughly equiva-
lent to the pure structural stage, except instead of separate modules for the present
state register and the next state logic, both are often coded in the same module, and
the architecture is modeled in a behavioral style, often called RTL. Explicit style
requires the designer to think in terms of gotos. Contrast implicit style.

Falling delay: The propagation delay it takes for an output to change to 0.

$fclose: System task, whose argument is a file handle, that closes the associated
file. See also $ fopen.

$fdisplay: A variation of $display that outputs to a file. See also $fopen,
$fclose.

Field Programmable Gate Array: see FPGA

Finite state machine, see ASM.

Flip Flop: A sequential(l) logic device that stores one bit of information. Used to
build registers and controllers.

$f open: System function, whose argument is a quoted file name, that returns an inte-
ger file handle used by $ fdisplay, $fstrobe or $fwrite:

integer handle;
initial
begin

handle = $fopen("example.txt');
$fdisplay(handle,"Example of file output");
$fclose(handle);

end

fork: An alternative to begin that allows parallel execution of each statement. For
example, the following stores into b at $ time 2 but stores into d at $ time 3:
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initial

fork
#1 a=10;

#2 b=20;

join

initial

begin
#1 c=10;

#2 d=20;

end

Four-valued logic: A simulation feature of Verilog that models each bit as being one
of four possible values: 0, 1, high impedance (1 bz) or unknown value (1 bx).

FPGA (Field Programmable Gate Array): A fixed set of lookup (truth) tables op-
tionally attached to flip flops with a programmable interconnection network allow-
ing the downloading of arbitrary netlists.

$fstrobe: Avariation of $strobe that outputs to a file. See also $ f open, $ fclose.

Full case: A synthesis directive that causes a case statement to act as though all
possible binary patterns are listed. May cause synthesis to disagree with simulation.

$fwrite: A variation of $write that outputs to a file. See also $ f open, $f close.

General-purpose computer: A machine that fetches machine language instructions
from memory and executes them. The machine language describes the algorithm
desired by the user, as opposed to a special-purpose computer. Also known as a
stored program computer.

Glitch: see Hazard.

Goto: A high-level language statement not found in Verilog. Similar to state transi-
tions in explicit style Verilog. Equivalent to assembly language jump or branch in-
structions. Gotos are useful for implementing bottom testing loops. The closest
statement in Verilog is di sable, which has drawbacks when used for this purpose.
Avoidance of gotos is part of structured programming, and is possible with implicit
style Verilog.

Handshaking: The synchronization required when two actors of different speed transfer
data.

Hazard: The momentary spurious incorrect result produced by combinational logic of
non-zero propagation delay.

Hexagon: Equivalent to diamond in ASM notation.
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Hierarchical design: Instantiation of one module inside another.

Hierarchical names: A path for test code to access the internal variables of a module
without a port. The instance names of the module(s) in the path are separated with
periods.

High impedance: A value (1 'bz) that models a wire that is disconnected and that is
also produced by a tri-state gate. Used in a special way by casex and casez.

Ideal: A model of a device that ignores most physical details, such as propagation
delay and voltage.

Implicit style: A finite state machine described in terms of multiple @ (posedge
sysclk) s inside an always. Does not give nextstate transitions. Roughly equiva-
lent to a pure behavioral stage ASM. Contrast explicit style.

Independent: Two or more computations that do not depend on each other. It is easier
to design pipeline special-purpose computers when computations are independent.

inout declaration: A Verilog feature that allows the same port to be used for infor-
mation transfer both into and out of the module. Corresponds to tri-state gates.

input: A Verilog feature that only allows a port to be used for information transfer
into a module.

Instance: A copy of a module used in a particular place of a structural design.

Instantiation: The act of making an instance.

Instruction set: The set of machine language operations implemented by a particular
general-purpose computer.

Instruction-Set Architecture (ISA): See programmer 's model and instruction set.

*Internal status: Information generated by the architecture(]) and sent to the control-
ler at the mixed(,l) stage so that the controller can make decisions based on the data
in the architecture.

Latch: An asynchronous data storage device. Synthesis tools produce unwanted latches
when a case statement is used that is not afull case.

Little endian notation: The least significant bit (byte, word, etc.) is labeled as 0.

Macro: A string of source code that the simulator or synthesis tool substitutes prior to
parsing.

Macrocells: The basic unit of a CPLD, consisting of a fixed set of AND/OR gates and
an optional flip flop.
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Mealy: A finite state machine that, unlike a Moore machine, produces command sig-
nals that are a function of both the present state and the status inputs. Such a com-
mand is indicated by an oval in ASM notation.

*Methodical: An architecture(]) where each register has an associated ALU or other
combinational logic so that all register transfers may proceed in parallel. Typically
allows for faster algorithms to be implemented than the central ALU approach.

Memory: Equivalent to a collection of registers. Has the ability to read (remember
old data) and write (forget old data and remember new data instead). Often referred
to as RAM. Although ROM is often used instead of RAM in parts of a general-
purpose computer, because ROM cannot forget, it is not memory.

Mixed: 1. The stage of the design where the controller is specified as an ASM using
command and status signals (rather than RTN and mathematical conditions), but the
architecture(l) is specified as a structure. 2. Any such mixture of behavioral and
structural constructs in a Verilog module. 3. A kind of digital logic netlist where 1 is
sometimes represented as a high voltage (active high) and sometimes represented as
a low voltage (active low).

module: The basic construct of Verilog which is instantiated to create hierarchical
and structural designs.

Moore machine: A finite state machine that, unlike a Mealy machine, produces com-
mand signals that are a function of only the present state. All commands in a Moore
ASM are given in rectangles.

Multi-cycle: A machine that requires several fast clock cycles to produce one result.
Compare with single cycle and pipeline.

Multi-port memory: Allow simultaneous access to multiple words within one clock
cycle.

Netlist: A structural design described at the level of connections between one-bitwires
and gates.

Next state: Combinational logic that computes what the next step is in the algorithm
based on the present state and status inputs to the controller.

Node collapsing: An optimization technique used by place and route tools.

Non-blocking assignment: A Verilog statement (<=) that evaluates an expression
now but that schedules the storage of the result to occur later. Several non-blocking
assignments can execute in parallel without delay. There are several forms, but the
one used most in this book ( <= @ (posedge sysc1k) ) is equivalent to the RTN
<- used in the pure behavioral stage for ASMs.

notifO: A variation of buf if 0 that complements its output.
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notif 1: A variation of buf if 1 that complements its output.

One hot: An approach for the controller that uses one flip flop for each state.

output: A Verilog feature that only allows a port to be used for information transfer
out of a module.

Oval: The ASM symbol for a Mealy command.

Parallel: 1. Two or more independent computations that occur at the same physical
time. 2. Two or more computations (dependent or independent) that occur at the
same simulation $time. In Verilog, $tirme is a separate issue from sequence. 3.
When one assumes physical time and sequence are the same, the opposite of sequen-
tial.

Parallel case: A synthesis directive that allows parallel evaluation of the conditions
given in a case statement.

parameter: A constant within an instantiation of a module that can be different in
each instance.

Pin: The physical connection of an integrated circuit to a printed circuit board.

Pipeline: A machine that requires, on average, slightly more than one fast clock cycle
to produce one result, provided that each result is independent of other results. Com-
pare with single cycle and multi-cycle.

Place and route: A post synthesis tool that maps the synthesized design into the lim-
ited resources of a particular technology, such as a CPLD or FPGA.

PLI (Programming Language Interface): A way to interface Verilog simulations to
C software, and thus extend the capabilities of Verilog.

Port: The aspect of a module that allows structural instantiation.

posedge: The rising edge of a signal, such as sysclk

Present state: The register that indicates what is the step in the algorithm which is
currently active.

Programmable logic: Integrated circuits manufactured with a fixed set of devices that
can be reconfigured by downloading a netlist. See CPLD and FPGA.

Programming: 1. The act of downloading a synthesized netlist into programmable
logic or a truth table into a ROM. 2. The act of designing software for a general-
purpose computer.

Programming Language Interface: See PLI.
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Programmer's model: The registers of a general-purpose computer visible to the
machine language programmer.

Propagation delay: The time required for combinational logic to stabilize on the cor-
rect result after its inputs change.

*Pure behavioral: The stage where the design is thought of only as an algorithm
using RTN. Equivalent to implicit style Verilog.

*Pure structural: The stage where the controller and the architecture(]) are both
structural.

RAM: see memory.

$readmemb: System task, whose arguments are the quoted name of a text file and an
array. Reads words represented as a pattern of '0',' ','x' and/or 'z' from the text file
into the array.

$readmemh: System task, similar to $readmemb, except for hexadecimal.

Rectangle: 1. The ASM symbol for a Moore command. 2. The block diagram symbol
for most devices.

Reduction: The unary application of a bitwise operator which acts as though the op-
erator was inserted between each bit of the word. For example, if a is three bits, &a
isa[2]&[1]&a[0].

reg: The declaration used when a value is generated by behavioral Verilog code.

Register: A sequential(J) device that can load, and for some register types otherwise
manipulate a value. The value in a synchronous register changes at the next rising
edge of the clock. Contrast with combinational.

repeat: A Verilog loop that repeats a known number of times. Very different than the
bottom testing loop.

Reset: The only asynchronous signal used in this book, which clears the present state.

Resource sharing: A synthesis optimization where the same hardware unit is used for
multiple computations.

Rising delay: The propagation delay it takes for an output to change to 1.

ROM (Read Only Memory): A tabular replacement for combinational logic. Not an
actual memory because it does not have the ability to forget.

RTL: 1. "Register Transfer Logic." In the pre-Verilog literature, the term RTL meant
the logic equations generated by the controller to implement register transfers (sec-
tion 4.4.1). Today, RTL most commonly means explicit style behavioral Verilog.
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Some vendors (notably Synopsys) also use RTL to describe implicit style design and
RTN. This book avoids the use of the term RTL, in favor of the more precise terms:
implicit, explicit and RTN. 2. "Rotate Two Left", a PDP-8 instruction.

RTN (Register Transfer Notation): An - inside a rectangle or oval of an ASM that
evaluates an expression during the current clock cycle, but that schedules the change
of the left-hand register to occur at the next rising edge of the clock. Similar to the
Verilog non-blocking assignment ( <= @ (posedge sysclk)).

SDF (Standard Delay File): A way to backannotate delay information into a netlist
after place and route.

Sensitivity list: The list of input variables of combinational logic. The variables in
the sensitivity list occur inside @ separated by or. Failure to list all variables can
cause unwanted latches.

Sequence: The order in which Verilog statements execute in simulation. Statements in
a particular always or initial block execute sequentially, regardless of time
control.

Sequential: 1. A device that has memory, such as a controller or a register, as opposed
to combinational logic. 2. Two or more dependent computations that occur in a par-
ticular sequence, even if they occur at the same $time in a Verilog simulation. 3.
When one assumes physical time and sequence are the same, the opposite of paral-
lel.

Simulation: The interpretation of Verilog source code to produce textual output and
timing diagrams.

Single-cycle: A machine that requires one slow clock cycle to produce one result. Com-
pare with multi-cycle and pipeline.

Special-purpose computer: A machine that is customized to implement only one
algorithm, as opposed to a general-purpose computer. Special-purpose computers
are often referred to simply as digital logic.

Standard Delay File: See SDF.

strength: Additional information about a wire that models its electrical proper-
ties.

State: A step that is active in an algorithm during a particular clock cycle.

Status: See internal status and external status.

Structural: An interconnection of wires and gates (or combinational and register de-
vices) that forms a machine. Represented by a block diagram, circuit diagram, in-
stances of modules or a netlist.
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Structured programming: Describing an algorithm with high-level software control
statements, such as i f, case and while, but avoiding goto.

Subbus: A concatenation of a subset of bits from a bus.

Superscalar: A general-purpose computer that is able to execute more than one in-
struction per clock cycle.

Synchronous: A device that makes changes only at an edge of a clock signal, typically
the rising edge.

Synthesis: The automatic translation of Verilog source code into a netlist.

System clock: The single clock used in a completely synchronous design.

*Test code: Non-synthesizable Verilog code used only in simulation to verify the op-
eration of other, possibly synthesizable, Verilog code that models hardware. Test
code (sometimes called a testbench) gives an abstract model of the environment in
which the hardware will operate.

Testbench: see test code

time: Adeclaration for a variable that stores the result of $time. Often, integeris
used instead.

$time: The current simulation time step.

Time control: Verilog features that cause $ time to advance in simulation: @, # and
wait

triand: Similar to wand.

trior: Similar to wor.

trireg: A variation of wire that holds the last value when all outputs are 1' bz.

Tri-state: A device that has the ability to disconnect itself electronically from a bus.
Verilog models this using the high impedance value ( bz).

Turn off delay: The propagation delay it takes for an output to change to 1 ' bz,
associated with a tri-state device.

Unary code: A bit pattern where exactly one of the bits is a one. See one hot.

Unconditional: Non-blocking assignments (RTN) and/or command signals that are
synonymous with a machine being in a particular state, regardless of any other con-
ditions that may hold. See Moore and rectangle.

Unknown value: A value (1 bx) that models an uncertain condition for one bit, such
as two fighting output wires, typically indicative of an error in a structural design.
Also used in chapter 6 to model abstract hazards.
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Value Change Dump (VCD): A standardized text file format created by $ dumpf ie
and related tasks that record values of simulation variables and that is used by post-
simulation analysis tools.

Verilog: The hardware description language used in this book. (See chapter 3.)

VHDL: The other hardware description language, which is more complicated for the
beginner than Verilog.

wand: A variation of wire that produces 0 instead of 1 ' bx when two outputs fight,
which implements & without using a gate (wired AND).

wor: A variation of wire that produces 1 instead of 1 bx when two outputs fight,
which implements I without using a gate (wired OR).

wire: The declaration used when a value is generated by structural Verilog code.

Wirewrap: A technique of connecting chips together involving using a tool that wraps
wire around posts connected to the pins of the chips. A convenient way to fabricate
prototypes in an educational or hobby setting.

Worst case: A model of a device that only considers the longest propagation delay
possible.

-&: The bitwise NAND operator, a-&b (a&b), which is not found in C.

- : The bitwise NOR operator, a- l b === (a I b), which is not found in C.

-A: The bitwise coincidence operator, a^b - (a^b) === a' (-b)
a'-b, which is not found in C.
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J. LIMITATIONS ON MEALY
WITH IMPLICIT STYLE

Chapters 5, 9 and 10 and sections 7.4 and 11.6 discuss ASM charts and Verilog simula-
tion for Mealy state machines, in which an operation (inside an oval of an ASM chart)
is conditional. Mealy state machines are more problematic than the Moore state ma-
chines used in the rest of this book. There are limitations on using the Mealy approach
with implicit style Verilog.

There are three consequences of using an oval in an ASM chart. The first consequence,
which can be described with implicit style (pure behavioral) Verilog, is to allow com-
putations dependent on a decision to be initiated in parallel to the decision. For ex-
ample, the decoding and execution of a TAD instruction in chapter 9 illustrate a deci-
sion (ir2[ 11:9] == 1) and a computation (ac+mb2) that occur in parallel:

if (ir2[ 11:9] == 1)
ac <= @(posedge sysclk) ac + mb2;

As in most of the examples in this book, the statement that carries out the computation
is a non-blocking assignment, so the effect will not be observable until the next rising
edge of the clock. When viewed by itself, the architecture is a Moore machine (it has
registers that only change at the rising edge). Since the output (ac) of the complete
machine (the controller together with the architecture) only changes at the clock edge,
the complete machine is Moore. Only the controller is Mealy. For this reason, implicit
style Verilog with non-blocking assignment can model such situations.

The second consequence of using an oval in an ASM chart arises only at the mixed
stage, such as figure 5-2. Depending on how complicated the architecture is, there may
be hazards created between the controller and architecture during simulation that an
implicit style Verilog description of the controller will not process properly. The 1994
paper mentioned below describes a bx handshaking technique with an
exitcurrentstate task that overcomes this problem for Verilog simulation.
This technique is an extension to the enter new state method given in this book.

The third consequence of using an oval in an ASM chart arises only when a decision
involves an input to a machine, and RTN is not used to produce the corresponding
output. Figure 5-7 is an illustration of such a situation. For such ASMs, the machine

Verilog Digital Computer Design: Algorithms into Hardware

V.

cannot be 
always) 
words, if th
make corre
this, since ti
binational I
instead of G
states, but t
ioral code ti
Verilog inst

It is possib]
Mealy exte
approach is
simulation 

M -

-

a

580



-7

XLY

'LE
rilog simula-
iASM chart)
)re state ma-
aly approach

consequence,o allow com-
sion. For ex-
istrate a deci-
,arallel:

computation
he next rising
machine (it has
the complete

he clock edge,
-ason, implicit

y at the mixed
Se is, there may
ulation that an
ierly. The 1994
ique with an
log simulation.
en in this book.

when a decision
corresponding

is, the machine

cannot be modeled just with implicit style Verilog (@ (posedge sysclk) inside
always) because the output of the machine is supposed to follow the input. In other
words, if the input makes multiple changes during one clock cycle, the output should
make corresponding changes during that clock cycle. The implicit style cannot model
this, since the behavioral block will execute only once. Since figure 5-7 is simple com-
binational logic (single-state ASM), the designer uses the appropriate sensitivity list
instead of @ (posedge sysclk). In general, Mealy machines often have multiple
states, but there is no implicit style notation to describe this reexecution of the behav-
ioral code that must take place in each Mealy state. It is necessary to use explicit style
Verilog instead. The 1998 paper gives more information about this.

It is possible to use a hybrid implicit/explicit style to cope with a machine that has
Mealy external outputs, such as the ASM in section 5.2.4 (figure 5-6). This hybrid
approach is synthesizable. The following shows in bold the distinctions between the
simulation only technique of section 5.3 and the hybrid implicit/explicit approach:

Appendix J

reg s;
always //implicit block

begin
s <= (posedge sysclk) 0;

@(posedge sysclk) #1;
rl <= @(posedge sysclk) x;
//ready = 1;
if (pb)

begin

r2 <= @(posedge sysclk)
while (rl >= y)

begin

s <= (posedge sysclk) 1;
@(posedge sysclk) #1;

rl <= (posedge sysclk) rl - y;
if (rl >= y)

r2 <= (posedge sysclk) r2 + 1;
//else
// ready = 1;

end

end

N=__ -

;
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Continued

always (s or rl or y) //explicit block
begin

if (s==O) ready = 1;
else if (rl >= y) ready = 0;
else ready = 1;

end

The hybrid approach eliminates the enter newstate task with an internal state
variable, s. A separate always block implements the combinational logic that com-
putes the Mealy output based on the internal state variable and the condition(s) speci-
fied in the Mealy decision (rI >= y). Every usage of a Mealy command, including
unconditional ones such as in the in the top state of this example (s==O), must be
generated by an always block dedicated to that command signal.

J.1 Further Reading
ARNOLD, MARK G., NEAL J. SAMPLE and JAMES SHULER, "Guidelines for Safe Simulation
and Synthesis of Implicit Style Verilog," 7th International Verilog HDL Conference,
Santa Clara, CA, March 16-19, 1998, pp. 67-69.
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$readmemb
$readmemh
$stop, 94
$strobe, 5/
$time, 81:

versus 
with or(

adv,
$write, 72,
' versus
%,70
&, 70, 80, 309

I
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In(
,70,80

1, 70
70, 80

-&,579

- ,579

*^579

'bx, 77-80
'bz, 77-80, 221, 229, 545
'define, 73
'ifdef, 73, 419
'timescale, 448
1, 67-68, 221-222, 281, 305, 480
}, 68, 305
70
,70,80

!==, 80, 195
#,83,93,136:

in test code, using, 84
modeling combinational logic with, 85
time control, 83
with system clock simulation, 87

$display, 72,419
$dumpfile, 570
$fclose. 571
$fdisplay, 572
$finish, 99
$fopen, 571
$fstrobe, 572
$fwrite, 572
$readmemb, 576
$readmemh, 576
$stop, 94
$strobe, 566
$time, 81:

versus sequence, 82
with ordering processes, without

advancing, 87
$write, 72,
' versus ',73
%,70
&,70,80,309

lex
&&, 70
*,70
+,70

-,70
/,70
<,70
<<, 70

in RTN simulation, 96, 98
less than, 70
Mealy, with Moore command

signals, 266
non-blocking assignment, 95,

see also RTN
proper use of, 400

=,10,68,90,95,226
==,70,80
===, 79, 80
>,70

greater than or equal, 70
in specify, 208

>>,70
?:,70, 257, 392

behavioral combinational logic, 89
debugging display, 92
sensitivity list, 90
time control, 89, 191

@(posedge sysclk),
see also system clock:

bottom test loop, 191
controller, 91
implicit style, 100-109
in non-blocking, 96

interaction with #1, 98
one hot, 249, 445, 462, 471
register, 90
synthesis, 444, 446
test code, 93, 136, 465
with enter_newstate, 113

583

ernal state
that com-

n(s) speci-
, including
), must be

Simulation

inferencee,

11111r�_ - - -

,emal state
� that corn
n(s) speci
, including
), must bi

Simulation
,onferenci

I

Index



with 'ENS, 461-462

A
A priori worst case timing analysis, 202
ABC computer, 277, 287
Abstract propagation delay, 209
Access time, 282
Acorn RISC:

Machine (ARM) Family Data
Manual, 434

Microprocessor, 378
Action table, 531
Active high and low voltage, 495
Actor, 14, 20, 568

memory as a separate, 312, 475
Adder, 54, 500

bit parallel, 460
bit serial, 461
ripple carry, 460

Address, 280
Addressing modes, 202

direct, 487
indirect, 487
PDP-8, 292, 487

Advanced Micro Devices (AMD), 442
Advanced RISC Machines, Ltd., 561
Advanced RISC Microprocessor,

see ARM
Aiken, Howard, 278
Algorithmic State Machine, see ASM
Altera, 443
ALU (Arithmetic Logic Unit), 507:

central, 48
multiple, 403

alul8l portlist, 152
aluctrl, 508
always:

block, 70
with disable statement, 213
ASM chart, 100, 113
in infinite loop, 100
with forever (synthesis), 72

AMD Mach445, see M4-128/64
Analog information, I

Analysis, childish division software, 319
AND instructions, 309
and, 74, 169, 201, 448
AND/OR structure of CPLD, 443
'AND, 510
'ANDNA, 510
'ANDNB, 510
Arbitrary gotos, 194
Architecture, 20, 568

computer, see programmer's model
division machine, 154
instruction set, 573
memory hierarchy, 344
methodical versus central ALU, 48
multi-cycle, 238
pipelined, 241
pipelined PDP-8, 374
Princeton versus Harvard, 379
quadratic evaluator, 235
single cycle, 235

Arithmetic Logic Unit, see ALU
Arithmetic operations, 70, 510
ARM (Advanced RISC Microproces

sor), 378
branch instruction, 383
compared to PDP-8, 383
instruction set, 561
program status register, 384, see also

psr
resources and website, 560, 563
macros used in, 391
multi-cycle, 388
pipelined, 400
superscalar Verilog, 417
Thumb, 381

Arnold, Mark G., 275, 582
ASM (Algorithmic State Machine), 4, 7,

see also finite state machine
behavioral PDP-8, 303

memory as separate actor, 314
behavioral Verilog, 138-149, 186-188
chart, 7

decisions in, 12
commands, 9
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explicit Verilog, 472, 162-165
external status inputs, 16
implicit Verilog, 258-265, 270-271
input, 15
Mealy, 398

single state, 196
to behavioral Verilog, 186

Moore to one hot, 249
multicycle ARM, 388
one hot, 251
output, 17
PDP-8:

fetch/execute, 294, 302
mixed architecture, 333

pipelined ARM, 400
software dependencies, 26
superscalar ARM, 411

Assembly language, 485, 561
assign, see Assignment, continuous
Assignment, see also procedural

assignment:
blocking, 95
continuous, 255
non-blocking, 95, see also RTN
time control, 94

Asynchronous, 173, 528:
memory, 285

Atanasoff, John, 2, 277, 287
Atlas computer, 336
Autoincrement, 487

B
Babbage, Charles, 2, 246, 277
Baby Mark I, 279
Back annotation, 215, 441
Backquote, 73
Banked register, 562
Barrel shifter, 506
begin, 71
Behavioral, 1, see also pure behavioral:

combinational logic, 89
features of Verilog, 66
fetch/execute, 290
instance, 118, 121, 123, 129

Mealy machine, 178
multi-cycle, quadratic evaluator, 224
pipeline, quadratic evaluator, 232
single cycle, quadratic evalu-

ator, 219
synthesis:

combinational logic, 444
explicit state machines, 445
implicit state machines, 445
registers, 444

Verilog, 138-149, 186-188
complex ASM, 188
goto-less ASMs, 99
legal statements, 68
Mealy ASMs, 186
versus structural, 76

Bell Labs, 278
Bell, C. Gordon, 352
Berry, Charles, 2, 277
Bidirectional bus, 281, 496, 551
Big endian notation, 67
BINAC computer, 279, 314
Bit:

blast, 452, 509
parallel adder, 460
serial:

adder, 461
PDP-8, 475

slices, 452
Bitwise operators (&, I, A, _), 13, 70, 509
Black box, see block diagram
Block, diagram (black box), 15, 57,

335, 539
PDP-8, 335

Block, initial and always, 70
specify, 207

Blocking procedural assignment, 95
Boolean operations, 78, 449, 523
Bottom testing loop, 189:

disable inside forever, 273
forever/if, 108

Branch, 393:
instruction, 383
prediction, 433
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buf, 74, 169
buf if 0, 547
buf if 1, 546
Building block:

devices, 150
combinational, 491
sequential logic, 525

Burning, 518
Bus, 493, 543:

driver, 547
timing diagrams, 528
unidirectional, 496:

versus bidirectional, 281, 493
bidirectional, 496, 551
broadcasting with, 496

'bx,77-80
bz,77-80, 221, 229, 545

C
C, C++, 1,4,6

childish division program, 23, 316,
424, 429

Cache:
consistency, 344
hit, 340
instruction, 437
memory, 337
miss, 339
size, 351
test program, 339
write-back, 344-345
write-through, 344-345

Cadence Design Systems, 4, 65
Cambridge University, 279
car function, 457
Carry out signal (cout), 500, 510-511
case:

adder, 116, 457
controller, 164-165
full, 459
parallel, 459
statement, 69, 458

casex, 569
casez, 569

Central ALU , 569
architecture, 48

Chart, ASM, 7
Childish division:

algorithm, 22, 314, 368
ARM, 424, 426:

conditional instructions, 428
effect of cache size on, 351
implementations, comparison, 318,

371, 431, 481
Mealy, 182, 184-185
Moore, 26, 30, 34, 39
PDP-8, 317, 369
program:

C, 23, 316, 423, 428
machine language, 318, 369,

424, 426, 429
Verilog, 134, 143-148, 186

Chip, 3, 539
Circuit diagram, 53, 170, 253, 539
CISC (Complex Instruction Set

Computer):
processors, 561
versus RISC, 377

CLA, 489
Clair, C. R., 59
CLL, 308, 489
Clock:

cycle, 7, 222, 527:
multi-cycle, 224, 240
pipelined, 226, 244
single-cycle, 237

frequency, 199
period, see clock cycle

CLPD, 558
CMA, 489
CML, 308, 489
CMOS, 495
Code coverage, 419
Colossus (computer), 3, 277, 287
Combinational:

adder, synthesis of, 454
logic, 491:

Verilog Digital Computer Design: Algorithms into Hardware

actu
beha
mod(
mod(
phys
with

Combinato
see (

Command,
Command

Meal
Mooi
multi
one b
physi

Comments
Comparatoi

portli
Computer a

see PR
Computer:

archit
desigi
gener
histor
specie

Concatenati
Condition, 
Conditional

assign
comm
execui

Al
ch

loadin
operat

condx func
Constants, s,
Continuous;

with o
Control dep(
Controller, 2

divisic
hierarc

586



actual gate level delay, 492
behavioral synthesis of, 444
model, ideal, 492
modeling with #, 85
physical delay model, 493
with @, behavioral modeling, 89

Combinatorial logic,
see Combinational logic

Command, see command signal, signal
Command signal, 9:

Mealy, 178
Moore, with Mealy <=, 266
multi-bit, 10
one bit, 9
physical, 11

Comments in Verilog, 74, 459
Comparator, 511:

portlist, 153
Computer architecture,

see Programmer's model
Computer:

architecture, 570
design, 1
general purpose, 1, 277, 377
history, 2, 277, 286
special purpose, 1, 7, 438

Concatenation, 68, 305-308
Condition, Verilog, 69
Conditional, 178:

assignment of psr, 391
command, Verilog, 194
execution:

ARM, 385
childish division, 428

loading, 184
operator (? :), 70, 257, 392

condx function, 390, 437
Constants, see Verilog constants
Continuous assignment, 255:

with one hot, 258
Control dependencies, 362
Controller, 20:

division machine, 157
hierarchical refinement of, 167

one hot, 253, 271
pure structural, 162

Cooley, J., 143
Core, 288
Counter, 533:

up/down, 535
registerportlist, 151

cout, see carry out signal
cover task, 'ifdef for, 420
Cowles, J.R., 582
CPLD (Complex Programmable Logic

Device), 439, 519:
AND/OR structure of, 443

CPU, (Central Processing Unit):
bit serial, 476
multi-cycle, 294, 334, 391
peripheral and memory, 280
pipelined, 354, 396
superscalar, 381, 402

Cray computer, 289
Cummings, Clifford, 564
Cupal, J. J., 582
Current page, 488
Cycle, see single-cycle and multi-cycle

D
D type:

flip flop, 249, 530
register (delay type), 529

Data:
and stored program in memory, 280
dependency, see Dependency
forwarding, 360
processing instructions, 382, see

also dp
structure, 126

Datapath, see architecture
DCA, 487
Deadlock and scheduling process, 82
Debouncer, see Switch debouncer
Debugging display with @, 92
DEC (Digital Equipment Corp.), 291,352,

378
Decision, implementation of, 332

Index
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Z87

587



Decision:
in ASM charts, 12
time control within, 191
translated as one bit wide demux,

250
Declaration, see also variable:

event, 212
function, 114
inout, 551
input, 118
integer, 67
output, 119
real, 115
reg, 67, 119
task, 110
tri, 550
triand, 578
trior, 578
trireg, 578
variable, 67
wand, 579
wire, 67, 118-119, 494, 579:
wor, 579

Decoder, 515
Decoding instructions, 297
'DECREMENT, 511
default, 69, 116, 459
'define, 73
defparam, 570
Delay:

inertial, 566
line, 288
propagation, see propagation delay
minimum/typical/maximum, 207
rising/falling, 207
transport, 566

Delayed assignment, 12
Demoboard (Vantis), see M4-128/64
Demultiplexer, see demux
Demux (demultiplexer), 513:

in memory, 284
misuse of, 514
translated from a decision, 250

depend function, 417

Dependency:
data, 359
examples, 404
software, 26

Design:
automation, 22, 438
flow, synthesis, 439
hierarchical, 52

Deterministic access time, 282
Devices, programmable, 518
Diagram:

block and circuit, 54, 539
bus timing, 528
timing, 526

Diamond, 7,12, 13
'DIFFERENCE, 511
Digital:

building blocks, 6, 491, 525
design, 3
electronics, 533

Digital Equipment Corp., see DEC
DIMMs (Dual In-line Memory Modules),

289
Direct, 202:

addressing mode, 487
current page, 488
page zero, 292, 475

Directive, synthesis, 459
disable:

inside forever with bottom test-
ing loop, 273

statement, 213, 273
Discrete electronic devices, 120
Division:

childish (see also: Childish division):
algorithm, 23
with conditional instructions, 428

combinational, 507
mixed two-state example, 271
pure behavioral two state example,

270
machine:

architecture, 154
controller, 157
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Mealy version, 184
propagation delay in, 215
two stage, pure structural state,

161
.doc, 442
'DOUB, 511
'DOUBINCR, 511
dp function, 391
DSL, 442
Dual Inline Package (DIP), 120
Dual rail design, 503
Dynamic memory, 286, 555

E
ea, see effective address
Eckert, John P., 278
EDSAC computer, 279
EDVAC, 278
EEPROM, 519
Effective address (ea), 292, 296, 303, 488
else,seeif else
Enabled register, 451, 531:

74xx377 (8 bit), 151
74xx378(6 bit), 151

enabled-register:
portlist, 151
synthesis of, 445

Encoder, 517
end, 69
endcase, 69
endfunction, 114
Endian notation, 67
endmodule, 118
endspecify, 208
endtask, 110
ENIAC, 278, 287
enternewstate task, 112
'EQU, 510
event, 212
Event variables in Verilog, 212
Example:

behavioral
instance, 121, 123

Mealy machine, 178
one hot Verilog, 270

dependency, 404
hierarchy, 57
independent instructions, 357
machine language program, 298
mixed, 40-41, 45-46:

Mealy machine, 179
one hot Verilog, 271

Moore command with Mealy <=,
266

netlist propagation delay, 200
one hot, 251
pipeline, childish division, 368
pure:

behavioral, 22, 134, 143
structural, 49

quadratic evaluator:
multi-cycle, 224
pipelined, 226
single cycle, 219

real function, 115
special purpose renaming, 407,

409
structural instance, 123
structural Mealy machine, 180
task, 110
traffic light:

<=,97,98
ASM chart, 8
behavioral Mealy, 178
bottom testing loop, 189
computer, 1, 2, 97, 113
mixed Mealy, 180
structural Mealy, 180
task, 112

Execution:
parallel, 413
pipeline, 413
speculative, 406, 413

Exhaustive test, 66
exitcurrent-state, 580
Explicit style, 99, 162-165, 472:

behavioral synthesis, 445
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switch debouncer, 472
versus implicit, 99

Expression, 69
External:

command output, 18
data:

input in ASM, 16
output, 18

External status, 14, 571
input, 16

Extra state for interface, 312

F
Factory, analogy to pipeline, 227
Ferranti, 279
Fetch state, 390
Fetch/execute, 1:

ASM for, 294, 304
behavioral, 290
mixed, 324
registers needed for, 292

Field Programmable Gate Array
(FPGA), 443

Fighting outputs, 78
Filling pipeline, 231
Finite state machine, 8, see also ASM:

ARM 388, 400,
logic equation, 167-168
Mealy, 182, 184-185
Moore, 26, 30, 34, 39, 220, 224,

232
netlist, 169
PDP-8 294, 302, 333
Verilog:

behavioral, 138-149, 186-188
explicit, 472
implicit, 258-265, 270-271,464,

471
mixed, 158-159
structural, 162-165

Flattened netlist, 54
Flip flop:

D type, 249, 530
macrocell, 442

one hot, 249
Flushing pipeline, 231
Font, 5
for, 69, 80, 85
forever, 72, 106
fork, 571
Forrester, Jay W., 288
Forwarding data, 360
Four-state division machine, 134
Four-valued logic, 77, 549
FPGA (Field Programmable Gate Array),

443
Friendly user, 24, 141
Full:

adder, 54
case, 459
function, 109;
car, 458
combinational logic, 115
condx, 390
depend, 417
dp, 391
state-gen, 163
syntax, 114

G
Gajski, Daniel D., 59, 247, 521, 541
Gate level modeling, advanced, 207
Gate:

instantiation in Verilog, 75
non-tristate, 544
tristate, 545

General purpose computer, 1, 561:
benchmarks, 320, 351, 371, 431-

432, 481
bit serial, 476
history, 277
PDP-8, 485
pipelined, 354
RISC and CISC, 475
structure, 279
superscalar, 411

Glitch, 205
Goto, arbitrary, 194
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Goto-less:
ASMs, translation to behavioral

Verilog, 99
style, 18

Graphical notation, 59
Ground, 539

H
Half-adder, 54
Handshaking, memory, 341-342
Hardware Description Language, see HDL
Hardware:

independent, 485
software tradeoff, see software

hardware tradeoff
translating algorithms into, 3, 7, 134,

249
Harvard Mark I, 278, 287
Harvard versus Princeton architecture, 379
Hazard, 205
HDL (Hardware Description Language),

4,64
Hennessy, John L., 247, 352, 375
Hexagon, 7, 12, 13
Hierarchical:

design, 54
names, 125
refinement of the controller, 167

Hierarchy:
example, 57
memory, 336:

architecture, 344
High impedance, 77, 545
High level language, 485
Highly specialized register, 540
History:

CISC versus RISC, 377
computer/digital technology, 2
general purpose computer, 277
memory technology, 286, 336
pins versus ports, 119

HLT, 490
Hollerith, Herman, 277
Hopper, Lt. Grace, 278

IAC, 489
IAS computer, 279
IBM, 278
IEEE1364, 5, 559
if:

if (no else), 103
at the bottom of f orever, 108
with one hot, 262
if else, 101:

with one hot, 258
'ifdef for cover task, 420
Immediate operands, ARM, 387
Implementation:

decisions:
pipelined, 396
superscalar, 402

implicit style, 99:
limitations with Mealy, 580
synthesis macros, 462
versus explicit style, 99

Implicit Verilog, 258-265, 270-271
In-line memory models (SIMMs and

DIMMs), 289
'include, 73

synthesizable, 441
'INCREMENT, 511
Incrementor, 503
Independent:

computations, 217
instructions, 357
statements, 23

Indirect:
addressing mode, 487
current page, 488

Inertial delay, 566
Infinite loop, 100
initial block, 70, 110
inout declaration, 551

definition, 110
port, 119,442

Input, ASM, 15-16

Index

134

3ate Array),

15

i21, 541
ed, 207

7,75

1, 561:
,371, 431-

591



input:
argument of task, 110
port, 15, 118-119, 442
unused, 155-157, 538

Instance:
behavioral, 118
structural, 118

Instantiation, 54:
by name, 447
by position, 447
module, 117
multiple gates, 75

Instruction:
concatenation, 305
data processing, 382
register (ir), 293, 308
set, 291

architecture, 573
integer, 67, 71:

declaration, 67:
in text code, 93

Intel, 288, 314, 378
Interconnection errors four-valued

logic, 77
Interface:

extra states for, 312
push button, 25, 317, 469-471

Interleaved memory, 403
Internal status, 43, 573
International Verilog Conference, 559
Interrupt, 376, 490
'INVALID, 416
IOF (interrupt off), 490
ION (interrupt on), 490
Iowa State University, 3, 277
ir, see instruction register'
ISZ, 487,376,484

J
Jacquard, 277
Jamesco, 557
Java, 1,6,381
JEDEC format, 442
. ji , 442

JMP instruction, 309, 362, 487
JMS, 487
Joslin, R. D., 582

K
Kilburn, Tom, 279-280, 287, 336

L
Latch, 459, 573
Lavington, S., 352
LDR, 436
Lee, James M., 130
Line, 338
Little endian notation, 67
Logic:

combinational, 52, 89, 454, 491, 543
equation approach, 167
four valued, 77
gates in Verilog, 74
sequential, building blocks, 525
synchronous, 90, 445, 527
wire, 495

Logical operators (&&, 11, !), 13, 70, 509:
ALU, 509

Loop:
bottom testing, 189:

disable inside forever, 273
while, implicit style, 463

Lovelace, Lady Augusta Ada, 277

M
M4-128/64, 558:

CPLD, 442
demoboard, 443, 470, 557

ma (memory address register), 219:
multi-cycle, 224
pipelining of, 229
single cycle, 219

Machine language:
cache test, 339, 349
childish division program, 318, 369,

424, 426, 429
program, 298, 485
R15 test, 422
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MACHPRO, 442
Macro, 73:

ARM, 391
implicit synthesis, 462
sign extension, 393
state names, 135

macrocells, 442
Manchester Mark I, 279, 287, 475
Mapping to specific pins, 453
Mark I, see Manchester Mark I,

Harvard Mark I
Mask, VLSI, 438
Mauchly, John W., 278
mb (memory buffer register), 293
McClendon, Susan Taylor, 485, 487
McNamara, John E., 352
Mealy, 398, see also conditional:

<= with Moore command, 266
ASM, into behavioral Verilog, 186
commands to one hot, 266
division machine, 181
implicit style limitations, 580
machine, 7
non-blocking assignment, 580
single state ASMs, 196
versus Moore, 177

Memory, 280:
address, see ma

register, see ma
as a separate actor, 312
asynchronous, 285
buffer register, see mb
cache, 337:

hit, 340
miss, 339
tag, 337

general purpose computers, 280
handshaking, 341

partial, 342
hierarchy, 336
history of, 286
interleaved, 403
multi-port, 372
non-blocking, 222

reference instructions, 487, 490
static versus dynamic, 286
synchronous, 282:

versus asynchronous, 282
virtual, 337
volatile versus non-volatile, 286

Methodical, 574:
architecture, 48

MINC Inc., 442:
address and website, 557

Minimum/typical/maximum delay, 207
Mixed, 20, 40, 154, 271:

fetch/execute, 324
Mealy machine, example, 179
two state division, 150, 271

MLA, 437
Mnemonic, 485
Model:

advanced gate level, 207
actual gate level delay, 492
behavioral combinational logic

with @, 89
combinational logic:

using a function, 115
with #, 85

ideal combinational logic, 492
inadequate propagation delay, 209
physical delay, 493
reality, 491
synchronous logic controllers, 91
synchronous registers, 90
worst case delay, 492

module, 54, see also port:
alul8l, 150
behavioral instance, example,

121,123
comparator, 153
counter-register, 151
enabled-register, 151
instantiated, 117
mux2, 153
nextstate logic, 162
port, structural Verilog, 117
structural instance, example, 123
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supplied by PLDesigner-XL, 450
supplied by PLSynthesizer, 447
top level, 117

Moorby, Philip R., 4, 131
Moore, C. Gordon, 288
Moore machine, 7, 177:

ASM to one hot, rules, 251
command signals with Mealy <=,

266
versus Mealy, 177

Moore School at the U. of Pennsylvania,
278

Mudge, J. C., 352
MUL, 437
Multi-bit:

command signal, 10
input, 16

Multi-cycle, 218:
adder, 460
ARM, 388, 393
behavioral, 224
mixed, 238, 334
PDP-8, 315
quadratic evaluator, 224
single cycle and pipeline com-

pared, 217
Multi-port memory, 372
Multiple ALUs, 403
Multiple blocks, 81
Multiple port register file, 403
Multiplexer, see mux
Mux (multiplexer), 153, 502:

in division machine, 42
conditional operator ( :), 257
using tristate buffers, 548

mux2 portlist, 153

N
nand, 74, 447
'NAND, 510
negedge, 88:

use for behavioral memory, 222
Netlist, 54, 168:

propagation delay, 200

synthesized, 446, 448
Neumann, John von, 3, 278
Newell, A., 352
Next command, 268
Next state, 8, 50, 161-165
nextstatelogic module, 162
Node collapsing, 455
Non-blocking assignment, 95,

see also RTN
in one hot, 258-261
Mealy, 580

implement Moore command, 266
multi-cycle, 226
pipeline, 233
rename, 406-410
synthesis, 464, 466-467

Non-default constant, 128
Non-deterministic access time, 282
Non-memory reference instructions,

308, 486, 489
Non-tristate gate, use of switch, 544
Non-volatile, 286
NOP, 489
nor, 74
'NOR, 510
not, 74, 169, 448
Notation, graphical and textual, 59, 275,

see also ASM, RTN, input
'NOT, 510
'NOTB, 510
notify, 575
notifO, 574
Noyce, Robert, 288
Nullify, 365

0
Object oriented programming, 127
One bit signal, see command signal, one bit
One hot, 249:

demux for decision, 250
from ASM, example, 251
from Moore ASM, 249
from Verilog, 255
machine with Mealy commands, 266
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usini
with
with
with

'ONES, 51
'OPA, 391
'OPB, 391
Open Veril

addn
Operands:

imm
multi

Operators,
OR gate in
'OR, 510
or gate, 74
or sensitiv
Ordering pi
'ORNA, 51
'ORNB, 51
Osborne, T
Oscilloscol
OSR, 308,
Out of orde
output:

argun
port,

Output:
ASM
exterr

cc
da

multi-
Oval, 7, 17,
Overflow, 3

P
Page:

currer
zero, 

Palnitkar, S.
Parallel:

softw,
case.

_.MPI
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using continuous assignment, 258
with if, 262
withif else,258
with while, 264

'ONES, 510
'OPA, 391, 403
'OPB, 391, 403
Open Verilog International (OVI), 65:

address and website, 559
Operands:

immediate in ARM, 387
multiple, 380

Operators, 13, 70, 579
OR gate in M4-128/64 macrocell, 442
'OR, 510
or gate, 74, 169, 201, 448
or sensitivity list, 90
Ordering processes #0, 87
'ORNA, 510
'ORNB, 510
Osborne, T.E., 4
Oscilloscope, 526
OSR, 308, 490
Out of order execution, 433
output:

argument, 110
port, 15, 118, 442

Output:
ASM, 15, 17
external:

command, 18
data, 18

multi-bit command, 10
Oval, 7, 177
Overflow, 30, 385, 501

P
Page:

current, 488
zero, 488

Palnitkar, S., 130, 247, 484, 554
Parallel:

software, 4
case, 459

pipeline and speculative execution,
412

Parameter, 128-129
Partial handshaking protocol, 342
Pascal (language), 1, 4, 6, 115
Pascal, Blaise, 2, 277
'PASSB, 510
'PASS, 510
Path, 125
Patterson, David A., 247, 352, 375
pb, see user interface, switch debouncer
pc (program counter), 293
PDP-8, 291, 302, 314, 378:

addressing modes, 487
bit serial, 475
block diagram, 335
childish division, 318-320, 368,

481
compared to ARM, 383
instruction subset, 291
pipelined architecture, 374
resources and websites, 560
synthesis and fabrication, 482

Peanuts, 23
Pentium, 314, 378
PERIOD parameter clock, 215
Peripheral, 280
Physical delay model, 493
.pi, 442
Pins:

versus ports, 119
mapping to specific, 453

Pipeline, 246, 354:
actions in parallel, 357
analogy, 227
architecture, 241
ARM, 396
behavioral, 232
filling and flushing, 231
implementation, 400
ma, 229
mixed, 241
parallel and speculative execution,

413

Index

e, 162

mmand, 266

, 282
ctions,

h, 544

al, 59, 275,
aput

g, 127
signal, one bit

50
251

ommands, 266
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PDP-8:
architecture, 374
illustration, 368

quadratic evaluator, 226
register, 241
single cycle, multi-cycle com-

pared, 217
skip instructions, 365
stage, 241

Place and route, 443, 494
Planetary analogy, 492
PLD, Complex, 520
PLDesigner-XL, 442, 558:

modules supplied by, 450
technology mapping, 448

PLSynthesizer, 442:
modules supplied by, 447
using VITO code, 466

'PLUS, 511
'POPA, 403, 416
'POPB, 416
Port:

by name, 123, 447
by position, 447
external, 15
inout, 119, 442
input, 118,442
internal, 15
multiple, register file, 403
output, 119,442
versus pin, 119

Portlist:
alul8l, 152
comparator, 153
counterregister, 151
enabledregister, 151
mux2, 153

posedge, 88,90, see also @ (posedge
sysclk)

Post synthesis simulation, 170
'PRD, 403
Present state, 8, 50, 161-165:

resetting of, 172

Primitive logical operations, 509
Princeton versus Harvard architec-

ture, 379
Princeton, Institute for Advanced

Studies, 279
Problem with <= for RTN simulation, 96
Procedural assignment:

blocking, 10
non-blocking, 95

Program:
cache test, 339
childish division, 23, 316-319,

424, 426, 429
counter, see pc and RI5
R15 test, 422
status register, 384, see also psr

Programmable devices, 518
Programmer's model, 293, 382, 561
Programming, object oriented, 127
Propagation delay, 199:

abstracting of, 209
division machine, 215
inadequate models of, 209
netlist, 200
pipelined machine, 244

Prosser, Franklin P., 60, 276, 352, 521,
541

psr (program status register), 417:
conditional assignment of, 391

Pure, 56:
behavioral, 19, 22, 134, 143, 148,

270, 576
structural, 576

controller, 162
example, 49, 51
stage, division machine, 161

Push button, see User interface and
Switch debouncer

Q
Q output, 530
Quadratic evaluator, see Example,

quadratic evaluator
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R
RI5 test pr(
Radar signa
RAL, 307,'
RAR, 306,d
RAW (read
'RD, 391, 4
Read only n
Read/write 
READY, ea
READY, usi
real, 67, 1

declar
Real time, 8
Rectangle, 7

@ (po
one ho

Reduction, 5
Reference in

memoi
non-mi

reg, 67, lS
Register, 13:

behavii
D type,
enable(
file, 37

mu]
highly:
model,
needed
pipelin(
program
read/wr
rename,
shift, 52
synchro
Transfei
Transfer
transfer,
types, c]
up coun

Relational ope

>=, !=),
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R
R15 test program, 422
Radar signals, 288
RAL, 307, 489
RAR, 306, 489
RAW (read after write), 417
'RD, 391, 403, 416
Read only memory (ROM), 518-519
Read/write register, 552
READY, early assertion of, 185
READY, user interface, 22, 272
real, 67, 115:

declaration, 67
Real time, 81
Rectangle, 7, 8, 12:

@ (posedge sysclk), 100
one hot flip flop, 249

Reduction, 576
Reference instructions:

memory, 487
non-memory, 308, 489

reg, 67, 119
Register, 13:

behavioral synthesis of, 444
D type, 529
enabled D-type, 531
file, 379:

multiple port, 403
highly specialized, 540
model, 562
needed for fetch/execute, 292
pipeline, 241
program status, 384
read/write, 552
rename, 406, 416
shift, 536
synchronous, 90
Transfer Logic, 576-577
Transfer Notation, see RTN
transfer, 11, 13
types, choosing, 326
up counter, 533

Relational operators (==, <, >, <=,

>=, !=), 13, 70

Relations in ASM, 13
Rename register, 406
rentag, 416
repeat, 576
Resetting the present state, 172
Resource sharing, 462
Response, 66
Ripple carry adder, 457, 460
RISC (Reduced Instruction Set

Computer), 378:
processors, 561
versus CISC, 377

Rising/falling delay, 207
ROM (Read Only Memory), 519
RTL, 489, 576
RTN (Register Transfer Notation), 11,

see also non-blocking assignment:
interaction with decision,

29-30
multi-cycle, 224
parallelization, 36-37
pipeline, 230
register renaming, 406-410
simulation with <=, 96

RTR, 489
Rutherford, Lord, 533

S
Sample, Neal, 582
Scheduling processes and deadlock, 82
Schulz, Charles, 23
Scope rules, 125
SDF (Standard Delay File), 577
Self-modifying program, 278. 376
Sensitivity list, 90
Separate actor, memory as, 312
Sequence versus $ time, 82
Sequential logic

building blocks, 525
non-blocking assignment, 564

74xx163, 120
74xx181, 510, 511
74xx377 (8 bit), 151
74xx378 (6 bit), 151

Index

ation, 96

-319,

Iso psr

,561
127

)9

,52, 521,

417:
f, 391

143, 148,

line, 161
He and

mple,
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Shift register, 462, 536
Shifter, 505-506
Shuler, James D., 275, 558, 582
Sign extension macro, 393
Signal, see Command, Command signal
Silicon foundry, 54
SIMMs (Single In-line Memory

Modules), 289
Simulation, 64, 81:

post synthesis, 170, 440
timing analysis, 204
versus synthesis, 64

Singh, Rajvir, 131, 375
Single accumulator, one address

instruction, 291
Single alternative, 103
Single cycle:

adder, 460
architecture, 235
behavioral, 219
multi-cycle and pipeline

compared, 217
quadratic evaluator, 219

Single pulsing and switch debouncing,
469

Single state Mealy ASMs, 196
Skip instructions, 310:

pipeline, 365
SKP, 490
Slater, Robert, 352
SMA, 490
Smith, Douglas J., 131
SNA, 490
SNL, 490
Software:

dependency, ASM, 26
hardware tradeoff, 322, 371, 432,

481
Source code overview, 135
SPA, 490
Special purpose computer, 1, 277:

renaming, 407, 409
specify block, 207
Speculative:

execution, 406
parallel and pipeline, 413

Speed and cost, 198, 496:
adder, 501
binary to unary decoder, 517
comparator, 512
demux, 513
incrementor, 504
multiplier, 507
mux, 502
ripple carry, 501, 504

SSEC,278
State, 8, 306:

see also implicit, explicit and
fnite state machine ASM

fetch, 390
Statement, 69, 71:

$display, 72,420
$dumpf ile, 570
$fclose. 571
$fdisplay, 572
$finish, 99
$fopen, 571
$ fstrobe, 572
$fwrite, 572
$readmemb, 576
$readmnemh, 576
$strobe, 566
$stop, 94
$write, 72,
behavioral Verilog, 68
case, 69,458-459
casex, 569
casez, 569
disable, 213
for, 69, 80, 85
forever, 72,106
fork, 571
if, 103, 108
if else,101,258
repeat, 576
wait, 93, 136
while, 72,104,463
wire, 67, 118-119, 494, 579
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state-gE
Static mem,
Status:

extern
intern

Sternheim, 1
Stibitz. Geoj
Stimulus, 65
STR, 436
strength,
StrongARM
Structural, 1,

feature
instanc

exai

moc
Mealy 
synthesi
Verilog,

sing]
versus b

Structure, 126
data, 12(
general I
pure, 22

Structured pro,
Style, implicit
Subbus, 498, s,
Subtractor, 505
Sunburst Desig
Superscalar, 38

ARM, 40
ASM,
Verilo

Switch, 543:
debouncei

explici
implici

non-tristat,
register, 3(
tristate gat

598



state-gen function, 163
Static memory, 286
Status:

external, 14, 571
internal, 43, 573

Sternheim, Eliezer, 131, 375
Stibitz. George R., 278
Stimulus, 65
STR, 436
strength, 577
StrongARM, 378
Structural, 1, see also pure structural:

features of Verilog, 74
instance, 118, 130:

example of module defined
with, 123

module defined by, 123
Mealy machine, example of, 180
synthesis, 445, 474
Verilog, modules and ports, 117:

single bit tristate gate in, 545
versus behavioral, 76

Structure, 126:
data, 126
general purpose computer, 279
pure, 22

Structured programming, 126
Style, implicit versus explicit, 99
Subbus, 498, see also Bus
Subtractor, 505
Sunburst Design, Inc., 564
Superscalar, 381:

ARM, 402:
ASM, 411
Verilog, 417

Switch, 543:
debouncer:

explicit style, 472
implicit style, 469

non-tristate gate, 544
register, 303
tristate gate, 545

Synchonous:
hardware register, 11, 527
logic, 527

controllers, 91
memory, 282

registers, see Registers, syn-
chronous

Synopsys, 509
Synthesis, 64, 466:

combinational adder, 454
design flow, 439
directive, 459
enabled-register, 445
implicit and explicit, 445
implicit style:

bit serial adder, 460
macros, 462

PDP-8, 482
structural, 445, 474
testing, 441
versus simulation, 64

sysclk (system clock), 137, 525, 527,
see also @ (posedge sysclk)

System:
clock simulation with #, 87
task, 72

SZA, 490
SZL, 490

T
TAD, 487
Tag memory, 337
task, 109-110
Technology family, 543
Technology mapping PLDesigner-XL,

448
Test bench, 420
Test code, 441, 578

adder, 455
approaches, 441
ARM, 430
bit serial PDP-8, 479
division, 136
implicit style block, 464

Index

t and
SM

)4, 579

599



importance of, 141
role of, 65
state gen, 165
xor, 86

Test programs, 422
Testbench, see test code
Thomas, Donald E., 131
Three stage pipeline, ASM for, 396
Time:

access, 282
control, 83

assignment with, 94
within a decision, 191

real 81
'timescale, 448
Timing analysis:

a priori worst case, 202
simulation of, 204

Timing diagram, 526
Top down design, 19
Top level:

module, 117
structure of the machine, 313

Torres y Quevedo, Leonardo, 277
Traffic light example, see Example,

traffic light
Transistor, 3, 543
Translating:

algorithms into hardware, 3
complex ASMs into Verilog, 188
conditional commands into

Verilog, 194
goto-less ASMs to behavioral

Verilog, 99
if at the bottom of forever, 108
Mealy ASM to Verilog, 186
Moore ASM to one hot, 251

Transport delay, 566
tri, 550
triand, 578
trior, 578
trireg, 578
Tristate:

as mux replacement, 548

buffer, 119
bus driver symbol, 548
device, 543
gate, 545:

structural Verilog, 545
uses, 548

Trivedi, Yatin, 131, 375
TTL logic family, 495, 533
Turing, Alan, 277
Turn off delay, 546
Two state division:

implicit Verilog, 270
machine:

behavioral stage, 148
mixed stage, 150, 271
structural stage, 161

Twos complementor, 504
Typography, 5

U
Unary code, 463, 515, 517
Unconditional command statement, 178
Unidirectional Bus, 281, 493, 496
United States:

Air Force, 288
Department of Defense, 65
Navy, 278

UNIVAC, 279
University of Manchester, England, 279,

336
Unknown value, 78
Unused inputs, 538
Up counter register, 533
Up/down counter, 535
User interface, 317:

hardware, 25
software, 317

User mode, 378

V
Vacuum tube, 2, 287, 495
Vantis, 442, 557:

address and website, 557
demoboard, see M4-128/64
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catchi
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comp,
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Variable:
declaration, 67
length instruction set, 378
event, 212
integer, 67,71
real, 67, 115
reg, 67, 119
tri, 550
wire, 67, 118-119, 494

Vcc and ground, 539
VCD (Value Change Dump), 579
Verilog:

algorithm for wire, 549
behavioral code, 76
bit serial CPU, 476
blocks, 70
catching errors, 140, 141
comments, 73
comparison with behavioral

code, 76
comparison with structural Verilog,

76
constants, 73:

nondefault, 128
event variables in, 212
expressions, 69
Implicit to One Hot, see VITO
'include, 73
logic gates, 74
macros, 73
multi-cycle, 393
pipeline, 400
processing four valued logic, 549
statements legal in behavioral, 68
structural compared with

behavioral, 76
structural features, 74
superscalar ARM, 417
synthesizable, 441
translating:

conditional command, 194
from ASM, 418

vendors' websites, 560
versus VHDL, 65

wire, 74
VerilogEASY, 557
VeriWell Simulator, 556
VHDL versus Verilog, 65
Virtual memory, 337
Virtual reality systems, 217
VITO, 442,558:

preprocessor:
availability and website, 558
generating an architecture, 467
in synthesis, 466

VLSI Technology, Inc., 434
VLSI, mask, 438
Volatile memory, 286
Voltage, 495:

active high and low, 495

w
wait, 93, 136
wand, 579
Wayner, P., 352
Websites, 556- 560
Wellspring Solutions, address and

website, 556
while, 72, 104:

with one hot, 264
Whirlwind computer (USAF), 288
Wilkes, Maurice, 279
Williams, Frederic, C. 279, 280, 287
Winkel, David E., 60, 276, 352, 521, 541
wire, 67, 118-119, 494, 579:

in one hot, 250
Verilog, 74, 118:

algorithm, 549
Wirewrap supplies, 557
Wolf, Wayne, 352
wor, 579
Worst case:

delay model, 492
propagation delay, 506
timing analysis, a priori, 202

Write buffer, 437
Write-back cache, 344-345

Index

nent, 178
496

65

gland, 279,

57
28/64
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Write-through cache, 344-345
Wynn-Williams, C. E., 2, 277, 533

x
Xilinx, 443
xor, 74, 85, 201, 208
'XOR, 510

z
'ZERO, 510
Zuse, Konrad, 278, 287, 289
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